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Reduction Model Approach for Systems with a Time-Varying Delay

Frederic Mazenc Michael Malisoff

Abstract— We provide a reduction model approach for
achieving global exponential stabilization of linear systems with
a time-varying pointwise delay in the input. We allow the delay
to be discontinuous and uncertain. We also provide a stability
result based on a different dynamic extension that ensures
input-to-state stability with respect to additive uncertainties
on the dynamics. Instead of the usual Lyapunov-Krasovskii
or Razumikhin methods, we use a trajectory based approach.
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I. INTRODUCTION

This note continues our search (begun in [24], [25], and
[26]) for novel methods to prove global stabilization for
systems with time delays. Our search is motivated by the
ubiquity of input delays in engineering applications with
feedback [8], [9], [13], [14], [23], [28], [31], [32] and the fact
that classical methods for undelayed systems can rarely cope
with the more complicated systems that result from allowing
input delays [33]. For instance, while classical Lyapunov
functions are suited for proving stability of systems without
delays, one often replaces Lyapunov functions by Lyapunov-
Krasovskii functionals [11] or Ruzumikhin functions to cope
with stability problems for delayed systems.

It is often useful to prove stabilizability of time delay
systems using the following two step process. First, one
solves the stabilization problem with the input delays set to
zero, often by building a Lyapunov function for the closed
loop undelayed system and then finding decay estimates for
the Lyapunov function. Then, one reintroduces the input
delay and converts the Lyapunov function into a Lyapunov-
Krasovskii functional for the corresponding input delayed
systems, to find upper bounds on the input delays that the
system can tolerate without destroying the stability. One
advantage of this so-called emulation approach is that it
can allow the use of relatively simple controllers. However,
emulation cannot always cope with communications and
other engineering applications that can have long delays [12].

Reduction is a useful alternative to emulation, where the
control uses a dynamic extension and can compensate for
arbitrarily long input delays [1], [5], [10], [21], [29]. It
has its origins in the classical Smith predictor [34] for
linear systems and so is also called prediction [17], [20],
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but recent prediction results apply to a much wider class
of systems, including adaptive and perturbed systems [2],
[3], [4], [6], [19]. Recently, Bresch-Pietri and Petit used
a transport PDE, reduction, and a generalization of an
inequality due to Halanay [15], [16] to prove stability of
linear time invariant systems with known input delays h(t)
that can satisfy ḣ(t) > 1 for some t’s [7]. This differs from
the usual treatments that assume that supt ḣ(t) ≤ 1. Thus, [7]
is a significant advance in the area of stabilization of systems
with time-varying delays. A key assumption in [7] is that |ḣ|
is small on average, without requiring a bound on |ḣ|, so [7]
covers chattering phenomena in delays that occur in many
engineering systems and so are of considerable interest.

Here, we pursue a related line of research involving
reduction, but our results differ from [7] in several important
ways. First, we allow discontinuities, as well uncertainties,
in the delays. Second, our assumptions are different, and
they lead to stability proofs that are based on our trajectory
approach from [24] instead of transport PDEs. The approach
from [24] was not used in [7]. Finally, we provide an
alternative approach that is based on a dynamical extension
from [22], [31] from the theory of spectrum assignment.

In the next section, we provide preliminaries, including
a key generalization of Halanay’s inequality. In Section
III, we present our main result, which allows uncertain
or discontinuous delays. In Section IV, we provide our
alternative approach using dynamic extensions from [31]. In
Section V, we illustrate our work using an unstable second-
order dynamics. We close in Section VI by summarizing
the value added by our work and suggesting future research
problems. This paper is a companion to [27], which uses our
trajectory based approach from [24] without using reduction,
under completely different assumptions from the ones in this
paper and assuming the delays are known.

