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Abstract

We consider rate swaps which pay a fixed rate against a floating rate in
presence of bid-ask spread costs. Even for simple models of bid-ask spread
costs, there is no explicit strategy optimizing an expected function of the
hedging error. We here propose an efficient algorithm based on the stochas-
tic gradient method to compute an approximate optimal strategy without
solving a stochastic control problem. We validate our algorithm by numerical
experiments. We also develop several variants of the algorithm and discuss
their performances in terms of the numerical parameters and the liquidity
cost.

1 Introduction

Classical models in financial mathematics usually assume that markets are per-
fectly liquid. In particular, each trader can buy or sell the amount of assets he/she
needs at the same price (the “market price”), and the trader’s decisions do not
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affect the price of the asset. In practice, the assumption of perfect liquidity is
never satisfied but the error due to illiquidity is generally negligible with respect
to other sources of error such as model error or calibration error, etc.

However, the perfect liquidity assumption does not hold true in practice for in-
terest rate derivatives market: the liquidity costs to hedge interest rate derivatives
are highly time varying. Even though there exist maturities for which zero-coupon
bonds are liquid, bonds at intermediate maturities may be extremely illiquid (no-
tice that the underlying interest rate is not directly exchangeable). Therefore,
hedging such derivatives absolutely needs to take liquidity risk into account. In this
context, defining and computing efficient approximate perfect hedging strategies
is a complex problem. The main purpose of this paper is to show that stochastic
optimization methods are powerful tools to treat it without solving a necessarily
high dimensional stochastic control problem, under the constraints that practi-
tioners need to trade at prescribed dates and that relevant strategies depend on a
finite number of parameters. More precisely, we construct and analyze an efficient
original numerical method which provides practical strategies facing liquidity costs
and minimizing hedging errors.

The outline of the paper is as follows. Section 2 introduces the model. In
Section 3, we present our numerical method and analyze it from a theoretical
point of view within the framework of a Gaussian yield curve model. Section 4
is devoted to a numerical validation in the idealistic perfect liquidity context. In
Section 5, we develop an empirical study of the efficiency of our algorithm in the
presence of liquidity costs.

2 Our settings: swaps with liquidity cost

2.1 A short reminder on swaps and swaptions hedging with-
out liquidity cost

One of the most common swaps on the interests rate market is as follows. The
counterparts exchange two coupons: the first one is generated by a bond (with
a constant fixed interest rate) and the second one is generated by a floating rate
(e.g. a LIBOR).

Definition 1. In a perfectly liquid market, the price at time t of a zero-coupon
bond paying 1 at time T is denoted byB(t, T ). The linear forward rate L(TF , TB, TE)
is the fair rate decided at time TF determining the amount at time TE obtained
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by investing 1 at time TB. The following relation is satisfied:

L (TF , TB, TE) =
1

TE − TB

(
B (TF , TB)

B (TF , TE)
− 1

)
. (1)

A swap contract specifies:

• an agreement date t

• a time line (t ≤) T0 < · · · < TN

• a fixed interest rate r

• a floating interest rate

• the payoff at each time Ti (1 ≤ i ≤ N), that is,

P (i) := (Ti − Ti−1) (r − L (Ti−1, Ti−1, Ti)) . (2)

From (1), we deduce the equivalent expression

P (i) = r (Ti − Ti−1)− 1

B(Ti−1, Ti)
+ 1. (3)

In the sequel, we consider that the fixed rate r is chosen at the money (thus the
swap at time t has zero value), and that the swap fixed coupons are received by
the trader.

In the idealistic framework of a market without liquidity cost, the trader buys
or sells quantities of zero-coupon bonds at the same price (i.e. the market price),
and there exists a discrete time perfect hedging strategy which is independent of
any model of interest rates. In view of (3), the replication of the payoff P (i) at
time Ti can be split into three parts:

• the fixed part r(Ti − Ti−1) is replicated statically at time t by selling r(Ti −
Ti−1) zero-coupon bonds with maturity Ti.

• the floating part 1/B(Ti−1, Ti) is replicated dynamically at time Ti−1 by
buying 1/B(Ti−1, Ti) zero-coupon bonds with maturity Ti. The price of this
transaction is equal to 1.

• the last (fixed) part 1 is used at time Ti to buy 1/B(Ti, Ti+1) zero-coupon
bonds with maturity Ti+1.
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It is easy to see that this strategy is self-financing at times T1, · · · , TN−1. To make
it self-financing at time t also, at this date one buys 1 zero-coupon bond with
maturity T0 and sells 1 zero-coupon bond with maturity TN .

To summarize, in the idealistic framework, we do not need to consider (Fθ, θ ≥
0) adapted hedging strategies, where (Fθ, θ ≥ 0) is the filtration generated by the
observations (short rates, derivative prices, etc.) in continuous time, and we may
restrict the admissible strategies to be adapted to the filtration generated by the
observations at times {t, T0, T1, · · · , TN}.

2.2 Hypotheses on markets with liquidity costs

We now consider markets with liquidity costs and need to precise our liquidity cost
model. In all the sequel T−1 denotes t.

Hypothesis 2.
We assume that, for all −1 ≤ j < i ≤ N , the number π(j, i) of zero-coupon
bonds with maturity Ti bought or sold at time Tj is measurable with respect to
the filtration generated by (Rt, RT0 , · · · , RTj). That means that the admissible
strategies do not depend on the evolution of the rate Rθ between two tenor dates
Tm and Tm+1.

