
HAL Id: hal-01155246
https://hal.inria.fr/hal-01155246

Submitted on 22 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Vector Graphics Animation with Time-Varying Topology
Boris Dalstein, Rémi Ronfard, Michiel van de Panne

To cite this version:
Boris Dalstein, Rémi Ronfard, Michiel van de Panne. Vector Graphics Animation with Time-Varying
Topology. ACM Transactions on Graphics, Association for Computing Machinery, 2015, Proceedings
of ACM SIGGRAPH 2015, 34 (4), Article No. 145, 12 p. �10.1145/2766913�. �hal-01155246�

https://hal.inria.fr/hal-01155246
https://hal.archives-ouvertes.fr


Vector Graphics Animation with Time-Varying Topology

Boris Dalstein∗ Rémi Ronfard Michiel van de Panne
University of British Columbia Inria, Univ. Grenoble Alpes, LJK, France University of British Columbia

Space-time visualization Time-slices visualization

tim
e space-time

visualization

time-slices
visualization 

11number

key
vertex

key
closed edge

key
open edge

key
face

inbetween
vertex

inbetween
closed edge

inbetween
open edge

inbetween
face

3 10 2 10 3 9 1

Legend

Figure 1: A space-time continuous 2D animation depicting a rotating torus, created without 3D tools. First, the animator draws key cells (in
blue) using 2D vector graphics tools. Then, he specifies how to interpolate them using inbetween cells (in green). Our contribution is a novel
data structure, called Vector Animation Complex (VAC), which enables such interaction paradigm.

Abstract

We introduce the Vector Animation Complex (VAC), a novel data
structure for vector graphics animation, designed to support the
modeling of time-continuous topological events. This allows fea-
tures of a connected drawing to merge, split, appear, or disappear at
desired times via keyframes that introduce the desired topological
change. Because the resulting space-time complex directly captures
the time-varying topological structure, features are readily edited in
both space and time in a way that reflects the intent of the drawing.
A formal description of the data structure is provided, along with
topological and geometric invariants. We illustrate our modeling
paradigm with experimental results on various examples.
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1 Introduction

A fundamental difference between raster graphics and vector graph-
ics is that the former is a discrete representation, while the latter is a
continuous representation. Instead of storing individual pixels that
our eyes readily interpret as curves, vector graphics stores curves
that can be rendered at any resolution. As display devices spanning
a wide range of resolutions proliferate, such resolution-independent
representations are increasing in importance.

Similarly, a fundamental difference between traditional hand-drawn
animation and 3D animation is that the former is discrete in time,
while the latter is continuous in time. Instead of storing individual
frames that our eyes interpret as motion, the use of animation curves
allows a scene to be rendered at any frame rate.

Space-time continuous representations, i.e., representations that are
resolution-independent both in the spatial domain and the tempo-
ral domain, are ubiquitous within computer graphics for their many
advantages. They are typically based on the “model-then-animate”
paradigm: a parameterized model is first developed and then ani-
mated over time using animation curves that interpolate key values
of the parameters at key times. A limitation of this paradigm is
the underlying assumption that the model can be parameterized by
a fixed set of parameters that captures the desired intent. This is
indeed possible for 3D animation and simple 2D animation, but it
quickly becomes impractical in any 2D animation scenario where
the number of strokes or how they intersect change over time. In
other words, the “model-then-animate” paradigm fails when the
topology of the model is time-dependent, which makes it challeng-
ing to represent space-time continuous animated vector graphics
illustrations with time-varying topology.

In this paper, we address this problem by introducing the Vector
Animation Complex (VAC). It is a cell complex immersed in space-
time, specifically tailored to meet the requirements of vector graph-
ics animation with non-fixed topology. Any time-slice of the com-
plex is a valid Vector Graphics Complex (VGC) which make its
rendering consistent with non-animated VGCs.



2 Related Work

Vector graphics Resolution-independent representations for 2D
illustrations include stacked layers of paths (the most common),
planar maps [Baudelaire and Gangnet 1989; Asente et al. 2007],
diffusion curves [Orzan et al. 2008], stroke graphs [Whited et al.
2010; Noris et al. 2013], and vector graphics complexes [Dalstein
et al. 2014]. We use the latter as a starting point for this paper, since
unlike paths and diffusion curves, it is topology-aware (i.e., can
represent shared boundaries between objects); unlike planar maps,
it allows objects to overlap (which can be hard or impossible to
avoid when interpolating key edges); and unlike stroke graphs, it
can represent 2D faces (for coloring). Similarly to [McCann and
Pollard 2009], we can achieve temporally local stacking orders.

Topology-unaware inbetweening Cartoon animation [Thomas
and Johnston 1987; Blair 1994] consists in drawing a finite se-
quence of pictures that gives the illusion of motion. It was expected
that automatic inbetweening of vectorized strokes would make car-
toon animation easier, but this task appeared to be much more
complex than expected [Catmull 1978], one reason being inconsis-
tent topology between keyframes. Early stroke-based approaches
[Burtnyk and Wein 1971; Reeves 1981; Fekete et al. 1995] are
manual (the animator selects pairs of strokes to interpolate) and
topology-unaware (strokes are interpolated independently, unaware
of their neighbors). Recent methods [Liu et al. 2011; Yu et al. 2012]
use shape descriptors and machine learning techniques to compute
stroke correspondences automatically, but since they are topology-
unaware, they are unable to generate space-time continuous anima-
tion with time-varying topology.

Topology-aware inbetweening [Kort 2002] introduces seman-
tic relations between strokes (e.g., intersecting, or dangling), to-
gether with inference rules to find stroke correspondences auto-
matically. Later, [Whited et al. 2010] introduces stroke graphs,
where nodes are where strokes end or intersect, and edges are the
strokes themselves. Given two stroke graphs and initial stroke cor-
respondences, the two graphs can be traversed in parallel to propa-
gate stroke correspondences, stopping at topological inconsisten-
cies. Unfortunately, unlike our method, none of these methods
can produce space-time continuous animations with time-varying
topology, since it is not allowed by their representation. Also, none
of these methods address coloring.

Data-driven inbetweening An alternative approach to generate
cartoon animations is to reuse existing content. [Bregler et al. 2002]
extracts animated affine transformations and weight coefficients
from existing cartoons, which can be transfered to new shapes.
[de Juan and Bodenheimer 2006] performs a semi-automatic seg-
mentation of the input video to combine parts of existing content
together. New inbetweens can be generated by defining an im-
plicit space-time surface interpolating extracted contours, however,
no change in topology is allowed, since interpolated contours are
always closed curves. [Zhang et al. 2009] proposes a method to
vectorize input cartoon animations, allowing to edit them. How-
ever, their outputs are stacked layer of paths, thus cannot represent
topological events.