II. PRELIMINARIES

In all of what follows, all dimensions are arbitrary. The
standard Euclidean norm of vectors, and the induced matrix
norm, are denoted by | · |, Ir is the identity matrix in
dimension r, and | · |I denotes the supremum over any
interval I ⊆ R. Also, λmax(Q) > 0 (resp., λmin(Q) >
0) denotes the largest (resp., smallest) eigenvalue of any
symmetric positive definite matrix Q. Let C1 be the set of
all continuously differentiable functions, where the domains
and ranges will be clear from the context. For any constant
τ > 0, let C([−τ, 0],Rn) be the set of all continuous Rn-
valued functions having the domain [−τ, 0]. We abbreviate
this set as Cin, and call it the set of all initial functions.
For what follows, we take τ = supt h(t), where h(t) is



the delay. For any continuous function ϕ : [−τ,∞) → Rn
and all t ≥ 0, we define ϕt by ϕt(m) = ϕ(t + m) for all
m ∈ [−τ, 0]. A function defined on an interval I ⊆ R is
called piecewise continuous provided it is continuous except
at finitely many points on each bounded subinterval of I.
We use this variant of the Halanany inequality:

Lemma 1: Let X : [0,∞) → [0,∞) be a piecewise C1

function that admits constants g ≥ 0 and as ≥ 0 and
piecewise continuous functions a : [0,∞) → [−as,∞),
b : [0,∞)→ [0,∞), and λ : [0,∞)→ [0,∞) such that

Ẋ(t) ≤ −a(t)X(t) + b(t) sups∈[t−g,t]X(s) + λ(t) (1)

holds for all t ≥ g. Assume that there exist two constants
T > 0 and δ ∈ (0, 1) such that

e−
∫ t
t−T a(`)d` +

∫ t
t−T b(q)e

−
∫ t
q
a(`)d`dq ≤ δ (2)

holds for all t ≥ T + g. Then, the inequality

X(t) ≤
|X|[0,T+g]exp

(
ln(δ)
T+g (t− T − g)

)
+

TeTas |λ|[g,t]
(1−δ)2

(3)

holds for all t ≥ T + g. �
For the proof of Lemma 1, see [27]; its proof is based on

the trajectory approach from [24]. Estimate (3) is a special
case of input-to-state stability, which we define next.

We first let K be the set of all strictly increasing continuous
functions α : [0,∞) → [0,∞) such that α(0) = 0; if, in
addition, α is unbounded, then we say that it is of class K∞.
We say that a continuous function β : [0,∞) × [0,∞) →
[0,∞) is of class KL provided for each s ≥ 0, the function
β(·, s) belongs to class K, and for each r ≥ 0, the function
β(r, ·) is non-increasing and β(r, s)→ 0 as s→∞. We say
that a system of the form ẋ(t) = f(x(t), u(t − h(t)), ε(t))
having a controller u (with a time delay h(t) that admits a
constant g > 0 such that 0 ≤ h(t) ≤ g for all t ≥ 0) is
input-to-state stable (ISS) [18] with respect to the set of all
piecewise continuous functions ε : [0,∞) → Rm provided
there exist functions β ∈ KL and γ ∈ K∞ such that

|x(t)| ≤ β(|x0|[−g,0], t) + γ(|ε|[0,t]) (4)

holds for all t ≥ 0, all continuous initial functions x0 :
[−g, 0] → Rn, and all piecewise continuous functions ε :
[0,∞) → Rm. This agrees with the more familiar global
exponential stability condition when the perturbations ε are
identically zero and β(s, t) = c1se

−c2t for some constants
c1 > 0 and c2 > 0.

III. MAIN RESULT

Consider the linear system

ẋ(t) = Ax(t) +Bu(t− h(t)− γ(t)) (5)

where A ∈ Rn×n and B ∈ Rn×m are constant, u is the
control, h is a known delay, and γ represents uncertainty in
the delay. We make several assumptions, but see below for
results under different controllers that also provide input-to-
state stability and which have several degrees of freedom in
terms of parameters we can tune. First, we assume:

Assumption 1: The function h is of class C1 and there is
a constant g > 0 such that

0 ≤ h(t) ≤ g (6)

holds for all t ≥ 0. The unknown function γ is piecewise
continuous, and there are a known constant γc ≥ 0 and a
known continuous function γb such that the inequalities

0 ≤ γ(t) ≤ γb(t) ≤ γc (7)

hold for all t ≥ 0. �
Assumption 2: The pair (A,B) is controllable. �
By Assumption 2, there is a matrix K ∈ Rm×n such that

