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Equilibria in Data Injection Attacks
Iñaki Esnaola, Samir M. Perlaza, and H. Vincent Poor

Abstract—Data injection attacks are studied in a game
theoretic setting. Assuming that the network operator ac-
quires the state variables via generalized least squares (GLS)
estimation, different attack performance metrics are pro-
posed. The scenarios defined by the performance metrics
are then analyzed. In particular, closed form expressions for
best response functions and Nash equilibria (NEs) are given.
First the case in which the attack vector can be constructed
without energy constraints is studied. It is shown that for
unconstrained attacks infinitely many optimal attack vectors
exist and that the construction requires knowledge of the state
variables in the grid. Alternatively, when energy constraints
are included, the attack vector construction does not depend
on the state variables. As a consequence, the optimal energy
constrained attack strategy follows a correlated multivariate
Gaussian distribution. It is shown that for unconstrained
attacks infinitely many NEs exist and that in the constrained
case at least one NE exists.

I. INTRODUCTION

The smart grid paradigm is founded on the integration of
existing power grids with sophisticated sensing and com-
munication infrastructures. While the benefits provided by
this setting are crucial for the future development of power
grids, it also paves the way for cyber-security threats [1].
Recently, data injection attacks [2], [3], [4] have been
proposed as a feasible risk to electricity grids. The funda-
mental assumption to perform data injection attacks is that
a malicious attacker has access to metering units and thus,
is able to tamper with network measurements to distort
the state estimate obtained by the network operator. In [2]
and [3] unobservable attacks are studied and construction
procedures for attackers with access to a limited number
of meters are presented.

The analysis in [2] relies on algebraic tools and assumes
that the detector ignores the stochastic nature of the
state variables. However, with growing data mining and
analysis capabilities provided by modern computing, it is
reasonable to assume that network operators can learn the
statistical structure of the system and use attack detection
strategies that incorporate the underlying stochastic process
governing the network. In [5] it is assumed that training
data is available to the network operator and the attack
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detection is posed as a statistical learning problem. Detec-
tion techniques in which a Bayesian model of the random
state variables is assumed are studied in [3], [6] and [7]. In
contrast, a scenario in which multiple attackers are present
and/or limited communication is available among different
instantiations of the same attacker, raises the notion of dis-
tributed attacks. Distributed attack and detection strategies
when only local information is available are investigated
in [8].

This paper considers the case in which second order
statistics about the additive disturbance to the measurement
vector are available to a centralized network operator. That
being the case, it is assumed that the network operator
acquires the state variables through a GLS estimator which
incorporates the information of second order statistics into
the weighting matrix [9]. Similarly, the attacker is assumed
to have access to all the data in the network, which poses
a worst case scenario for analyzing the vulnerability of the
network operator to this type of threat.

There is an intrinsic conflict between the objective of the
operator and the goals of the attacker. Moreover, the nature
of the setting dictates that both the attacker and operator act
without coordinating their actions. For that reason, in this
paper, the data injection problem is cast in a game theoretic
framework. Interestingly, studying the performance of the
attacks boils down to analyzing the equilibria of the game
formed by considering the attacker and the operator as
competing entities, i.e., as players. In that setting, the trade-
off between the damage to the network, e.g., the excess
distortion term, and the ability to remain hidden from the
network operator, e.g, to keep the probability of attack
detection under a given threshold is studied. With practical
limitations in mind, the impact of energy constraints on
the attack construction is discussed as well. Ultimately,
the main results of this paper are inscribed in the context
of best response and NE analysis of data injection attacks.

The remainder of the paper is organized as follows. The
next section describes the state estimation setting and the
system model for the data injection attacks. In Section
III the data injection problem is cast in a game theoretic
framework and the main concepts used in the analysis of
the NEs are introduced. The main results reporting the
performance metrics, the structure of the best response
functions, and the NEs for unconstrained and constrained
attacks are presented in Sections IV and V respectively.
Because of space limitations we omit the proofs of the
results presented in this paper.