Shape morphing Another way to generate inbetweens is shape
morphing, where a shape is a closed curve (its boundary), together
with a raster image (its interior). To avoid shrinkage caused by
naive solutions, [Sederberg et al. 1993] interpolates intrinsinc def-
initions of the shape boundary. [Alexa et al. 2000] interpolates
compatible triangulations of the shapes by minimizing an as-rigid-
as-possible energy, and uses texture blending for the interior pix-

els. It has been improved [Fu et al. 2005; Baxter et al. 2009], and
extended to interactive shape manipulation [Igarashi et al. 2005].
Initial arc-length correspondences between the two closed curves
can be achieved using curvature-based methods [Sebastian et al.
2003]. An alternative approach to shape morphing is introduced
by [Sýkora et al. 2009], where they align the two shapes using an
iterative method, which can be applied for temporal noise control
[Noris et al. 2011], or texture transfer [Sýkora et al. 2011]. Unfor-
tunately, none of these methods can produce space-time continuous
animations of vectorized curves with changing topology, since by
definition every shape has the topology of a disc, and their interior
is not vectorized, typically leading to blurring artifacts.

Stylizing 3D animation A natural approach to handle image-
space topological events is to animate in a different space where
no topological events occur, e.g., 3D animation [Lasseter 1987], in
which case a fixed number of degrees of freedom can be keyframed
independently. From a 3D model, one can compute vectorized 2D
feature lines (e.g., [Bénard et al. 2014]), from which it is possi-
ble to extract cycles for coloring using depth-ordered paths [Eise-
mann et al. 2009] or planar maps [Karsch and Hart 2011], which
can be further processed in 2D for stylization. However, the 3D-to-
2D conversion is typically a per-frame process and therefore does
not output a time-continuous 2D animation. To address this is-
sue, [Karsch and Hart 2011] tracks the snaxels’ 3D positions in
the original mesh to generate correspondences across 2D frames,
[Buchholz et al. 2011] computes a parameterization of the space-
time surface swept by the silhouette lines, and [Bénard et al. 2012]
uses an image-space relaxation method to deform, split and merge
active strokes at frame i to match the feature lines of frame i + 1.
Unfortunately, unlike ours, all these methods require to create a
3D animation beforehand. In addition, their output representation
either does not support vectorized coloring [Buchholz et al. 2011;
Bénard et al. 2012], or breaks the animation into contour sequences
that do not change in topology [Karsch and Hart 2011]. In this pa-
per, we present a novel representation that could be used as output
of these existing methods to address their limitations.

Using hybrid “2.5D” models To have better image-space control
of style, but still animate in a space free from topological events,
[Fiore et al. 2001; Rivers et al. 2010] introduce hybrid models
where shapes are defined in 2D, but their interpolation and depth-
ordering is guided by 3D information. Unfortunately, these ap-
proaches tend to reduce the space of possible animations (compared
to freeform hand-drawn animation), and only allows the represen-
tation of topological events which are solved by depth ordering.

Space-time modeling Finally, another approach to generate 2D
animations –the one adopted in this paper– is to consider animated
lines as surfaces in space-time [Fausett et al. 2000; Kwarta and
Rossignac 2002; de Juan and Bodenheimer 2006; Southern 2008;
Buchholz et al. 2011], and animated faces as volumes in space-
time [Fausett et al. 2000; Southern 2008]. Therefore, animating
becomes modeling in space-time, which makes possible to easily
represent topological events, unlike when using the model-then-
animate paradigm. The time dimension can also be replaced by
more abstract parameters [Ngo et al. 2000; Fausett et al. 2000],
leading to 4D or even higher dimensional objects. Recently, space-
time meshes have also be used for fluid simulation inbetweening
[Raveendran et al. 2014]. In theory, any non-manifold topological
representation could be used to apply these concepts, as long as
they can represent objects of sufficiently high dimension. Simpli-
cial complexes [De Floriani et al. 2010] are a natural choice for their
simplicity and scalability in dimension. Other non-manifold rep-
resentations that scale in dimension are G-maps [Lienhardt 1994]
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Figure 2: Left: The existing keyframing paradigm, defining an an-
imation as ordered sequences of key values. Right: Our more gen-
eral approach, where key values are unordered but labeled, and
inbetween values specify which one to interpolate.

and the selective geometric complex [Rossignac and O’Connor
1989]. If no more than three dimensions are needed, the radial-edge
[Weiler 1985] or handle-cell [Pesco et al. 2004] structures could be
appropriate choices as well. Unfortunately, none of these represen-
tations are designed to represent space-time objects, and while they
can be very appropriate for algorithm processing, artistic space-
time modeling using them is particularly non intuitive. What makes
our representation unique is that it treats the time dimension sepa-
rately from the space dimensions, enabling a keyframing paradigm
similar to what animators are familiar with. For instance, instead
of a 1D entity called “edge”, we make the distinction between two
types of 1D entities: a key edge (1D in space; 0D in time) represents
an edge at a given time, and an inbetween vertex (0D in space; 1D
in time) represents an interpolation between two key vertices. Even
though they are both 1D in space-time, they are created, edited, and
visualized differently, reflecting a cleaner semantics.

3 Space-Time Topology

In this section, we provide an initial intuition behind the vector an-
imation complex, which we formally define in Section 4.

3.1 Animating vertices

Suppose an animator wants to create a time-continuous animation
of a single vertex v. This means that he needs to define its po-
sition p(t) for every time t in the life-span of the vertex. The
existing approach (Fig. 2, Left) is to define a sequence of keys
[(t1, p1); (t2, p2); . . . ] which are interpolated in time. To animate
three vertices, the animator would define three sequences of keys.
Let us call this paradigm sequential keyframing, since the repre-
sentation is a set of sequences of keys: one sequence per animated
vertex, or more generally, one per animated degree of freedom.

But what if the animator wants the number of vertices –or degrees
of freedom– to change over time, by splitting or merging? We can
observe (Fig. 2, Right) that the space-time topology of such ani-
mation is not anymore disconnected sequences, but a more general
graph. Therefore, sequential keyframing fails to represent such an-
imation with time-varying topology, and we need a more general
approach to keyframing that we call topological keyframing. The
animator first defines a set of key vertices vi = (ti, pi), as in se-
quential keyframing except that they are not ordered in sequences.
Then, he defines a set of inbetween vertices vj = (vbefore, vafter)
that reference to two key vertices to interpolate.