R = A+BK is Hurwitz. This provides a constant c > 0 and
a symmetric positive definite matrix Q ∈ Rn×n such that

QR+R>Q ≤ −cQ . (8)

Choose a symmetric positive definite matrix S ∈ Rn×n such
that Q = SS, i.e., S =

√
Q. We also define

N = SA, M = SAS−1, BK = BK, (9)

α(t) = c− 2|M ||ḣ(t)| , and (10)

β(t) = 2|S||BK |e|A|h(t)
(

2|S−1||ḣ(t)|+ γb(t)a1

+ a2
∫ t−h(t)
t−h(t)−γb(t) |ḣ(`)|d`

) (11)

where

a1 = |R||S−1|+ 2e|A|g|BKS−1| and

a2 = |A||S−1|+ 2e|A|g|BKS−1| − |BKS−1|.
(12)

Our final assumption is:
Assumption 3: There exists a constant δ ∈ (0, 1) such that∫ t

t−2(γc+g) β(q)exp
(
−
∫ t
q
α(`)d`

)
dq

+ exp
(
−
∫ t
t−2(γc+g) α(`)d`

)
≤ δ

(13)

holds for all t ≥ 2(γc + g). �
We prove the following result:
Theorem 1: If Assumptions 1-3 hold, then the control

u(t) = K
[
eAh(t)x(t) +

∫ t
t−h(t) e

A(t−`)Bu(`)d`
]

(14)

renders the origin of (5) globally exponentially stable. �
Proof: In what follows, all (in)equalities are to be

understood to hold for all t ≥ 0, unless otherwise noted.
We set q(t) = |ḣ(t)|2 and

ζ(t) = eAh(t)x(t) + Γ(t), where

Γ(t) =
∫ t
t−h(t) e

A(t−`)Bu(`)d` .
(15)

Then the time derivative of ζ along all trajectories of (5) is

ζ̇(t) = eAh(t)ẋ(t) + ḣ(t)AeAh(t)x(t) +AΓ(t)

+Bu(t)− (1− ḣ(t))eAh(t)Bu(t− h(t))

= [1 + ḣ(t)]Aζ(t) +Bu(t)

−ḣ(t)A
∫ t
t−h(t) e

A(t−`)Bu(`)d`

+ ḣ(t)eAh(t)Bu(t− h(t))

+ eAh(t)B[u(t−h(t)−γ(t))− u(t−h(t))].

(16)



Our control u(t) = Kζ(t) from (14) and Assumption 2 give

ζ̇(t) = Rζ(t) + ḣ(t)Aζ(t) + ω(t, ζt) + κ(t, ζt) (17)

where

ω(t, ζt) = −ḣ(t)AΓ(t) + ḣ(t)eAh(t)BKζ(t− h(t)) (18)

and

κ(t, ζt) = eAh(t)BK [ζ(t−h(t)−γ(t))−ζ(t−h(t))] . (19)

Then, since our choice of M in (9) gives SMS = QA, it
follows from (8) that the time derivative of

V (ζ) = ζ>Qζ = |Sζ|2 (20)

along all trajectories of (17) satisfies

V̇ (t) ≤ −cV (ζ(t)) + 2ḣ(t)(ζ(t)>S)M(Sζ(t))

+ 2ζ(t)>Q[ω(t, ζt) + κ(t, ζt)]

≤ −α(t)V (ζ(t)) + 2
√
V (ζ(t))|Sω(t, ζt)|

+ 2
√
V (ζ(t))|Sκ(t, ζt)| .

(21)

Next, note that our choice q(t) = |ḣ(t)|2 gives

|Sω(t, ζt)| ≤
√
q(t)

∣∣∣−N ∫ tt−h(t) eA(t−`)BKζ(`)d`

+ SeAh(t)BKζ(t− h(t))
∣∣ . (22)

By replacing BK by BKS−1S in (22), it follows from our
choice (20) of V that

|Sω(t, ζt)| ≤
√
q(t)

[
|SeAh(t)BKS−1|

√
V (ζ(t− h(t)))

+|N |
∫ t
t−h(t) e

|A|(t−`)|BKS−1|
√
V (ζ(`))d`

]
.