II. STATE ESTIMATION PROBLEM

Consider an electric power distribution network with
N ∈ N buses and let Vi ∈ C be the voltage at bus i,



with i ∈ {1, . . . , N}. Denote by δi and |Vi| the phase and
the magnitude of the voltage Vi, respectively. Hence, the
state of the grid is fully described by the vector [10]:

x = (δ2, . . . , δN , |V1| , . . . , |VN |) ∈ R(N−1) × RN
+ . (1)

Without any loss of generality, all phases are measured
with respect to the phase of voltage V1 and thus, δ1 is
excluded from the state vector x. The network operator
collects M measurements of different variables of the
network, i.e., real and/or reactive power injected at a
given bus; and/or active and reactive power flows between
buses. Note that in some cases, some voltage magnitudes
can also be measured. However, in general, all measured
variables are functions of the state variables δ2, . . . , δN
and |V1| , . . . , |VN |. Let F : R(2N−1) → RM be a multi-
dimensional function that describes the relation between
the measured variables and the state variables. Variables
other than the state variables and the measured variables,
such as line-charging susceptances, series susceptances,
etc., are considered to be known by the network operator.
Denote by y ∈ RM the vector of measurements obtained
by the network operator. Hence, the following equality
holds:

y = F (x) + z + a, (2)

where z ∼ N (0, IM ) is the additive white Gaussian noise
arising from the thermal noise added by the metering
devices and a ∈ RM accounts for external malicious
data injections. When a 6= (0, . . . , 0), it is assumed that
there exists an external entity able to tamper with the
measurements obtained by the network operator. Often, the
attack vector a is sparse as only a set of measurements is
compromised [2]. The construction of the data injection
vector a is thoroughly discussed in Sec. III. The function
F in (2) is non-linear and has an involved description
determined by the underlying physical laws describing
the relation between the measured variables and the state
variables δ1, δ2, . . . , δN and |V1| , . . . , |VN |. Following the
reasoning in [10], a linearized model of the form

y = Hx + z + a (3)

is considered, where the matrix H ∈ RM×N , with entries

(H)i,j =
∂F (xi)

∂xj
, is the Jacobian of function F . It is

important to highlight that the structure of the matrix H
is strongly influenced by the indices used to identify each
bus. That is, a different labeling of the buses induces a
different matrix structure. With the proper labeling, diago-
nally dominant matrices can be constructed. However, the
problem of labeling the buses of the network to induce
particular properties in the matrix H is beyond the scope
of this work. In the following, the analysis of the state
estimation is kept independent of the resulting structure of
H.

Within this context, the state estimation problem consists
of constructing an estimation function f : RM → RN such
that, given an estimate of the form x̂ = f (y), it minimizes
a given distortion metric with respect to the actual state

vector x. Particularly, this work focuses in the case in
which the operator performs GLS estimation. One of the
reasons for the widespread acceptance of this technique
in the power systems community is that it is frequently
used even when the errors introduced in the measurements
are not Gaussian. Interestingly, from the point of view
of the operator, the attack vector and the thermal noise
can be jointly considered as the total error introduced
in the measurements, which yields, in general, a non
Gaussian error term. That being the case, it is reasonable
to assume the operator performs weighted least-squares
estimation, in which the weights include the distinct impact
of the attack vector. More formally, the weighting matrix is
denoted by W ∈ SM++, where SM++ denotes the set of M -
dimensional positive definite matrices. In that setting, the
GLS estimation vector x̂LS satisfies the following equality:

x̂LS= min
x∈RN

‖W (y −Hx) ‖22

=(WH)
+

Wy, (4)

where (·)+ denotes the Moore-Penrose inverse [11]. For
ease of notation P

∆
= (WH)

+
W is defined. Note that in

the special case in which WH has full column rank, the
Moore-Penrose pseudo-inverse is identical to (WH)

−1.
Hence, from (4), it follows that

x̂LS=P (Hx + z) + Pa,

and the perturbation ψLS induced by the attacker, with the
vector a, in the estimation is

ψLS = Pa. (5)

III. GAME FORMULATION

This section studies the interaction between the network
operator and a single malicious entity able to perform a
global attack, i.e., to simultaneously tamper with any set
of sensors of the network. Under this condition, the attack
vector a can be any vector in the M -dimensional real space
RM . In order to combat the attack, the network operator
choses the weighting matrix W for (4).

Denote by u : RM × SM++ → R a function used by
the network operator to choose between two weighting
matrices W1 and W2, given that the attacker chooses the
attack vector a. More specifically, u(a,W1) > u(a,W2)
implies that, given attack vector a, weighting matrix W1

is preferred to W2. When equality holds, i.e., u(a,W1) =
u(a,W2), the network operator indifferently chooses ei-
ther W1 or W2 against the vector attack a. Similarly,
denote by v : RM × SM++ → R a function used by the
attacker to choose between two attack vectors a1 and a2,
given that the network operator uses the weighting W.
Hence, v(a1,W) > v(a2,W) implies that the vector a1

is preferred instead of a2, given the weighting W and no
preference is established when equality holds.