Denote by Ψ(T, U, π) the buy or sell price for π zero coupon bonds. In perfectly
liquid markets, Ψ(T, U, π) is the linear function B(T, U)π, where B(T, U) is defined
in Definition 1. In the presence of liquidity costs, Ψ(T, U, π) becomes a non-linear
function of π.

Hypothesis 3.
For all T and U , the price Ψ(T, U, π) is a C1(R), increasing, convex one-to-one
map of π from R to R, and Ψ(T, U, 0) = 0.

Under the preceding hypothesis, the function Ψ is positive when π > 0 and
negative when π < 0.

In the context of the swap we set

Ψi,j(π) := Ψ(Ti, Tj, π) (4)

and we only consider self-financing strategies, that is, satisfying

∀ 0 ≤ j ≤ N − 1,
∑
−1≤k<j

π(k, j) + P (j) =
∑
j<i≤N

Ψj,i(π(j, i)). (5)
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2.3 Optimization objective

In the presence of liquidity risk, the market is not complete any more and the
practitioners need to build a strategy which minimizes a given function S (e.g. a
risk measure) of the hedging error. Such strategies are usually obtained by solving
stochastic control problems. These problems require high complexity numerical
algorithms which are too slow to be used in practice. We here propose an efficient
and original numerical method to compute approximate optimal strategies. As
the perfect hedging leads to a null portfolio at time TN , we have to solve the
optimization problem

inf
π∈Π

E [S(Wπ)] , (6)

where Wπ is the terminal wealth (at time TN) given the strategy π in the set Π
of admissible strategies.

3 Hedging error minimization method in a Gaus-
sian framework

The methodology we introduce in this section is based on the two following key
observations:

(1) We consider strategies and portfolios with finite second moment, and thus
optimize within L2(µ) for some probability measure µ. The Gram-Schmidt
procedure provides countable orthogonal bases B of the separable Hilbert
space L2(µ). Our set Π of admissible strategies is obtained by truncating
of a given basis, which reduces the a priori infinite dimensional optimiza-
tion problem (6) to a finite dimensional parametric optimization problem of
the type infθ∈Θ EΨ(θ,X), where Θ is a subset of Rp, X is a given random
variable, Ψ is a convex function of θ.

(2) The Robbins-Monro algorithm and its Chen extension are stochastic alterna-
tives to Newton’s method to numerically solve such optimization problems.
These algorithms do not require to compute d

dθ
EΨ(θ,X). They are based on

sequences of the type

θγ+1 = θγ − ργ+1
∂

∂θ
Ψ(θγ, Xγ+1), (7)

where (ργ, γ ≥ 1) is a decreasing sequence and (Xγ, γ ≥ 1) is an i.i.d. se-
quence of random variables distributed as X.
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We here consider the case of swap in the context of a Gaussian yield curve.
This assumption is restrictive from a mathematical point of view but is satisfied by
widely used interest rate models such as Vasicek model, Gaussian affine models or
HJM (Heath, Jarrow and Morton) models with deterministic volatilities (see e.g.
Gibson et al. (2010) and Musiela and Rutkowski (2005)). In Babbs and Nowman
(1999) it is shown that using a three dimensional Gaussian model is sufficient to
fit the term structure of interest rate products.

3.1 Step 1: finite dimensional projections of the admissible
controls space

Consider a Gaussian short rate model (Rθ, θ ≥ 0) : we either suppose that the
dynamics of the short rate model is given, or that it is deduced from a forward rate
model such as in the HJM approach for term structures: see e.g. Eq (6.9) in Gibson
et al. (2010) under the additionnal assumption that the forward rate volatilities
are deterministic. In all cases, the resulting bond price model is log-normal.

In view of Hypothesis 2, each control π(j, i) belongs to the Gaussian space gen-
erated by (Rt, RT0 , · · · , RTj) or, equivalently, to a space generated by `(j)+1 stan-
dard independent Gaussian random variables G(0), G(1), · · · , G(`(j)) (with `(j) = j
for one-factor models, `(j) = 2j + 1 for two-factor models, etc.) and Rt. An
explicit L2 orthonormal basis of the space generated by G(0), G(1), · · · , G(`(j)) is `(j)∏

m=0

Hnm(G(m))√
nm!


(n0,··· ,n`(j))∈N`(j)+1

, (8)

where (Hn, n ≥ 0) are the Hermite polynomials

Hn(x) = (−1)nex
2/2 d

n

dxn
e−x

2/2

(see e.g. Malliavin, 1995, p.236).

Thus, the quantities of zero-coupon bonds bought by the trader can be written
as ∑

n(j)∈N`(j)+1

αn(j)(j, i)

`(j)∏
m=0

Hnm(G(m))√
nm!

, n(j) = (n0, · · · , n`(j)), (9)

where the infinite sum has an L2 limit sense. A strategy can now be defined as a
sequence of real numbers αn(j)(j, i) for all −1 ≤ j < i ≤ N − 1 and n(j) ∈ N`(j)+1.
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In order to be in a position to solve a finite dimensional optimization problem,
we truncate the sequence (αn(j)(j, i)). Then a strategy is defined by a finite number
of real parameters {αn(j)(j, i),−1 ≤ j < i ≤ N − 1} where, for all j, n(j) belongs
to a finite subset Λ(j) of N`(j)+1. The truncated quantities of zero-coupon bonds
bought by the trader write

π(j, i) =
∑

n(j)∈Λ(j)

αn(j)(j, i)

`(j)∏
m=0

Hnm(G(m))√
nm!