In theory, such paradigm can easily be applied to animate any kind
of values, say, quaternions. However, in this paper, we use it to
animate the topology of vector graphics illustrations. This poses
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Figure 3: Stroke graph animation with time-varying topology. Red
dots are key vertices; (non-vertical) red curves are inbetween ver-
tices; (vertical) blue curves are key edges; and light blue areas are
inbetween edges. Each annotation describes either a topological
event introduced by key cells, or specifies that key cells are used as
conventional “keyframes” (trajectory control, no change in topol-
ogy). Note: key edges are represented as straight lines (because
space is represented as 1D), but are in fact general 2D curves.
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Figure 4: Topology of inbetween edges. Note: a path or cycle can
also consist of a single key vertex (but an animated vertex cannot).
A cycle can also consist of a single closed edge, possibly repeated.

additional challenges due to the fact that such topology is already a
graph-like structure in the space dimension. Therefore, we have to
represent incidence relationships both in the temporal domain and
the spatial domain, resulting in a space-time complex.

3.2 Animating stroke graphs

Suppose now that we want to animate a stroke graph [Whited et al.
2010], i.e. not only vertices but also (open) edges, which are 2D
curves starting at a start vertex and ending at an end vertex. An
easy way to achieve this is to define first a stroke graph, then use
sequential keyframing to animate independently its degrees of free-
dom (e.g., position of the vertices and Bézier control points of the
edges). Unfortunately, with this approach, it is impossible to repre-
sent animated stroke graphs with time-varying topology.

Our solution (Fig. 3) is to represent such animation as a space-time
complex made of key vertices and inbetween vertices (as defined
previously), but also key edges and inbetween edges. A key (open)
edge ei is defined by a time ti and a 2D curve φi(s), starting at a key
vertex vstart = (ti, p1) and ending at a key vertex vend = (ti, p2).
An inbetween (open) edge ej is defined by its temporal bound-
ary and its spatial boundary (detailed in the next paragraph), from
which can be computed a time-parameterized 2D curve Φ(s, t) (i.e.,
a surface in space-time) interpolating this boundary.

vstart
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Naively (Fig. opposite), one might define the
temporal boundary as a pair (ebefore, eafter)
that references to two key edges to interpolate,
and the spatial boundary as a pair (vstart,vend)
that references to two inbetween vertices where

the time-parameterized curve Φ(s, t) should start and end (for t
fixed). Unfortunately, this naive definition would only enable to



represent a very small subset of all possible topological events that
can happen to a stroke graph, and therefore we need a more gen-
eral definition (Fig. 4, Left). Indeed, to represent an edge being
cut in half by an appearing vertex (Fig. 3), or cut in more pieces
by several vertices appearing simultaneously, we need the temporal
boundary not to be two key edges, but two “sequences of connected
key edges”, structure that we call path. To represent an edge grow-
ing from a vertex, we need to allow paths to be reduced to a key
vertex. Finally, To allow partial keyframing (e.g., adding a key to
an inbetween edge without adding a key to every incident edge, and
recursively to every connected edge), we need the spatial bound-
ary not to be two inbetween vertices, but two “sequences of con-
nected inbetween vertices”, structure that we call animated vertex
(it is a chain key—inbetween—key—· · ·—key—inbetween—key,
which can be interpreted as a vertex animated using conventional
keyframing).

3.3 Animating vector graphics complexes

We extend these ideas further to represent an animated vector
graphics complex [Dalstein et al. 2014] with time-varying topol-
ogy. The same way that the VGC extends stroke graphs with closed
edges and faces, the VAC extends the representation introduced in
the previous section with key closed edges, inbetween closed edges,
key faces, and inbetween faces.

A key closed edge ei is defined by a time ti and a 2D closed curve
φi(s) (note that is does not have bounding vertices). An inbe-
tween closed edge ej is defined by its temporal boundary, made
of two cycles (Fig. 4, Right), from which can be computed a time-
parameterized 2D closed curve Φ(s, t) interpolating this boundary.
Note that unlike inbetween open edges, inbetween closed edges
have an empty spatial boundary, since closed edges do not have
bounding vertices. To allow all sorts of topological events, cycles
can either be reduced to a single key vertex, or made of a single
(possibly repeated) key closed edge, or made of connected key open
edges.

A key face fi is defined by a time ti and a sequence of cycles,
all sharing the same time ti. Given a winding rule (e.g., even-
odd or non-zero), these cycles define a 2D region of the time-plane
t = ti. An inbetween face fj is defined by its temporal boundary
and its spatial boundary. Its temporal boundary is defined by two
sequences of faces, the before faces and the after faces. Its spatial
boundary is defined by a sequence of animated cycles, structure
that we introduce informally in the next three paragraphs.

Animated cycle We have seen that an animated vertex is a com-
binatorial structure that stores references to existing inbetween ver-
tices, which define a time-parameterized position p(t). Similarly,
our goal is now to define a time-parameterized closed curve Φ(s, t),
via a combinatorial structure storing references to existing cells (a
“cylinder in space-time”, cf. Fig. 5, Top-left). A simple option
would be to define this boundary as a set {c1, . . . , cn} of refer-
ences to cells. However, for the same reasons that this approach
fails to define the boundary of key faces (cf. [Dalstein et al. 2014]),
this approach fails to define the boundary of inbetween faces too.
More specifically, because overlapping of cells is allowed (i.e., the
complex is only immersed in space-time, as opposed to embedded),
then the set of boundary cells does not contain enough information
to unambiguously define the geometry of the face. Instead, it is
necessary to organize this set using an ordered structure, possibly
refering to the same cell multiple times. This additional informa-
tion explicitly defines a parameterization of the boundary. For key
faces, this is achieved via the structure called cycle. For inbetween
faces, this is achieved via the structure called animated cycle.
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Figure 5: Top: Intuitively, an animated cycle
•
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dimensional doubly linked list where every node holds a reference
to an inbetween edge and an orientation. The structure is circu-
lar in the space dimension, and non-circular in the time dimen-
sion. Unfortunately, this naive structure is not expressive enough to
capture all possible scenarios. Bottom: The actual data structure
includes additional nodes to explicitly hold a reference to shared
vertices, key edges, and inbetween vertices.