This interaction can be modeled as a game in normal-
form [12] denoted by

G =
{
K, {SM++,RM}, {u, v}

}
, (6)



where K = {Operator,Attacker} is the set of players; the
set of M−dimensional positive-definite matrices SM++ and
the set of real M−dimensional vectors RM are the set
of actions of the operator and the attacker, respectively.
Finally, u and v are the utility functions of the operator
and the attacker, respectively. The aim of both the operator
and the attacker is to maximize their individual utilities.
Hence, given any attack a, the best response of the operator
is a correspondence BRu : RM → SM++ that maps a into a
set of utility-maximizing M -dimensional positive definite
weighting matrices. Thus, BRu satisfies the following
condition:

BRu(a) = {W∗ : u(a,W∗) > u(a,W),∀W ∈ SM++}.
(7)

The best response of the attacker BRv : SM++ → RM is a
correspondance that maps any weighting vector into a set
of attack vectors. The set BRv(W) satisfies the following
condition:

BRv(W) = {a∗ : v(a∗,W) > v(a,W),∀a ∈ RM}.
(8)

A. Operator-Attacker Equilibria

Among the many solutions of the game G [13], an
interesting one, denoted by (a∗,W∗), is the case in which
the weighting W∗ is optimal with respect to the attack
vector a∗, and, the attack vector a∗ is optimal with respect
to the weighting W∗. This type of outcome is known as
a Nash equilibrium (NE) [14]. An NE is stable in the
sense that neither the network operator nor the attacker
possesses a weighting vector or an attack vector that
is preferred to W∗ and a∗, respectively. The following
definition formalizes this game solution concept.

Definition 1 Let the action profile (a∗,W∗) be a Nash
equilibrium of the game G. Let also BR : RM × SM++ →
RM × SM++ be a correspondence satisfying

BR(a,W) = BRu(a)× BRv(W). (9)

Then, the Nash equilibrium action profile (a∗,W∗) satis-
fies the fixed-point equation

(a∗,W∗) = BR(a∗,W∗). (10)

IV. UNCONSTRAINED ATTACKS

A. Performance Metric of the Network Operator

The main objective of the network operator is to choose
a matrix W such that it obtains a reliable estimate x̂ of
the state variables x in the grid. Such reliability can be
measured in terms of a squared `2-norm of a weighted
version of the residual. More specifically, let the function
u1 be defined as

u1 (a,W)=−‖W (y −Hx̂) ‖22 (11)
=−‖W (I−HP) (Hx + z + a) ‖22.

Note that the utility function (11) is parametrized by H, x
and z. However, the knowledge of x and z is not required
at the network operator as the value of u1 (a,W) can be
calculated from the linearization matrix H and the vector
of measurements y, i.e., u1 (a,W) = −‖Ly‖22, where
L

∆
= W (I−HP) is defined for notational simplicity.

B. Performance Metric of the Attacker

The design of the attack vector, a, faces an important
trade-off between maximizing the distortion introduced
into the measurements and minimizing the probability of
attack detection. Increasing the distortion increases the
probability of detection and vice versa. A natural measure
of the distortion induced by the vector attack a is the `2-
norm of the excess distortion term, ψLS in (5). On the other
hand, a traditional attack detection technique consists of
comparing the `2-norm of a weighted residual ‖Ly‖22 with
a given threshold τ . Thus, when ‖Ly‖22 > τ holds, then the
existence of an attack is declared by the network operator.
Conversely, when ‖Ly‖22 6 τ , the operator assumes that
a is the null vector and thus, no attack is present in the
network. Following this reasoning, the aim of the attacker
can be modeled by a function v1 defined as

v1(a,W) = ‖Pa‖22 − λ‖L (Hx + z + a) ‖22. (12)

C. Nash Equlibria

The NEs of the game G are studied in the case in
which the attacker has access to full system information,
i.e., the realizations of H, x, and z. Contrastingly, the
network operator estimates the state with knowledge only
of the second order statistics of the disturbance, i.e.,
Σa+z = E[(a+ z)(a+ z)T ]. The rationale for this setting
is to determine the security limits by investigating the least
favorable situation for the network operator. Note that nei-
ther the attacker nor the network operator has knowledge
about the statistics of the state variables. When only the
measurements, y, and the Jacobian, H, are available to
the network operator, the strategy reduces to BRu(a) = I.
To avoid this trivial solution, the knowledge of Σa+z is
incorporated into the construction of the weighting matrix,
W, of the GLS estimator.

The following theorem describes the NE arising from
the utility functions described above.