. (10)

We discuss the efficiency of this truncation and its convergence in Sections 3.5
and 4.1.

To simplify, we denote by α = (αn(j)(j, i))i,j,n(j)
the parameters to optimize in

Rp (where the dimension p is known for each truncation (Λ(j), j = −1, 0, · · · , N −
1)), by π (α) (or, when no confusion is possible, simply π) the hedging strategy
corresponding to a vector α ∈ Rp, see (10). Given the strategy π = π (α), the
terminal wealth W (α) (at time TN) satisfies

W (α) =
∑

−1≤j<N

π(α)(j,N) + P (N) =
∑

−1≤j<N

π(j,N) + P (N). (11)

The problem (6) is now formulated as: find α∗ in Rp such that

E
[
S
(
W (α∗)

)]
= inf
α∈Rp

E
[
S
(
W (α)

)]
. (12)

3.2 Step 2: stochastic optimization

Using the self-financing equation (5) one can express W (α) as a function of α and
(G(0), · · · , G(`(N))). Therefore one needs to minimize the expectation of a determin-
istic function of the parameter α in Rp and the random vector (G(0), · · · , G(`(N))).
Such problems can be solved numerically by classical stochastic optimization al-
gorithms, such as those introduced in the pioneering work of Robbins and Monro
(1951) and its extensions (e.g. Chen and Zhu, 1986). We refer the interested reader
to the classical references Duflo (1997); Chen (2002); Kushner and Yin (2003).

In our context (12), the Robbins-Monro algorithm (7) works as follows. Start
with an arbitrary initial condition α0 in Rp. At step γ + 1, given the current
approximation αγ of the optimal value α∗, simulate independent Gaussian ran-
dom variables (G

(0)
γ+1, · · · , G

(`(N))
γ+1 ) and compute the terminal wealth W (αγ). Then,

update the parameter α by the induction formula

αγ+1 = αγ − ργ+1∇α
[
S(W (αγ))

]
, (13)
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where (ργ) is a deterministic decreasing sequence. In addition, one can use an
improvement of this algorithm due to Chen and Zhu (1986). Let (Kl, l ≥ 0) be an
increasing sequence of compact sets such that

Kl ⊂ Int(Kl+1) and lim
l
Kl = Rp, (14)

where Int(Kl+1) denotes the interior of the set Kl+1. The initial condition α0 is
assumed to be in K0 and we set l(0) = 0. At each step γ in (13), if αγ+1 ∈ Kl(γ),
we set l(γ + 1) = l(γ) and go to step γ + 1. Otherwise, that is if αγ+1 /∈ Kl(γ), we
set αγ+1 = α0 and l(γ+1) = l(γ)+1. This modification avoids that the stochastic
algorithm may blow up during the first steps and, from a theoretical point of view,
allows to prove its convergence under weaker assumptions than required for the
standard Robbins-Monro method.

3.3 Summary of the method

Our setting

• The interest rate model satisfies: for all 0 ≤ j < N , there exist an integer
`(j) and a function Φj such that

(Rt, RT0 , · · · , RTj)
L
= Φj(Rt, G

(0), · · · , G(`(j))).

• For all 0 ≤ j < N , a finite truncation set Λ(j) ⊂ N`(j)+1 is given and Λ(−1) =
{0}.

• A strategy π = π(α) is defined by α = (αn(j)(j, i),−1 ≤ j < i ≤ N −
1,n(j) ∈ Λ(j)). More precisely, the number of zero-coupon bonds with matu-
rity Ti bought or sold at time Tj is

π(j, i) =
∑

n(j)∈Λ(j)

αn(j)(j, i)

`(j)∏
m=0

Hnm(G(m))√
nm!

, for i ≤ N − 1, (15)

and π(j,N) is deduced from the self-financing equation∑
i<j

π(i, j) + P (j) =
∑
i>j

Ψj,i(π(j, i)) (16)

(one possibly needs to use a classical iterative procedure to solve this equation
numerically).

• One is given an increasing sequence of compact sets (Kl, l ≥ 0) satisfying
(14) and a sequence of parameters (ργ, γ ≥ 1) decreasing to 0.
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Our stochastic optimization algorithm

Assume that the parameter αγ = (α
n(j)
γ (j, i),−1 ≤ j < i ≤ N −1,n(j) ∈ Λ(j)) and

lγ are given at step γ. At step γ + 1:

1. Simulate a Gaussian vector (G
(0)
γ+1, · · · , G

(`(N))
γ+1 ).

2. Deduce the quantities of zero-coupon bonds from (15) and (16):

πγ+1(j, i) =
∑

n(j)∈Λ(j)

α
n(j)
γ (j, i)

`(j)∏
m=0

Hnm(G
(m)
γ+1)

√
nm!

, for i ≤ N − 1,

and get πγ+1(j,N) from the self-financing equation∑
i<j

πγ+1(j, i) + P (j) =
∑
i>j

Ψj,i(πγ+1(j, i)).

3. Compute the terminal wealth

W
(αγ)
γ+1 =

∑
j<N

πγ+1(j,N) + P (N).