Using the fact that |N |/|A| ≤ |S| when A 6= 0 and our
bound g on |h(t)| from (6), it follows that

|Sω(t, ζt)| ≤
2
√
q(t)|S||BKS−1|e|A|h(t) sups∈[t−g,t]

√
V (ζ(s)) .

(23)

Combining (21) with (23), we get

V̇ (t) ≤ −α(t)V (ζ(t)) + 2
√
V (ζ(t))|Sκ(t, ζt)|

+ 4|S||BKS−1|
√
q(t)e|A|h(t) sups∈[t−g,t] V (ζ(s)).

(24)

Next, observe that since Q = SS, we can use the bound

|ζ̇(t)| ≤ |(R+ ḣ(t)A)S−1Sζ(t)|
+
∣∣∣ḣ(t)A

∫ t
t−h(t) e

A(t−`)BKS
−1Sζ(`)d`

− ḣ(t)eAh(t)BKS
−1Sζ(t− h(t))

∣∣∣
+
∣∣eAh(t)BK [S−1Sζ(t− h(t)− γ(t))

−S−1Sζ(t− h(t))]
∣∣

(25)

and our formula (20) to get

|ζ̇(t)| ≤ |(R+ ḣ(t)A)S−1|
√
V (ζ(t)) +

√
q(t)|A|

×
∫ t
t−h(t)

∣∣eA(t−`)BKS
−1
∣∣√V (ζ(`))d`

+
√
q(t)

∣∣eAh(t)BKS−1∣∣√V (ζ(t−h(t)))

+|eAh(t)BKS−1|
√
V (ζ(t−h(t)−γ(t)))

+ |eAh(t)BKS−1|
√
V (ζ(t−h(t))).

(26)

As an immediate consequence, we get

|ζ̇(t)| ≤ |(R+ ḣ(t)A)S−1|
√
V (ζ(t))

+
√
q(t)|A||BKS−1|

∫ t
t−h(t)

∣∣eA(t−`)
∣∣√V (ζ(`))d`

+
∣∣eAh(t)BKS−1∣∣ [(√q(t) + 1

)√
V (ζ(t− h(t)))

+
√
V (ζ(t− h(t)− γ(t)))

]
≤ η(t) sup

s∈[t−g−γc,t]

√
V (ζ(s)),

(27)

where

η(t) = |(R+ ḣ(t)A)S−1|+ 2e|A|h(t)|BKS−1|
+ 2
√
q(t)e|A|h(t)|BKS−1| −

√
q(t)|BKS−1| .

(28)

It readily follows from (12) and (28) that

|ζ̇(t)| ≤ µ(t) sups∈[t−g−γc,t]
√
V (ζ(s)), (29)

where µ(t) = a1 + a2
√
q(t). Next, notice that

|κ(t, ζt)| ≤ |eAh(t)BK |
∫ t−h(t)
t−h(t)−γ(t) |ζ̇(`)|d` . (30)

Consequently,

|κ(t, ζt)| ≤ |eAh(t)BK |
∫ t−h(t)
t−h(t)−γ(t) µ(`)d`

× sups∈[t−2g−2γc,t−h(t)]
√
V (ζ(s)) .

(31)

From (24), we deduce that

V̇ (t) ≤ −α(t)V (ζ(t))

+ 4|S||BKS−1|
√
q(t)e|A|h(t)

× sups∈[t−g,t] V (ζ(s))

+2|S||eAh(t)BK |
∫ t−h(t)
t−h(t)−γ(t) µ(`)d`

× sups∈[t−2g−2γc,t] V (ζ(s))

≤ −α(t)V (ζ(t))

+ β(t) sups∈[t−2g−2γc,t] V (ζ(s)).

(32)

By Lemma 1 and Assumption 3, we conclude that V (ζ(t))
converges exponentially to zero. Since Q is positive definite,
it follows that ζ(t) converges exponentially to zero. Hence,
since h(t) is bounded, x(t) = e−Ah(t)(ζ(t)−Γ(t)) converges
exponentially to zero, which proves the theorem.