Intuitively (Fig. 5, Top-right), a naive structure to define such pa-
rameterization would be a two-dimensional doubly linked list of
oriented inbetween edges, where the first dimension corresponds
to the curve parameter s, and the second dimension correspond to
the time t. This structure is circular in the s-dimension, but non-
circular in the t-dimension. Like a doubly linked list, it is com-
posed of nodes which store: 1) per-node data; and 2) references to
adjacent nodes. But unlike a doubly linked list, each node stores
four references instead of two: previous and next to navigate in the
s-dimension; and before and after to navigate in the t-dimension.
The node data itself is a reference to an inbetween edge e, and a
boolean β that orients e with respect to curve parameterization.

Unfortunately, this naive structure cannot handle inbetween edges
bounded by more than two key edges, more than two inbetween
vertices, or that shrink to a key vertex, and thus cannot represent
general time-parameterized cycles (e.g., Fig. 6, Left). Our solu-
tion is to include all the lower dimensional cells shared between
inbetween edges as explicit nodes of the structure (Fig. 5, Bottom;
Fig. 6, Right). It introduces a little redundancy to the structure, but
makes it significantly more expressive.



4 Formal Definition

A vector animation complex K is defined as a tuple

K = (C, dimT , dimS , . . . ) (1)

where C is a finite set of abstract symbols called cells (think of
them as identifiers, or addresses), and dimT , dimS , . . . are func-
tions defined onC or a subset ofC, assigning to relevant cells some
attributes, that have to satisfy some invariants. These numerous at-
tributes and invariants are detailed in the remainder of this section.
In our C++ implementation, an element c ∈ C is a pointer to an
object inheriting the class Cell, and an attribute α(c) is typically
a data member c->m_alpha.

Cell attributes can be classified in two types: topological attributes,
which are combinatorial objects defining incidence relationship be-
tween cells; and geometrical attributes, which are continuous ob-
jects immersing the cells in space-time. The two most important
attributes of any cell c ∈ C are topological:

• its temporal dimension dimT (c) ∈ {0, 1}
• its spatial dimension dimS(c) ∈ {0, 1, 2}

Cells of temporal dimension 0 are called key cells, and cells of tem-
poral dimension 1 are called inbetween cells. Orthogonally, cells
of spatial dimension 0 are called vertices, cells of spatial dimen-
sion 1 are called edges, and cells of spatial dimension 2 are called
faces. In addition, each edge e is assigned the topological attribute
isClosed(e) ∈ {true, false}. Therefore, the cells in C can be par-
titionned into eight finite sets which define their type:

dimT dimS isClosed Type Notation

0 0 n/a key vertex v ∈ V
0 1 true key closed edge e ∈ E◦
0 1 false key open edge e ∈ E|
0 2 n/a key face f ∈ F

1 0 n/a inbetween vertex v ∈ V
1 1 true inbetween closed edge e ∈ E◦
1 1 false inbetween open edge e ∈ E|
1 2 n/a inbetween face f ∈ F

For convenience, we define E = E| ∪ E◦ and E = E| ∪ E◦. In
Section 4.1, we define all the remaining attributes and invariants for
each type of cells. For clarity, some of these attributes are expressed
using auxiliary structures (halfedges, paths, cycles, animated ver-
tices, and animated cycles), which are defined in Section 4.2.

4.1 Cell attributes and invariants

Key vertex A key vertex v ∈ V represents a single point in
space-time:

topological attributes: ∅
geometrical attributes: position p(v) ∈ R2

time t(v) ∈ R
invariants: ∅

Key closed edge A key closed edge e ∈ E◦ represents a closed
curve contained in a time-plane:

topological attributes: ∅
geometrical attributes: curve φ(e) : s ∈ [0, 1]→ R2

time t(e) ∈ R
invariants: φ(e) continuous

φ(e)(0) = φ(e)(1)

Key open edge A key open edge e ∈ E| represents an open
curve contained in a time-plane, starting and ending at two key ver-
tices (possibly equal):

topological attributes: start vertex vstart(e) ∈ V
end vertex vend(e) ∈ V

geometrical attributes: curve φ(e) : s ∈ [0, 1]→ R2

time t(e) ∈ R
invariants: φ(e) continuous

φ(e)(0) = p(vstart(e))
φ(e)(1) = p(vend(e))

t(vstart(e)) = t(e) = t(vend(e))

Key face A key face f ∈ E represents a region of a time-plane
delimited by closed curves (possibly self-intersecting, including go-
ing back and forth the same path or being reduced to a single point):

topological attr: cycles ∀i ∈ [1..k(f)], γi(f) ∈ Γ

where k(f) ≥ 0

geometrical attr: winding rule R(f) ⊆ N
time t(f) ∈ R

invariants: ∀i ∈ [1..k(f)], t(f) = t(γi(f))

Inbetween vertex An inbetween vertex v ∈ V represents an
interpolation in time between two key vertices:

topological at.: before vertex vbefore(v) ∈ V
after vertex vafter(v) ∈ V

geometrical at.: animated position p(v) : t ∈ [t1, t2]→ R2

where t1 = t(vbefore(v))
t2 = t(vafter(v))

invariants: t1 < t2

p(v) continuous
p(v)(t1) = p(vbefore(v))
p(v)(t2) = p(vafter(v))

Inbetween closed edge An inbetween closed edge e ∈ E◦ rep-
resents an interpolation in time between two cycles:

t. at.: before cycle γbefore(e) ∈ Γ
after cycle γafter(e) ∈ Γ

g. at.: animated curve Φ(e) : (s, t) ∈ [0, 1]× [t1, t2]→ R2

where t1 = t(γbefore(e))
t2 = t(γafter(e))

inv.: t1 < t2

Φ(e) continuous
∀t ∈ [t1, t2],Φ(e)(0, t) = Φ(e)(1, t)

∀s ∈ [0, 1],Φ(e)(s, t1) = φ(γbefore(e))(s)
∀s ∈ [0, 1],Φ(e)(s, t2) = φ(γafter(e))(s)

Inbetween open edge An inbetween open edge e ∈ E| repre-
sents an interpolation in time between two paths, spatially bounded
by two animated vertices:

t. at.: before path πbefore(e) ∈ Π
after path πafter(e) ∈ Π

start animated vertex
•
vstart(e) ∈

•
V

end animated vertex
•
vend(e) ∈

•
V



g. at.: animated curve Φ(e) : (s, t) ∈ [0, 1]× [t1, t2]→ R2

where t1 = t(πbefore(e))
t2 = t(πafter(e))

inv.: vstart(πbefore(e)) = vbefore(
•
vstart(e))

vend(πbefore(e)) = vbefore(
•
vend(e))

vstart(πafter(e)) = vafter(
•
vstart(e))

vend(πafter(e)) = vafter(
•
vend(e))

t1 < t2

Φ(e) continuous
∀t ∈ [t1, t2],Φ(e)(0, t) = p(

•
vstart(e))(t)