4. Update the parameters

αγ+1 = αγ − ργ+1∇α
[
S(W

(αγ)
γ+1 )

]
.

5. If αγ+1 /∈ Klγ , set αγ+1 = α0 and l(γ + 1) = l(γ) + 1.

6. Go to 1 (or, in practice, stop after Γ steps).

3.4 Error analysis

In this subsection we study the convergence (Theorem 4) and convergence rate
(Theorem 6) of the stochastic algorithm used in Step 2, when the total number of
steps Γ tends to infinity. We introduce some notation. Recall (13) and write

αγ+1 = αγ − ργ+1E
[
∇αS(W

(αγ)
γ+1 )

]
− ργ+1δMγ+1 + ργ+1pγ+1. (17)

Here, δMγ+1 is given by

δMγ+1 = ∇αS(W
(αγ)
γ+1 )− E

[
∇αS(W

(αγ)
γ+1 )

]
. (18)
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The last term ργ+1pγ+1 in (17) represents the reinitialization of the algorithm if
αγ+1 /∈ Kl(γ) i.e. pγ+1 is fixed such that αγ+1 = α0.

Let us now recall the convergence theorem obtained by Lelong (2008, Theo-
rem 1) in our setting.

Theorem 4. Assume

(A1) The function α 7→ E[S(W (α))] is strictly concave or convex,

(A2)
∑

γ ργ =∞,
∑

γ ρ
2
γ <∞,

(A3) The function α 7→ E[‖∇αS(W (α))‖2] is bounded on compact sets.

Then the sequence (αγ, γ ≥ 1) converges a.s. to the unique

optimal parameter α∗ such that

inf
α∈Rp

E
[
S
(
W (α)

)]
= E

[
S
(
W (α∗)

)]
.

Hypothesis 3 and (15) imply that (A3) is satisfied. Before giving examples of
situations where (A1) is fulfilled, let us check that W (α) is a concave function of
α.

Proposition 5. The terminal wealth W (α) is a concave function of the parameter
α.

Proof. Recall that the terminal wealth is given by (11). The payoff of the swap
P (N) does not depend on α. We only have to deal with the quantities π(i, N)
of the zero-coupon bonds with maturity TN bought at time Ti. They satisfy the
self-financing equation (5) and thus

π(i, N) = Ψ
(−1)
i,N

(∑
j<i

π(j, i)−
∑
i<j<N

Ψi,j (π(i, j)) + P (i)

)
, (19)

where Ψ
(−1)
i,N is the inverse of the price function Ψi,N (see (4)). Moreover, quantities

π(i, j), i < j ≤ N − 1 are linear in α (see (9)).

Recall that Ψi,j is convex, thus −Ψi,j is concave and the argument in (19) is a
concave function of α. Finally Ψ

(−1)
i,N is an increasing concave function, from which

π(i, N) is a concave function of α.
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The preceding observation shows that (A1) is satisfied when S is a utility
function (and thus increasing and concave) and satisfies S(0) = 0. Notice that the
optimization problem (12) then penalizes the losses and promotes the gains. In
Sections 4 and 5 we will see another situation where Theorem 4 applies.

Given suitable functions S, Theorem 4 guarantees the convergence of our algo-
rithm towards the optimal parameters. The following theorem provides the rate
of convergence (Lelong, 2013).

Theorem 6. Let
ργ :=

v1

(v2 + γ)β
, (20)

for some positive v1, v2 and β ∈ (1/2, 1). Denote by ∆γ the normalized centered
error

∆γ =
αγ −α∗√

ργ
.

Assume

(A1) The function α 7→ E[S(W (α))] is concave or convex.

(A4) For any q > 0, the series∑
γ

ργ+1δMγ+11{|αγ−α∗|≤q}

converges almost surely.

(A5) There exist two real numbers A1 > 0 and A2 > 0 such that

sup
γ

E
[
|δMγ|2+A11{|αγ−α∗|≤A2}

]
<∞.

(A6) There exists a symmetric positive definite matrix Σ such that

E
[
δMγδM

t
γ

∣∣Fγ−1

]
1{|αγ−1−α∗|≤A2}

P−→
γ→∞

Σ.

(A7) There exists µ > 0 such that ∀n ≥ 0, d(α∗, ∂Kn) ≥ µ,

where ∂Kn denotes the boundary of Kn. Then, the sequence (∆γ, γ ≥ 1) converges
in distribution to a normal random variable with mean 0 and covariance matrix
linearly depending on Σ.

Remark 7. As explained in detail in Lelong (2013, Sec. 2.4), the assumptions of
Theorem 6 are satisfied as soon as
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• There exists A3 > 0 such that

∀C > 0, E

[
sup
|α|≤C

∣∣S (W (α)
)∣∣2+A3

]
<∞.

• The function α 7→ E[S(W (α)] is strictly concave or convex.

The first condition is usually easily satisfied, e.g. when S has a polynomial growth
at infinity because the moments of the wealth process are typically finite. The
both properties are e.g. fulfilled by the example studied in Sections 4 and 5 (see
the discussions at the beginning of these sections).

3.5 Performance of the optimal truncated strategy without
liquidity cost

The numerical error on the optimal wealth decreases when the Λ(j)’s tend to N`(j)+1.
In this subsection, we provide a theoretical estimate on the error resulting from the
truncation in (9) in the idealistic context of no liquidity cost and general Gaussian
affine models (Dai and Singleton, 2000).