IV. ALTERNATIVE APPROACH

We next provide an approach for systems of the form

ẋ(t) = Ax(t) +Bu(t− h(t)) + ε(t) (33)

having state space Rn, where A ∈ Rn×n and B ∈ Rn×m
are constant matrices, ε is an unknown piecewise continuous
disturbance, the (nonnegative) delay h(t) is known, and:

Assumption 4: The pair (A,B) is controllable, h is C1,
and there is a constant g > 0 such that supt h(t) ≤ g. �

The stabilizability of (A,B) implies that we can construct
matrices Af ∈ Rm×m and Bf ∈ Rm×n such that

H =

[
A B

Bf Af

]
(34)

is Hurwitz; see [31] for one such construction. We can also
determine a symmetric and positive definite matrix Q and a



constant c > 0 such that the inequality QH +H>Q ≤ −cQ
holds. For each ζ = (ρ, β) ∈ Rn × Rm, we redefine V by

V (ζ) = ζ>Qζ (35)

and we choose any constants cρ > 0 and cβ > 0 such that

|β| ≤ cβ
√
V (ζ) and |ρ| ≤ cρ

√
V (ζ) (36)

hold for all ζ = (ρ, β) ∈ Rn × Rm. For instance, we can
take cβ and cρ both equal to 1/

√
λmin(Q). Setting S =

√
Q

as before, and choosing the functions a(t) = 0.9c and

b(t) = 2|S||ḣ(t)|
[
cρ|A|+ cβ |A|

∫ h(t)
0

∣∣eA`B∣∣d`
+ cβ

∣∣eAh(t)B∣∣ ], (37)

our final assumption is as follows:
Assumption 5: With the preceding choices of a(t) and

b(t), there exist constants T > 0 and δ ∈ (0, 1) such that

e−0.9cT +
∫ t
t−T b(`)e

−(t−`)0.9cd` ≤ δ (38)

holds for all t ≥ T + g. �
We can then prove:
Theorem 2: If Assumptions 4-5 hold, then (33) in closed

loop with u(t) = β(t), where β is any solution of

β̇(t) =

Afβ(t)+Bf

[
eAh(t)x(t)+

∫ t
t−h(t)e

A(t−`)Bβ(`)d`
]
,

(39)

is input-to-state stable with respect to the set of all piecewise
continuous functions ε : [0,∞)→ Rn. �

Proof: Choose any piecewise continuous function ε :
[0,∞) → Rn and let Assumptions 4-5 hold. By Lemma 1
and (38), the theorem will follow once we prove that

V̇ (t) ≤ −a(t)V (ζ(t)) + b(t) sup`∈[t−g,t] V (ζ(`))

+ 40
c |S|

2e2|A|g |ε(t)|2
(40)

holds along all solutions of the closed loop system for all
t ≥ T + g. Let ρ(t) denote the quantity in squared brackets
on the right side of (39), so β̇(t) = Afβ(t) +Bfρ(t). Then

ρ̇(t) = Aρ(t) +Bβ(t) + ḣ(t)A [ρ(t)

−
∫ t
t−h(t) e

A(t−`)Bβ(`)d`
]

+ ḣ(t)eAh(t)Bβ(t− h(t)) + eAh(t)ε(t).

(41)

Since ζ(t) = (ρ(t), β(t)) ∈ Rn+m for all t ≥ 0, we get

ζ̇(t) = Hζ(t) + ḣ(t)

(
ψ(t)

0

)
+

(
eAh(t)ε(t)

0

)
, (42)

where

ψ(t) = A
[
ρ(t)−

∫ t
t−h(t) e

A(t−`)Bβ(`)d`
]

+ eAh(t)Bβ(t− h(t)) .
(43)

Hence, (35) satisfies the following along trajectories of (42):

V̇ (t) ≤ −cV (ζ(t)) + 2ḣ(t)ζ(t)>Q

(
ψ(t)

0

)
+ 2ζ(t)>Q

(
eAh(t)ε(t)

0

)
.

