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The dependent sum type of Martin-Löf’s type theory provides a strong existential elimination, which
allows to prove the full axiom of choice. The proof is simple and constructive:

ACA := λH.(λx. wit(Hx), λx. prf(Hx))
: ∀xA∃yBP(x, y)→ ∃ f A→B∀xAP(x, f (x))

where wit and prf are the first and second projections of a strong existential quantifier.
We present here a continuation of Herbelin’s works [6], who proposed a way of scaling up Martin-

Löf proof to classical logic. The first idea is to restrict the dependent sum type to a fragment of our
system we call N-elimination-free, making it computationally compatible with classical logic. The
second idea is to represent a countable universal quantification as an infinite conjunction. This allows
to internalize into a formal system (called dPAω) the realizability approach [2, 5] as a direct proof-as-
programs interpretation.

Informally, let us imagine that given H : ∀xA∃yBP(x, y), we have the ability of creating an infinite
term H∞ = (H0,H1, . . . ,Hn, . . .) and select its nth-element with some function nth. Then one might
wish that

λH.(λn. wit(nth n H∞), λn. prf(nth n H∞))

could stand for a proof for ACN. However, even if we were effectively able to build such a term, H∞
might contain some classical proof. Therefore two copies of Hn might end up being different according
to their context in which they are executed, and then return two different witnesses. This problem could
be fixed by using a shared version of H∞, say

λH. let a = H∞ in (λn. wit(nth n a), λn. prf(nth n a) .

It only remains to formalize the intuition of H∞. We do this by a stream cofix0
f n(Hn, f (S (n))) iterated

on f with parameter n, starting with 0 :

ACN := λH. let a = cofix0
f n (Hn, f (S (n)) in(λn. wit(nth n a), λn. prf(nth n a) .

Whereas the stream is, at level of formulæ, an inhabitant of a coinductive defined infinite conjunction
ν0

Xn(∃P(0, y)∧X(n + 1)), we cannot afford to pre-evaluate each of its components, and then have to use a
lazy call-by-value evaluation discipline. However, it still might be responsible for some non-terminating
reductions. Our approach to prove a normalization property would be to interpret it in HAω through a
negative translation. However, the sharing forces us to have a state-passing-style translation, whose
small-step behaviour is quite far from the sharing strategy we have in natural deduction.

In a recent paper, Ariola et al. presented a way to construct a CPS-translation for a call-by-need
version of the λ̄µµ̃-calculus [1], which allows some sharing facilities. Yet, this translation does not
enjoy any typing property, and then does not give us a way of proving normalization. Moreover, the
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λ̄µµ̃-calculus is typed with sequent calculus [4], which does not allow to manipulate dependent types
immediately.

We propose to deal with both problems while proving the normalization of our system in two steps.
First, we translate our calculus to an adequate version of the λ̄µµ̃-calculus that allows to manipulate
dependent types on the N-elimination-free fragment. Then we will try to adapt the CPS-translation for
call-by-need to our case, while adding it a type.

This work is currently in progress. For now, we managed to tackle the first problem, that is to
construct a sequent calculus version of the initial language dPAω, During this talk, we intend to focus
on this point, which turns out to be tricky, mainly because of the desynchronization of the dependency
at the level of type in call-by-value. Let us look at the β-rule to get an insight of what happens. If we
define the→L and→R rule as expected (where A⊥⊥ is the type of a refutation of A):

Γ, a : A ` p : B
Γ ` λa.p : [a : A]→ B

→L
Γ ` q : A Γ ` e : B[q/a]⊥⊥ q < Nef→ a < A

Γ ` q · e : ([a : A]→ B)⊥⊥
→R

and consider such a proof λa.p : [a : A]→ B and a context q · e : [a : A]→ B, it reduces as follows :

〈λa.p | q · e〉 〈q | µ̃a.〈p | e〉〉

On the right side, we see that p, whose type is B[a], is now cut with e of type B[q]. The idea is that
in the full command a has been linked to q at a previous level of the typing judgement. We fixed this
problem by making explicit a dependency list in the typing rules, which allows this typing derivation :

Γ ` q : A

Γ, a : A ` p : B[a] Γ, a : A ` e : B[q]; {a|q}
〈p | e〉 : Γ, a : A; {a|q}

cut

Γ ` µ̃a.〈p | e〉 : A⊥⊥; {.|q}
µ̃

〈q | µ̃a.〈p | e〉〉 : Γ; {·|·}
cut

By using this dependency list, we managed to fully translate the dPAω of [6] into a sequent calculus
framework, that is a λ̄µµ̃-calculus with treatment of induction, cofix and equality. The translation is
fully correct with respect to types.

The resulting calculus is given with a head-reduction, following a call-by-need evaluation strategy,
and makes explicit the shared environment. This makes it a lot more closer to a small-step abstract
machine than the original calculus, and it is our hope that as in [1] this would make the construction of
a correct CPS-translation easier.
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