In Dai and Singleton (2000), general Gaussian affine models are introduced
for which, for any two times s < t, there exist standard independent Gaussian
random variables G(0), · · · , G(M) and real numbers µ, λ0, · · · , λM such that the
prices of zero-coupon bonds have the form

B(s, t) = exp
(
−µ− λ0G

(0) − · · · − λMG(M)
)
.

A control of the error of truncation is given in the following proposition.

Proposition 8. In the above context, if the truncation set defined in (10) is Λ(j) :=
{n0 + · · ·+ n`(j) ≤ d}, then

E
(
W (α∗)

)2
6 C0

Cd+1
1

(d+ 1)!
, (21)

where C0 and C1 are some positive constants.

The proposition is a straightforward consequence of (11) and the next lemma
applied to X = π(α∗). This lemma also allows one to precise the values of C0 and
C1.
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Lemma 9. Consider the random variable

X := exp

(
µ+

M∑
m=0

λmG
(m)

)
,

where µ, λ0, · · · , λM are real numbers, and G(0), · · · , G(M) are independent stan-
dard Gaussian random variables. Consider the projection Xd of X on the subspace
of L2(G(0), · · · , G(M)) generated by(

M∏
m=0

Hnm(G(m))√
nm!

, n0 + · · ·+ nM ≤ d

)
.

We have

‖X −Xd‖2 6 exp
(
µ+ λ2

0 + · · ·λ2
M

) (λ2
0 + · · ·+ λ2

M)
d+1

2√
(d+ 1)!

. (22)

We postpone the proof of this lemma to the Appendix.

4 Numerical validation of the optimization proce-
dure: an example without liquidity cost

In this section we study the accuracy of our algorithm in the no liquidity cost case
where a perfect replication strategy is known (see Section 2.1). We minimize the
quadratic risk measure of the hedging error.

The bond market model is the Vasicek model which is the simplest Gaussian
model:

dRθ = A(r∞ −Rθ)dθ + σdBθ, (23)

where A is the mean reverting rate, r∞ is the mean of the equilibrium measure, σ
is the volatility and (Bθ, θ ≥ 0) is a one-dimensional Brownian motion.

Notice that

∀u < v, Rv = r∞ + (Ru − r∞)e−A(v−u) + σe−A(v−u)

∫ v

u

eA(θ−u)dBθ. (24)

Therefore, there exists an i.i.d. sequence (G(0), G(1), · · · , G(N)) ofN (0, 1) Gaussian
random variables such that

∀k = 0, · · · , N, RTk = Φ(Tk − Tk−1, RTk−1
, G(k)), (25)
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where

Φ(η, r, G) = r∞ + e−Aη(r − r∞) +Gσ

√
1− e−2Aη

2A
.

In our numerical experiments, we have chosen the following typical values of the
parameters A = 10%, r∞ = 5%, σ = 5%. With this choice of parameters, the
mean yearly interest zero-coupon rates with maturity less than 10 years take values
between 3% and 5%.

Our numerical study concerns the minimization of the quadratic mean hedging
error which corresponds to the choice S(x) = x2 in (12). This choice penalizes
gains and losses in a symmetric way and aims to construct a strategy as close as
possible to the exact replication strategy.

In the no liquidity cost case, the terminal wealthW (α) is a linear function of the
parameter α and therefore assumption (A1) of Theorem 4 is obviously satisfied.

Given a degree of truncation d, the set Λ
(j)
d is chosen as

Λ
(j)
d := {n(j) = (n0, · · · , nj) ∈ Nj+1, n0 + · · ·+ nj ≤ d}. (26)

We have to optimize the real-valued parameters αn(j)(j, i) for j < i and n(j) ∈ Λ
(j)
d .

The quantities of zero-coupon bonds to exchange are given by (10). The choice
of the sequence (ργ, γ ≥ 1) in (13) is crucial. Choose ργ as in (20). We discuss
the sensitivity of the method to the parameters v1, v2, β in Section 4.2.2. We also
discuss the sensitivity of the results to the number Γ of steps.

In all the sequel, we use the following notation.

Notation For all vector α = (αn(j)(j, i),−1 ≤ j < i ≤ N − 1), we set

v(α) := E
[
W (α)

]2
, (27)

where the expectation is computed only with respect to the Gaussian distribution
(G(0), · · · , G(`(N))).

4.1 Empirical study of the truncation errors (Step 1)

In this subsection we develop an empirical validation of the projection step pre-
sented in Section 3.1

We observe that the quadratic mean hedging error decreases very fast to 0
when the degree of truncation increases. For a notional equal to 1, the error is of
the order of one basis point (a hundredth of percent) for a degree d = 3 and a
small number of dates N , and for d = 4 and for larger values of N .
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Figure 1 below shows v(α∗,d), with the optimal parameter α∗,d corresponding
to the truncation set (26). We have used the explicitly known finite dimensional
projections of the optimal strategies without liquidity cost to obtain α∗,d, and a
Monte Carlo procedure to compute v. Table 1 shows some values used to plot
Figure 1.
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Figure 1