∀t ∈ [t1, t2],Φ(e)(1, t) = p(
•
vend(e))(t)

∀s ∈ [0, 1],Φ(e)(s, t1) = φ(πbefore(e))(s)
∀s ∈ [0, 1],Φ(e)(s, t2) = φ(πafter(e))(s)

Inbetween face An inbetween face f ∈ F represents an inter-
polation in time between key faces, spatially bounded by animated
cycles:

top. at.: before time tbefore(f) ∈ R
before faces ∀i ∈ [1..kb(f)], fbefore,i(f) ∈ F

where kb(f) ≥ 0

after time tafter(f) ∈ R
after faces ∀i ∈ [1..ka(f)], fafter,i(f) ∈ F

where ka(f) ≥ 0

animated cycles ∀i ∈ [1..k(f)],
•
γi(f) ∈

•
Γ

where k(f) ≥ 0

geo. at.: winding rule R(f) ⊆ N

inv.: ∀i ∈ [1..kb(f)], tbefore(f) = t(fbefore,i(f))
∀i ∈ [1..ka(f)], tafter(f) = t(fafter,i(f))

∀i ∈ [1..k(f)], tbefore(f) = tbefore(
•
γi(f))

∀i ∈ [1..k(f)], tafter(f) = tafter(
•
γi(f))

4.2 Auxiliary structures

Halfedge A halfedge is a pair h = (e, β) ∈ E × {>,⊥}. If e is
closed then it is a closed halfedge denoted h ∈ H◦, otherwise it is
an open halfedge denoted h ∈ H|. If β = >, we define φ(h)(s) =
φ(e)(s), otherwise we define φ(h)(s) = φ(e)(1− s). If h is open
then we define vstart(h) = vstart(e) and vend(h) = vend(e) (when
β = >), or vstart(h) = vend(e) and vend(h) = vstart(e) (when
β = ⊥). Finally, we define t(h) = t(e).

Path A path π is either:

1. a key vertex v ∈ V , or
2. a list of N > 0 open halfedges h1, .., hN ∈ H| satisfying:

∀j ∈ [1..N − 1], vend(hj) = vstart(hj+1)

In the first case, we define vstart(π) = vend(π) = v, otherwise
we define vstart(π) = vstart(h1) and vend(π) = vend(hN ). Also,
we define the curve φ(π) : s ∈ [0, 1] → R2 by concatenating and
uniformly reparameterizing the φ(hj). In the special case π = v,
then φ(π) is the constant function Φ(π)(s) = p(v). Finally, we
define t(π) = t(v) (Case 1.), or t(π) = t(h1) (Case 2.). We denote
by Π the set of all possible paths on K.

Cycle A cycle γ is either:

1. a key vertex v ∈ V , or
2. a closed halfedge h ∈ H◦ repeated N > 0 times, or

3. a circular list of N > 0 open halfedges hj ∈ H| satisfying:

∀j ∈ [1..N ], vend(hj) = vstart(hj+1)

In addition, a cycle stores a starting point s0 ∈ R. We define
the closed curve φ(γ) : s ∈ [0, 1] → R2 by concatenating and
uniformly reparameterizing the φ(hj), then offsetting by s0. In the
special case γ = v, then φ(γ) is the constant function Φ(γ)(s) =
p(v). Finally, we define t(γ) = t(v) (Case 1.), or t(γ) = t(h)
(Case 2.), or t(γ) = t(h1) (Case 3.). We denote by Γ the set of all
possible cycles on K.

Animated vertex An animated vertex
•
v is a list of N > 0 inbe-

tween vertices v1, ..,vN ∈ V satisfying:

∀j ∈ [1..N − 1], vafter(vj) = vbefore(vj+1)

We define vbefore(
•
v) = vbefore(v1) and vafter(

•
v) = vafter(vN ).

Also, we define the time-parameterized position p(
•
v) : t ∈

[t(vbefore(
•
v)), t(vafter(

•
v))] → R2 by concatenating the p(vj).

We denote by
•
V the set of all possible animated vertices on K.

Animated cycle An animated cycle is a tuple
•
γ = (N, c, β, nprevious, nnext, nbefore, nafter) (2)

where N is a non-empty set of symbols called nodes, and:

c : N → V ∪V ∪ E ∪E assigns a cell to every node

β : N → {>,⊥} assigns an orientation
(ignored if c(n) ∈ V ∪V)

nprevious : N → N assigns a previous node

nnext : N → N assigns a next node

nbefore : N → N ∪ {null} assigns an optional before node

nafter : N → N ∪ {null} assigns an optional after node

In addition, an animated cycle stores a starting node n0 ∈ N .
We define the timespan of a node n as being the trivial inter-
val T (n) = {t(c(n))} if c(n) is a key cell, or the open interval
T (n) = (tbefore(c(n)), tafter(c(n))) if c(n) is an inbetween cell.
Despite having a single next pointer, one can notice (Fig. 6) that
when c(n) is an inbetween open edge, then n may have several
nodes “next to it”, which are stacked in time. The next (resp. pre-
vious) pointer points to the “first” of these, and the others can be
accessed by iterating after (resp. before). To easily traverse the
data-structure at t fixed, we define the two functions nnext(n, t)
and nprevious(n, t) that return the two nodes “spatially adjacent to
n at time t”.

nprevious(n ∈ N , t ∈ R)

Require: t ∈ T (n)
n′ ← nprevious(n)
while t 6∈ T (n′) do

n′ ← nbefore(n
′)

return n′

nnext(n ∈ N , t ∈ R)

Require: t ∈ T (n)
n′ ← nnext(n)
while t 6∈ T (n′) do

n′ ← nafter(n
′)

return n′

We define the time-parameterized closed curve Φ(
•
γ)(s, t) by find-

ing a node n such that t ∈ T (n) (iterating before/after from n0),
then concatenating the φ(c(n)) while iterating nnext(n, t) (fol-

lowed by a normalization into [0, 1]). We denote by
•
Γ the set of

all valid animated cycles on K, which are the ones whose attributes
satisfy the invariants that we provide in supplemental material, to-
gether with the definition of tbefore(