(44)

Using the fact that Q = SS, we obtain |ζ>(t)Q| ≤
|S|
√
V (ζ(t)), so

V̇ (t) ≤ −cV (ζ(t)) + 2|S||ḣ(t)|
√
V (ζ(t))|ψ(t)|

+ 2|S|
√
V (ζ(t))

∣∣eAh(t)ε(t)∣∣ . (45)

Also, our conditions (36) on cβ > 0 and cρ > 0 give

|ψ(t)| ≤
∣∣eAh(t)B∣∣ cβ√V (ζ(t− h(t)))

+|A|
[
cρ
√
V (ζ(t)) +

∫ t
t−h(t)

∣∣eA(t−`)B
∣∣ cβ√V (ζ(`))d`

]
.

Consequently,

|ψ(t)| ≤
[
cρ|A|+ cβ |A|

∫ h(t)
0

∣∣eA`B∣∣d`
+cβ

∣∣eAh(t)B∣∣ ] sup
`∈[t−g,t]

√
V (ζ(`)).

(46)

Combining (45) with (46), we get

V̇ (t) ≤ −cV (ζ(t)) + b(t) sup`∈[t−g,t] V (ζ(`))

+2|S|
√
V (ζ(t))

∣∣eAh(t)ε(t)∣∣ . (47)

Also, by the triangle inequality jk ≤ 0.1j2 + 10k2 with j
and k taken to be the corresponding terms in curly braces in
(48), and our bound g on h(t) from Assumption 4, we get

2|S|
√
V (ζ(t))

∣∣eAh(t)ε(t)∣∣
≤
{√

cV (ζ(t))
}{

2√
c
|S|e|A|g|ε(t)|

}
≤ c

10V (ζ(t)) + 40
c |S|

2e2|A|g |ε(t)|2

(48)

for all t. If we now use (48) to upper bound the last right
side term in (47), the desired estimate (40) then follows from
our choice of a(t). This proves the theorem.

V. ILLUSTRATION

We revisit the unstable second order linear dynamics from
[7], which is the special case of the following when the
unknown perturbation term ε(t) is the zero function:

ż(t) =

(
0 1
−1 1

)
z(t) +

(
0
1

)
u(t− h(t)) + ε(t). (49)

In this section, we only apply Theorem 2 and therefore
assume that h ∈ C1 and bounded by some constant g > 0,
but we can also apply Theorem 1 to cover cases where the
delay can have discontinuities and be uncertain. Choosing

A =

(
0 1
−1 1

)
and B =

(
0
1

)
, (50)

the corresponding matrix M = A+BK is Hurwitz with the
choice K = −(2, 3). In fact, we can satisfy PM +M>P ≤
−cP with the choices

P =

(
4
3

1
6

1
6

1
3

)
and c = 0.735089. (51)

Also, using the fact that |B| = 1 and relatively simple
calculations, one checks that Assumptions 4-5 will hold if



there are also constants δ ∈ (0, 1) and T > 0 such that∫ t
t−T |ḣ(`)|d` ≤ δ−e−0.9cT

2|S|
(
cρ|A|+cβe|A|g(1+g|A|)

) (52)

holds for all t ≥ 0, where S =
√
Q, Q is defined by

Q =

(
P + ν

2K
>K −ν2K

>

−ν2K
ν
2 Im

)
, (53)

ν > 0 is any constant, and the constants cρ > 0 and cβ > 0
satisfy (36) with V (ζ) = ζ>Qζ. This provides an interesting
alternative to the corresponding result in [7] because it allows
us to conclude input-to-state stability with respect to additive
uncertainties ε (which were not considered in [7]) using the
alternative controller from our Theorem 2 (which is based
on a dynamic extension that was also not considered in [7]),
and because we include the degree of freedom ν > 0.

VI. CONCLUSIONS

We proposed two approaches for proving stability of linear
time invariant systems that apply to cases where the delay
could be unknown and not necessarily C1, and where the
system is subjected to additive uncertainties on the right side.
In both cases, we allow the known C1 part h(t) of the delay
to exhibit chattering phenomena, where h(t) is bounded, but
where there is a bound on an integral average of |ḣ| instead
of on ḣ itself. Therefore, our work built on the significant
work [7] on chattering delays, by also allowing uncertainties
in the delay or in the system that were not considered in [7].
There are many degrees of freedom in applying our methods,
such as the coefficient matrices in our dynamic extensions.
In our future work, we hope to develop ways to exploit
the degrees of freedom to make our work applicable to the
broadest possible class of systems and chattering delays.
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