4.2 Empirical study of the optimization step (Step 2)

The stochastic algorithm converges almost surely to the optimal coefficient α∗. In
this part, we empirically study the convergence rate in terms of the number of
steps Γ and the choice of the sequence (ργ).
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degree d N=2 N=3
0 5.2 E-6 3.0 E-5
1 5.4 E-9 3.1 E-8
2 3.7 E-12 2.0 E-11
3 1.9 E-15 1.9 E-14
4 2.2 E-18 3.9 E-15

Table 1: v(α∗,d)

4.2.1 A typical evolution of (αγ)

In this subsection, we consider a swap with two payment dates (N = 2). We
consider the truncation set Λ(0) = {0, 1}. The objective is to approximate α∗ =
(α0,∗(−1, 0), α0,∗(−1, 1), α0,∗(0, 1), α1,∗(0, 1)). In Figure 2, the four parameters α =
(α0(−1, 0), α0(−1, 1), α0(0, 1), α1(0, 1)) evolve according to (13) where the sequence
(ργ, γ ≥ 1) is defined by (20) with v1 = 107, v2 = 1 and β = 1.

As expected, the sequence (αγ) converges to α∗. However, the evolution is
quite slow although we have empirically chosen the parameters v1, v2 and β in a
favorable way.

In Figure 3, we plot (in violet) v(α0(−1, 0), α0(−1, 1), α0,∗(0, 1), α1,∗(0, 1)) as a
function of α0(−1, 0) and α0(−1, 1). We also plot in green the path (v(αγ), 0 ≤
γ ≤ Γ). The figure shows that after Γ = 10000 steps the hedging error is small
though the optimal parameters have not been approximated accurately (notice
that the violet surface is flat).
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4.2.2 Sensitivity to the choice of the sequence (ργ)

Theorem 4 states the convergence of the optimization method for all sequence (ργ)
satisfying (A2). We here study the sensitivity of the results to the parameters v1,
v2, β of sequences of type (20) and to the total number of steps Γ.

Tables 2 and 3 show the expected value function obtained after Γ = 10E4,
10E5 and 10E6 steps. The expected value function is estimated by means of a
classical Monte Carlo procedure. Table 4 shows the same results with a sequence
ργ = v1 which does not satisfy condition (A2).

H
HHHHΓ

v1 1 10 100 1000 10 000 20 000 10E5 10E6

10E4 7.2 E-4 2.6 E-6 1.1 E-6 8.9 E-7 5.1 E-4 8.3 E-4 1.0 E-1 1.3 E-1
10E5 1.4 E-5 9.3 E-7 8.9 E-7 4.7 E-7 2.3 E-8 1.7 E-2 9.1 E+3 9.5 E+5
10E6 3.8 E-6 9.2 E-7 7.7 E-7 1.5 E-7 6.6 E-12 5.4 E-12 1.0 E-5 15.8

Table 2: v(αΓ) (v2 = 1000, β = 0.6)

HH
HHHΓ
v1 1 10 100 1000 10 000 13 000 2E4

10E4 8.8 E-3 1.0 E-3 7.8 E-6 9.8 E-7 8.8 E-7 1.7 E-6 9.7 E-7
10E5 6.6 E-3 1.1 E-4 9.3 E-7 9.0 E-7 6.8 E-7 5.5 E-7 4.8 E-7
10E6 4.5 E-3 1.8 E-5 9.3 E-7 8.7 E-7 5.1 E-7 3.6 E-7 2.9 E-7

HHH
HHΓ
v1 1E5 5E5 1E6 2E6 3E6 4E6 5E6

10E4 1.3 E-3 3.3 E-2 7.3 E-1 4.5 E+1 1.1 E-2 6.5 E+2 6.9 E+1
10E5 6.6 E-7 1.2 E-5 4.1 E-4 2.7 E-1 8.1 E-3 1.7 E-2 1.4 E+1
10E6 6.8 E-8 1.1 E-10 5.3 E-12 7.4 E-12 7.0 E-12 2.6 E-5 1.5 E-6

Table 3: v(αΓ) (v2 = 1000, β = 0.9)

HHH
HHΓ
v1 1 2 4 6 8 10 12 20

10E4 7.6 E-7 6.9 E-7 2.5 E-7 2.9 E-7 1.4 E-6 1.9 E-7 7.6 E-7 6.1 E-6
10E5 6.9 E-7 6.8 E-7 4.1 E-7 1.3 E-7 2.9 E-7 3.2 E-7 3.9 E-6 3.2 E-4
10E6 3.0 E-8 1.0 E-9 5.1 E-12 4.3 E-12 5.1 E-12 4.2 E-12 5.9 E-12 7.8 E-6

Table 4: v(αΓ) for a constant sequence ργ = v1

We observe that the efficiency of the algorithm depends on the choice of the
parameters v1, v2, β and is really sensitive to it when the total number of steps Γ
is small.
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When Γ becomes large (e.g Γ = 10E6), then the algorithm may seem to diverge
if β is chosen carelessly. In fact, as the sequence (ργ, γ ≥ 1) satisfies hypothesis
(A2) of Theorem 4, the algorithm converges to the optimal parameters but it is far
from α∗ after 10E6 steps. However, for each value β, some v1 reduces the mean
square hedging error to 5 E-12.

5 An empirical study of the bid-ask spread costs
impact

We here present numerical results corresponding to two piecewise linear liquidity
cost functions Ψ:

Ψ1
λ(T, U, π) = (1 + λ sign(π))B(T, U)π (28)

Ψ2
λ,C(T, U, π) =


B(T, U)π for |π| ≤ C

B(T, U)(C + (1 + λ)(π − C) for π > C

B(T, U)(−C + (1− λ)(π + C) for π < −C.
(29)

Despite the fact that we know there is no perfect hedging strategy in this
context, we suppose the holder receives a null cash at time t (which is the price of
the swap in a no liquidity cost market).