•
γ) and tafter(

•
γ).
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Figure 6: A more general example of an animated cycle
•
γ. Left: Geometry and topology of the cells c ∈ C(K) involved in

•
γ. It is a sub-

complex of the whole VAC. Right: The nodes n ∈ N(
•
γ) defining

•
γ. Each node n references to a cell c, specifies an orientation β (ignored if

c is a vertex), and points to a previous, next, before, and after node. The shape/color of the node indicates the type of the referenced cell:

key
vertex

key
closed edge

key
open edge
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vertex

inbetween
closed edge

inbetween
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This example illustrates a variety of topological transformations over time for the cycle, including local keyframing using a key vertex (v3),
local keyframing using key edges (e3, e4), keyframing using a closed edge (e7), contraction of an open edge to a vertex (e3 → v8), contraction
of a closed edge to a vertex (e7 → v9), cutting an open edge into two open edges (e2 → e3, e4), among others.



(a) (b) (d) (e)(c)

Figure 7: Interpolation scheme (time = horizontal axis). (a) Input:
geometry of key cells and space-time topology. (b) Compute tan-
gents at key vertices. (c) Compute geometry of inbetween vertices,
satisfying tangents. (d) For each inbetween edge, compute linear
interpolation of bounding paths/cycles. (e) Output: warp to satisfy
spatial boundary conditions.

5 Interpolation Scheme

The geometry of inbetween cells may be provided explicitly (or in
non-photorealistic rendering applications, computed from an ani-
mated 3D model), but in our case, it is computed by interpolating
the geometry of key cells, as expected from a keyframing system.

First, for each key vertex vi, we define a tangent q(vi) as the av-
erage of the slopes p(vj)−p(vi)

t(vj)−t(vi)
, for all key vertices vj connected

to vi by an inbetween vertex (Fig. 7b). Then, we define the ge-
ometry of each inbetween vertex as the unique cubic curve inter-
polating the positions p(vbefore) and p(vafter) with the desired tan-
gents q(vbefore) and q(vafter) (Fig. 7c). All that is left to do is
define the geometry of every inbetween open (resp. closed) edge,
by interpolating its two bounding paths (resp. cycles). We recall
from Section 4 that paths/cycles have an explicit parameterization
[0, 1]→ R2, obtained by concatenating and uniformly reparameter-
izing the key edges’ parameterizations (the starting point of cycles
is a user-controllable variable). First, we compute a linear interpola-
tion between these two explicit parameterizations (Fig. 7d). Finally,
in the case of inbetween open edges, for all t ∈ (t1, t2), we linearly
warp this interpolation Φ(s, t) such that Φ(0, t) and Φ(1, t) coin-
cidate with the start and end animated vertices at t (Fig. 7e). There
is no need to define an interpolation scheme for inbetween faces,
since their geometry is entirely specified by the geometry of their
boundary. Indeed, for all t ∈ (t1, t2), a closed parameterized curve
[0, 1]→ R2 can be extracted from each animated cycle, which, to-
gether with the user-specified winding rule (e.g., even-odd), define
an area of the 2D plane.

This interpolation scheme is robust and general but limited as it only
guarantees C0 continuity. More aesthetically pleasing interpolation
can be achieved using logarithmic spirals [Whited et al. 2010] or
Coons patches. This is left for future work.

6 User Interface

To create and manipulate VACs, we implemented various visualiza-
tions and topological operators, which we present in this section.
We refer to the accompanying video for a demonstration of these
tools.

2D view We provide a 2D view to render a specific frame of the
animation (i.e., a time-slice of the VAC), which can be selected
using a timeline similar to any animation system. The 2D view can
be split into multiple 2D views to visualize simultaneously different
frames of the animation. The user can also toggle “onion skinning”
to overlay several frames within a single 2D view, or render the
animation as an animation strip (Fig.1, bottom). The frames can be
rendered either in “normal” mode (showing the actual result), or in
“topology” mode (using a color code to inform whether a cell is a
key cell, or a time-slice of an inbetween cell).

3D view We also provide a 3D view to visualize the VAC in
space-time. However, we mostly use this view as a debugging tool,
as it becomes quickly impractical when the number of cells grow.
All interaction happens in the 2D views, and all examples presented
in this paper have been created without using the 3D view at all. At
this stage, it is unclear whether it is relevant to expose such visual-
ization to end users.

Creating key cells Key cells are created in the 2D view using
standard VGC tools. They are assigned the time ti selected in the
timeline.

Motion-pasting The easiest way to create inbetween cells is to
select key cells at time t1, trigger the copy action, then move to
time t2 and trigger the motion-paste action. It creates a copy of the
key cells, assigns them the time t2, and creates inbetween cells that
connect in time the old key cells to the new ones. In other words, it
corresponds to sweeping key cells in time. Once motion-pasted, the
new cells can be edited to create the desired motion. Standard VGC
topological operators (extended to support incident inbetween cells)
can also be used on the new key cells, which introduce topological
events as a result.

Inbetweening Another way to create inbetween cells is to select
existing key cells at two different times t1 and t2 (e.g., using side-
by-side 2D views), then trigger the inbetweening action. It creates
inbetween cells that connect in time the selected key cells. Cur-
rently, it works to create an inbetween vertex out of two key ver-
tices; an inbetween edge out of two key edges; an inbetween edge
out of more than two key edges that can be organized into two paths
or two cycles; or an inbetween edge that grows or shrinks to a ver-
tex. This tool does not yet support the creation of inbetween faces
(we can still create them using motion-pasting or manually speci-
fying their boundary), neither the simultaneous creation of multiple
inbetween edges, which are both interesting challenges left as fu-
ture work.

Inserting keys A fundamental topological operator on VACs is
to cut an inbetween cell in half, in the time dimension, by inserting a
new key cell. It is the equivalent of inserting a keyframe in conven-
tional keyframing animation. Similarly to the “auto-key” feature of
most animation systems, we automatically call this operator when-
ever the user performs an action on (the rendered time-slice of) an
inbetween cell. For instance, attempting to move an inbetween ver-
tex automatically inserts a key vertex at the time ti selected in the
timeline, and the new key vertex is the cell actually moved. Note
that this insert key tool is local: it cuts the selected inbetween cell
and its spatial boundary, but does not propagate to any other cell.
This allows for local trajectory or topology refininement possible,
without keyframing the whole drawing.