Theorem 1 Let (a∗1,W
∗
1) be an NE action profile of the

game G. Assume that λ > 0, P∗
∆
= (W∗

1H)
+

W∗
1; L∗

∆
=

W∗
1 (I−HP∗); and T∗

∆
= (P∗)TP∗ − λ(L∗)TL∗. Then,

when T∗ is negative definite, (a∗1,W
∗
1) satisfies the fixed-

point equation in (9) with

BRu1
(a∗1) = Σ

− 1
2

z+a∗
1
, (13)

BRv1(W
∗
1) = λ

(
(T∗)−+ B−(T∗)−T∗BT∗(T∗)−

)
×(L∗)TL∗ (Hx + z), (14)



where (·)− denotes any weak inverse and B ∈ RM×M is
any arbitrary matrix.

The following corollaries follow immediately from The-
orem 1:

Corollary 1 When T∗ is positive definite, the game G
possesses infinitely many NEs.

The fact that there are infinitely many NEs and attack
vectors that maximize the performance metric v1, makes
defining a strategy for the operator hard. Indeed, due to the
assumption that Σz+a is known, the operator is exposed
to a random attack strategy. For instance, the attacker can
generate a random matrix B with each attack construction,
which effectively complicates the estimation of Σz+a for
the network operator.

Corollary 2 When T∗ is not positive definite, the game
game G does not possess an NE.

The following section presents an energy constrained
attack scenario in which the existence of at least one NE
is ensured and the optimal attack vector does not depend
on the state variables.

V. ENERGY CONSTRAINED ATTACKS

The attack construction in Section IV does not impose
any energy constraint on the attacker. However, the Jaco-
bian is often rank deficient and the construction of the opti-
mal attack vector, a∗1, in Theorem 1 can be ill-conditioned
and possibly very large. To that end, in this section a new
performance metric is proposed that effectively limits the
amount of energy that is available to the attacker.

A. Performance Metric in the Energy Constrained Case
In the case of the network operator, the same function

as in Section IV is used and therefore

u2 (a,W) = −‖Ly‖22. (15)

On the other hand, a new term capturing the amount of
energy used in the attack construction is added to the
performance metric given in (12), which results in

v2(a,W) = ‖Pa‖22 − λ1‖L (Hx + z + a) ‖22 − λ2‖a‖22.
(16)

In this case the trade-offs of the performance metric are
expressed through the parameters λ1 and λ2 which scale
the impact of detectability and available attack energy,
respectively.

B. Nash Equilibria with Energy Constraints
The following theorem reflects the impact on the NE in

Theorem 1 of adding energy constraints to the attacker.

Theorem 2 Let (a∗2,W
∗
2) be an NE action profile of the

game G. Assume that λ1 > 0 and λ2 > 0. Define

P∗
∆
= (W∗

2H)
+

W∗
2; L∗

∆
= W∗

2 (I−HP∗); and T∗
∆
=

(P∗)TP∗−λ1(L
∗)TL∗ . Then, when T∗−λ2‖a∗2‖22 is neg-

ative definite, (a∗2,W
∗
2) satisfies the fixed-point equation

in (9) with

BRu2
(a∗2) = Σ

− 1
2

z+a∗
2
, (17)

BRv2(W
∗
2) = λ1 (T

∗ − λ2I)
+
(L∗)TL∗z. (18)

Interestingly, in this case the construction of the optimal
attack is easier for the attacker as it requires less knowledge
than the one proposed in (14). Indeed, the attack vector
does not depend on the state variables of the grid and is
obtained by linearly projecting the noise vector z. Remark-
ably, this result shows that the optimal attack construction
is a Gaussian distributed vector with covariance matrix
defined by the Jacobian of the grid. Another interesting
aspect is the fact that the construction in (18) is the
attack vector with the minimum-norm solution in the set
BRv2(W

∗
2). In fact, the following corollary gives an upper

bound on the amount of energy that the attacker requires.

Corollary 3 Let T∗−λ2I have rank r < M and let σmin

be the smallest non-zero singular value of T∗−λ2I. Then
a∗2 is the minimum-norm solution in the set BRv2(W

∗
2)

and

‖a∗2‖ ≤
‖λ1(L

∗)TL∗z‖22
σmin

. (19)

VI. CONCLUSION

Different performance metrics give rise to different mod-
els of the interaction between the attacker and the network
operator. The choice of performance metrics conditions the
structure of the game and the meaning of the corresponding
NEs. In this paper, two performance metrics have been
proposed and the induced sets of NEs have been fully
characterized. From the perspective of the attacker, these
new performance metrics capture the intrinsic antagonism
between distortion maximization, energy limitation, and
minimization of the attack detection probability. In the
case of the network operator, the performance metric is
determined by the distortion in the estimation of the state
variables. At the equilibrium points the effect of adding an
energy constraint is that the optimal attack vector does not
depend on the state variables.
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