We now shortly check the convergence of the algorithm. Given piecewise linear
cost functions Ψ, it is easy to prove that the terminal wealth W (α) is piecewise
linear in α (see the proof of proposition 5). Therefore, assumption (A1) of The-
orem 4. However, Theorem 4 does not apply to our context since Ψ1

λ and Ψ2
λ

are piecewise linear and therefore are not continuously differentiable everywhere.
Replace Ψ1

λ and Ψ2
λ by smooth approximations obtained by convolutions with ker-

nels of the type 1/
√

2πε exp(−x2/(2ε)), ε small. Let α∗ε be the unique optimal
parameter corresponding to the new cost functions (existence and uniqueness of
α∗ε are provided by Theorem 4). In view of Rockafellar and Wets (1998, Th 7.33)
(α∗ε) tends to α∗ when ε tends to 0.

The preceding consideration to prove convergence is more theoretical than prac-
tical: in practice, the numerical results do not differ when ε is small or ε is null.

Finaly, notice that the piecewise linearity in α of W (α) implies that conditions
in Remark 7 are satisfied, so that Theorem 6 precises the convergence rate.
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5.1 Taking liquidity costs into account is really necessary

Consider two different strategies: (i) the strategy corresponding to the optimal
parameters α0 in the idealistic model without liquidity costs and (ii) the null
strategy δ0 defined as

δ
n(j)

0 (j, i) = 0, for all − 1 ≤ j < i ≤ N − 1 and n(j) ∈ Λ(j).

To satisfy the self-financing assumption (5), at time Tj the payoff P (j) of the swap
(2) is used to buy zero-coupon bonds with maturity TN .

Figure 4 shows −v(α0) and −v(δ0) in terms of the parameter λ where the cost
function Ψ is as in (28). The mean square hedging error dramatically increases
when, in the presence of liquidity costs, the trader uses the strategy which is
optimal in the no liquidity cost context. When the liquidity cost λ is larger than
4%, it is even worse to use this strategy than to use the δ0 strategy!

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09

λ

-v(α0)
-v(δ0)

Figure 4: (short dashes) −v(δ0) (long dashes) −v(α0) in terms of the liquidity
cost λ
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5.2 Probability distribution of the hedging error in the case (28)

In this section, the liquidity cost function Ψ is chosen as in (28).

After Γ steps of the stochastic optimization procedure with a sample ω of the
Gaussian vector ((G

(0)
γ , · · · , G(N)

γ ), γ = 1, · · · ,Γ), one obtains a random approxi-
mation αΓ(ω) of the optimal parameter α∗.

Figure 5 shows the probability distribution of the random variable v(αΓ(ω))
for Γ = 10000 and Table 5 shows its mean and standard deviation for different
values of λ.

λ 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
Mean 2.5E-32 0.0031 0.012 0.024 0.038 0.049 0.058 0.065 0.11 0.12

Std dev. 6.7E-33 4.2E-5 2.8E-4 1.7E-3 0.016 0.017 0.046 0.081 1.1 1.3

Table 5: Empirical mean and standard deviation of v(α10000).

 0

 10

 20

 30

 40

 50

 60

 70

 80

-0.1 -0.08 -0.06 -0.04 -0.02  0

Optimum
Density

Figure 5: Empirical density of −v(αΓ(ω)) (v1 = v2 = β = 1, Γ = 10000, λ = 0.04).
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5.3 Hedging error in the case (29)

In this section, the liquidity cost function Ψ is chosen as in (29).

Figure 6 shows −v(αΓ) for Γ = 0 (green) and Γ = 10E6 (violet). The initial
parameter α0 is the optimal one for a market without liquidity cost.
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We observe that the main part of the loss is saved thanks to the optimization
procedure. In Figure 7, we zoom on the surface resulting from the optimization
procedure. Notice that the cost function (28) is equal to the cost function (29)
in the particular case C = 0. So, Figure 7 allows to compare the value functions
corresponding to these two cost functions.
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Figure 6: Violet surface: −v(αΓ) (Γ = 10E6, v1 = v2 = 100, β = 0.6) for a
liquidity cost function (29) in terms of the value λ of the liquidity cost and the
size C of the compact. Green surface:−v(α0).

5.4 Influence of the initial value α0 of the optimization pro-
cedure

In Figure 8, we draw two functions of the liquidity cost λ: −v(αΓ) and −v(δΓ),
where (αΓ) and (δΓ) are the parameters obtained after Γ steps of the optimization
procedure but with different initial values α0 and δ0 as described in Subsec. 5.1.
The performance of the strategies obtained after Γ = 10E6 steps are quite similar.
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It means that the sensitivity to the arbitrary initial parameter α0 is not observable
any more after Γ = 10E6 steps.