Drag-and-drop Selected key cells can be drag-and-dropped in
space (using the 2D view), but also in time (using the timeline),
within a time interval determined by its incident inbetween cells.
This allows to easily refine the timing of a motion.

Depth-ordering We store a global ordering for all the cells in
a complex using a doubly-linked list, and render the cells back-
to-front using this ordering. As with VGCs, we provide tools to
conveniently alter this ordering.



Figure 8: Double Torus.
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Figure 9: Animated ribbon decomposed into 6 key faces
(A,B,E,F,I,J) and 4 inbetween faces (C,D,G,H), in order to depict
local depth-ordering both in space and time.

7 Results

We create several illustrative examples of vector graphics anima-
tions that involve topological changes over time. We briefly sum-
marize them below, although they are best seen in the video that
accompanies this paper.

Torus The torus (Fig. 1) is an example use of the VAC to cre-
ate a clean conceptual animated vector graphics illustration. It is
defined using a total of five keyframes (frames that contain at least
one key cell). As always required, the clip begins and ends with
full keyframes (frames containing key cells only), which specify
the shape of all the drawing elements that exist at those key times.
The second keyframe captures the motion of the interior silhou-
ette, marks the initial appearance of the hole with a single vertex,
and also keyframes the shape of the outside silhouette. The third
keyframe properly introduces the now-visible hole, while the fourth
keyframe then ends the growth of the hole by merging the end ver-
tices of the two lines. As seen in this example, keyframes are used
either to introduce a change in shape, to introduce a change in topol-
ogy, or both. Keyframes are typically local, i.e., key cells are only
inserted where needed, without keyframing the entire drawing.

Double torus Once we have the VAC for the single torus, the an-
imation of a double torus (Fig. 8) is easy to create. Indeed, all that
is needed is: 1) deforming the outside silhouette, 2) copy-pasting
to a different space-time location the sub-complex representing the
animation of the hole, and 3) gluing the first key edge of this sub-
complex to the deformed silhouette. We believe that this type of
template-based construction provides a practical way of simplifying
the creation of VACs. Figure 8 shows a vector graphics animation
of a simple torus which is morphed to a double torus, with the two
halves rotating asynchronously. Creating such animation would be
hard using conventional vector graphics tools, but would be equally
hard in 3D, since the genus of the depicted surface changes, requir-
ing a topological event in 3D as well.

Animated ribbon In a given VAC, any cell is either completely
in front, or completely behind, any other cell. However, any cell
can be easily split spatially (cutting) or temporally (keyframing)
into different cells, and the cells of this new cell-decomposition are
assigned their own independent depth orders. This makes possible

Figure 10: Bird animation. Space-time view (top); output anima-
tion (middle); VGC film strip (bottom).

to depict local depth-ordering, both in space and time, as illustrated
in Figure 9. Using motion-pasting and basic editing, the space-time
topology and geometry of this animation can be created within a
few seconds. Then, the user alters the depth-ordering to ensure
A < B,C < D,G > H , and I > J , using the “raise” and “lower”
actions, as with standard VGCs. Note that this example does not
contain topological events: keyframes are only used to introduce a
change in geometry, as well as a change in depth-ordering.

Flapping bird We demonstrate Figure 10 the use of animated
faces with depth layering in creating an example of a bird with a
flapping wing, as inspired by a hand-drawn animation [Blair 1994,
p. 122]. This example is created using 7 keyframes, all of which
are local except the ones at the start and end. A looping animation
is easily created by copy-and-pasting a second copy of the full VAC
so that it sits immediately after the first copy. The ending elements
of the first animation are then topologically glued to the starting
elements of the second animation.

Head turning We use a drawn animation sequence by James
Lopez (used with permission) as inspiration for a more complex ex-
ample, shown in Figure 11. This involves many drawn elements and
a significant number of topological changes, particularly involving
the ear, goggles, eye, and mouth. Many topological changes need
not be modeled in great detail. The eye is a good example: the fea-
tures of the eye are simply spawned from an initial vertex that is
introduced on the silhouette of the face. For this example, the 3D
space-time view is largely unusable because of its complexity, and
thus it proved to be a good test case for the capabilities of our user
interface.



Figure 11: Turning head animation. Output animation (top); VGC
film strip (bottom).

8 Discussion

Creation Many aspects of working with the VAC are no differ-
ent than that of creating a conventional keyframe animation. An-
imation workflows are often classified as being straight ahead or
pose-to-pose, and these working styles can each be reproduced us-
ing the VAC. A straight ahead workflow is readily reproduced us-
ing motion-pasting to create a new keyframe, followed by editing
as necessary. A pose-to-pose workflow can be modeled by creating
independent keyframes, followed by the creation of inbetween cells
interpolating the key cells. For other potential applications, such as
the vectorization of existing animations or video clips, we expect
that the creation of the VAC may be automated.

Editing Creating the space-time topology of a complex animation
may take more time than via traditional animation but once created,
the VAC offers significant benefits as it provides a compact repre-
sentation that is continuous in space and time. The VAC can be
easily edited in ways that are not possible with traditional 2D or 3D
animation pipelines. The VAC also provides a compact and conve-
nient representation for algorithms to operate on. For example, we
envision algorithms that can produce rich variations of an existing
animated drawing by adding stochastic perturbations in space and
time to some of the key elements.

Local keyframing Conventional keyframing animation allows
for independent keyframing of the animation variables, i.e., the
keyframe times for an animated knee-joint motion can be different
from the keyframe times for the animated ankle motion within the
same animation. Similarly, the VAC allows for the asynchronous
specification of keyframes for portions of the vector graphics com-
plex. Local keyframes provide better support for the semantics of
many vector graphics drawings by allowing different portions of a
drawing to be governed by different keyframes. It also allows for
many topological changes to be conveniently modeled using instan-
tiated templates.