5.5 Reducing the set of admissible strategies

Recall Hypothesis 2. So far, our admissible strategies at time Tj depend on all
the past and present rates Rt, · · · , RTj . Thus the number of parameters αn(j)(j, i)

to optimize is at least of the order of magnitude of the binomial coefficient
(
N
d

)
,

where N is the number of dates and the degree of truncation d is defined as in
(26). This order of magnitude is a drastically increasing function of N . This
crucial drawback leads us to try to simplify the complexity of the control problem
(6) by reducing the size of the set of the admissible strategies Π. Observe that
the optimal strategy under the perfect liquidity assumption has the property that
π∗(j, i) only depends on RTj . This observation suggests to face large numbers of
dates by reducing the set of controls to controls depending only on a small number
of recent interest rates RTj , RTj−1

, · · · , RTj−q .
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Figures 9 and 10 illustrate that the optimal control problem (6) with admissible

strategies defined as in hypothesis 2 may be used as benchmarks to solve control
problems. Consider swaps with N = 5 and N = 10 dates of payment. In each
one of these two cases, we study the effect of choosing q = 0 (that is at time Tj,
admissible strategies only depend on RTj), q = 1 (admissible strategies depend on
RTj and RTj−1

), q = 2.

Figure 9 shows the performance of the corresponding strategies obtained after
Γ = 10E6 steps of the optimization algorithm for a swap with N = 5 dates of
payments.

Figure 10 shows similar quantities for a swap with N = 10 dates of payment.
We observe that the numerical computation of the optimal strategy is quite un-
stable when q is too big, which reflects the difficulty to solve a high dimensional
optimization problem. Therefore, one necessarily must choose q small in order
to get accurate approximations of optimal strategies belonging to reduced sets of
admissible strategies.

25



-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09

-v
(α

K
)

λ

q = 0
q = 1
q = 2

Figure 9: −v(αΓ) in terms of λ for strategies depending only on recent rates
RTj , · · · , RTj−q (q = 0, 1, 2, Γ = 10E6, v1 = 0.1, v2 = 100, β = 0.6, d = 3) for a
swap with N = 5 dates of payment.

26



-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09

-v
(α

K
)

λ

q = 0
q = 1
q = 2

Figure 10: −v(αΓ) in terms of λ for strategies depending only on recent rates
RTj , · · · , RTj−q (q = 0, 1, 2, Γ = 10E6, v1 = 0.1, v2 = 100, β = 0.6, d = 3) for a
swap with N = 10 dates of payment.

27



6 Conclusion

Stochastic control problems generally have no explicit solutions and are difficult
to solve numerically. In this paper, we have proposed an efficient algorithm to
approximate optimal allocation strategies to hedge interest rate derivatives subject
to liquidity costs.

As discussed above, our methodology is constructive and efficient in a Gaussian
paradigm. We project the admissible allocation strategies to the space generated
by the first Hermite polynomials and use a classical stochastic algorithm to op-
timally choose the coefficients of the projection in order to optimize an expected
function of the terminal hedging error.

We have illustrated this general approach by studying swaps in the presence of
liquidity costs. We have discussed the performances of the numerical method in
terms of all its algorithmic components.

We emphasize that our methodology can be applied to many control problems,
e.g., the computation of indifference prices, when the model under consideration
belongs to a Gaussian space.
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7 Appendix

Proof of Lemma 9

Proof. Let us first prove the result for M = 0, that is X = exp (µ+ λG) .

X =
+∞∑
n=0

α(n)
Hn(G)√

n!

29



where

α(n) = E
[
X
Hn(G)√

n!

]
= exp(µ)E

[
exp(λG)

Hn(G)√
n!

]
.

We then use the identity: eλx−λ2/2 =
∑

j>0
λj

j!
Hj (x) and obtain

α(n) = exp(µ+ λ2/2)E

[∑
j

λj

j!
Hj(G)

Hn(G)√
n!

]
.

As (Hj(G)/
√
j!, j ≥ 0) is an orthonormal basis of L2(G) we have

α(n) = exp(µ+ λ2/2)
λn√
n!
.

Let Xd be the projection of X on the subspace generated by the H0, · · · , Hd :

Xd =
d∑

n=0

α(n)
Hn(G)√

n!
= eµ+λ2/2

d∑
n=0

λn√
n!

Hn(G)√
n!

X −Xd = eµ+λ2/2

∞∑
n=d+1

λn√
n!

Hn(G)√
n!

.

The truncation error is

‖X −Xd‖2
2 = e2µ+λ2

∞∑
n=d+1

λ2n

n!

≤ e2µ+λ2 λ
2(d+1)

(d+ 1)!

∞∑
n=0

λ2n

n!

≤ e2µ+2λ2 λ
2(d+1)

(d+ 1)!
.

The desired result thus holds true for M = 0. Let M be a positive integer. We
have

‖X −Xd‖2
2 = e2µ+λ20+···+λ2M

∑
n0+···+nM>d

M∏
m=0

λ2nm
m

(nm)!

Recall the classical identity

(a0 + · · ·+ aL)N

N !
=

∑
n0+···+nL=N

L∏
m=0

anmm
(nm)!

. (30)
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Thus,

∑
n0+···+nM>d

M∏
m=0

λ2nm
m

(nm)!
=

∞∑
N=d+1

∑
n0+···+nM=N

M∏
m=0

λ2nm
m

(nm)!

=
∞∑

N=d+1

(λ2
0 + · · ·+ λ2

M)
N

N !

≤ (λ2
0 + · · ·+ λ2

M)
d+1

(d+ 1)!
exp

(
λ2

0 + · · ·+ λ2
M

)
.

This ends the proof for all positive M .
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