Repurposing of exising 3D complexes It is tempting to be-
lieve that modeling an animated 2D complex could be achieved
using existing approaches for 3D topological modeling, where the
z-coordinate simply plays the role of time. Unfortunately, this does
not reflect the unique semantics of the time axis, and this mani-
fests itself in several ways. An “out of plane” rotation of a vec-
tor graphics animation does not usually produce a valid anima-
tion because the space is not Euclidean. For similar reasons, oth-

ers have proposed representing image spaces as a non-Euclidean,
Cayley-Klein geometry with one isotropic dimension [Koenderink
and Doorn 2002]. Without a special designation for time, spe-
cific strategies would be needed to model the changing depth-
orderings that can be desired during the course of a vector graph-
ics animation, and which, by contrast, are easily modeled using
the VAC. More importantly, cells would not always admit a time-
parameterization. By contrast, all cells in our complex have an
explicit time-parameterization, by design. This makes extracting
time-slices trivial and also guarantees that all topological events are
constrained to occur at key cells. This would not be the case if our
cells were allowed to do “switch-backs” in time. In addition, de-
spite being both 1D in space-time, the distinction we make between
key edges and inbetween vertices is critical since their intersection
with a time-plane is an object of different dimension. They must
thus be rendered differently and store different attributes. The same
is true for key faces and inbetween edges. Also, we allow zero-
length edges but not zero-duration inbetween cells, i.e., we enforce
t1 < t2. Similarly, paths are allowed to be reduced to a single key
vertex, while animated vertices are not.

Using a simplicial complex representation for vector graphics an-
imation [Southern 2008] would necessitate the use of many cells,
which could then be problematic for creation, editing, and vi-
sualization, as well as being further removed from the standard
keyframing paradigm for animation. Given a simplicial complex
that completely reflects the geometry of an VAC, the VAC can be
seen as inducing a partition of the simplicial complex, resulting in
an output semantics similar to [Buchholz et al. 2011]. In general,
geometric complexes allow for models and operations that we wish
to forbid in order to reflect the unique nature of the time dimen-
sion. Implementing the desired constraints necessitates additional
complexity while the VAC implements the desired constraints by
design, i.e., as part of its desiderata. Also, we note that the inter-
section of a 3D simplicial complex with a time-plane is not neces-
sarily a 2D simplicial complex (as the intersection between a tetra-
hedron and a plane can be a four-sided polygon). By contrast, the
intersection of a VAC with a time-plane is guaranteed by design
to be a VGC, which is trivial to compute due to the explicit time-
parameterization.

Limitations While there are many benefits to a structure that pro-
vides a sound, continuous-time model of the topological events in
vector graphics animations, it also comes with additional complex-
ity. In particular, the modeling and editing of animated cycles, as
required in order to animate faces in the vector graphics complex,
embodies much of the complexity of the data structure and its im-
plementation. The space-time topology is also likely to introduce a
steep learning curve for artists coming from the world of SVG mod-
els where changes in topology are approximated by other means.
We currently leave the development of an improved user interface
as future work, and as such we have not conducted a formal user
study with regard to how end users can best work with the VAC.
We believe that the use of topological-event templates may signifi-
cantly simplify the workflow for modeling and editing. Finally, our
system shares the same fundamental limitation of any 2D animation
system: the loss of information between the depicted 3D world and
the 2D depiction [Catmull 1978]. In other words, the semantics of
a rotating 3D object will always be better captured by 3D represen-
tations. We believe that the automatic computation of a VAC from
an animated 3D model would alleviate this issue.

Future work The VAC opens up a number of exciting avenues
for future work. Computing aesthetically pleasing interpolation be-
tween key cells is a rich and interesting problem. In conventional
animation systems, animation curves are defined for any animation



variable by keyframes that always have well-defined before and af-
ter keyframes. This allows for well-defined tangent vectors to be
specified or inferred at keyframes (e.g., Catmull-Rom). However,
the topological events allowed by the VAC means that a key cell
can have multiple before and after key cells, e.g., two or more ver-
tices that join or split at a given time t, or an entire edge or face
that merges or spawns from a given vertex. Developing sound and
practical methods for position interpolation or user-based tangency
specification is significantly more complex as a result.

Future work is needed to provide high-level manipulation of the
VAC. For instance, a space-time paint bucket tool would be useful
for creating inbetween faces. The automatic computation of inbe-
tween cells from a general selection of key cells (i.e., automatic
inbetweening) is a largely open problem, and extending [Whited
et al. 2010] to the VAC is an exciting direction to explore. Also, we
have developed a number of visualization tools in support of end
user understanding, but much more is possible.

The topological structures could be further extended to allow the
creation of motion graphs (equivalently, “move trees”), as is com-
monly done within game engines for character animation. This
would require the ability to follow a given time-indexed “branch”
of the VAC, and to rejoin existing branches. The ability to do this
with local parts of a VGC would provide even further flexibility,
although the resulting complexity might be difficult to develop and
debug. One could also imagine creating additional continuous di-
mensions, such as that created by an aspect graph, i.e., creating a
model that is parameterized with respect to the viewing direction as
well as time.

An interesting direction is to develop VACs directly from video or
rendering of a 3D model. VACs could be used to achieve continu-
ous space-time tracking, as a logical extension of keyframe track-
ing for rotoscoping applications [Agarwala et al. 2004]. Interesting
initial steps towards the vectorization of video have recently been
explored [Patterson et al. 2012]. The data structure also has po-
tential applications in non-photorealistic rendering, where there is
a need for sound time-coherent models of the regions and strokes
in an image sequence [Bénard et al. 2014]. Given the separation of
topological and geometrical information in the VGC and the VAC,
it should also be possible to develop a limited class of 3D animation
using the VAC. Both of the above problems point to the need to de-
velop good models for developing or otherwise modeling consistent
parameterizations for edges and faces.

Some features supported by traditional vector graphics animation
tools are not yet implemented, such as grouping, path-following,
clipping, and masking. It is not yet clear how orthogonal this fea-
ture set is to the topological modeling aspects that we have focused
on. Finally, there are interesting future directions to improve ren-
dering and performance across the wide range of platforms that are
a driving force behind increasing popularity of vector graphics.

9 Conclusions

We have presented a new data structure for representing vector
graphics animation: the vector animation complex (VAC). It pro-
vides a compact, continuous-time continuous-space representation
for vector graphics that is designed to support topological events.
We expect that such continuous representations will become in-
creasingly important as content needs to be developed for an ever-
wider range of display resolutions and frame rates. Compared
to conventional representations for vector graphics animation, the
VAC captures more faithfully the semantics of many animations,
therefore provides better support for manual editing or algorithm
processing. Local keyframing is supported, i.e., keyframes need
only provide information about the topological or shape changes

for the subset of parts that require a given change. Topological
changes can be modeled where they are desired and can be avoided
where they are more simply modeled using other means, such as
depth layering.

We envision that the VAC may be used in a wide range of appli-
cations, including the traditional domains for vector graphics ani-
mations; traditional drawing-based 2D animation, and the image-
processing pipelines that are part of video processing and non-
photorealistic rendering applications.
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