
HAL Id: hal-01248198
https://hal.inria.fr/hal-01248198

Submitted on 24 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Semantically Rich Approach for Collaborative Model
Edition

Jonathan Michaux, Xavier Blanc, Pierre Sutra, Marc Shapiro

To cite this version:
Jonathan Michaux, Xavier Blanc, Pierre Sutra, Marc Shapiro. A Semantically Rich Approach for
Collaborative Model Edition. Symp. on Applied Computing (SAC), Mar 2011, Taichung, Taiwan.
pp.1470–1475, �10.1145/1982185.1982500�. �hal-01248198�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49441764?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01248198
https://hal.archives-ouvertes.fr

A Semantically Rich Approach for Collaborative Model
Edition

Jonathan Michaux,
Xavier Blanc, Pierre Sutra

LIP6
firstname.lastname@lip6.fr

Marc Shapiro
INRIA & LIP6

marc.shapiro@acm.org

ABSTRACT
We propose a novel approach and tool for collaborative soft-
ware engineering and development. In model-based software
engineering, the underlying data structure is a complex, di-
rected and labeled graph. Collaborative engineering requires
that developers be able to copy the graph, make independent
changes, compare them, detect conflicts, and merge non-
conflicting graphs. To support different collaboration and
development styles requires a very flexible toolset. World-
wide, loosely-coupled development teams require the sup-
port of large-scale networks of users, possibly disconnected,
in a decentralised fashion. No matter how the graph repli-
cas evolve, they must eventually converge. We describe and
evaluate C-Praxis, a tool that satisfies these requirements.

Categories and Subject Descriptors
D.2 [Software Engineering]: Design Tools and Techniques;
I.6 [Simulation and Modeling]: Model Development, Ap-
plications

General Terms
Design, Reliability

Keywords
Collaboration, Consistency, Replication, Asynchrony

1. INTRODUCTION
Model Driven Engineering (MDE) projects involve increas-

ingly larger and interrelated models [2, 4, 8]. Often, differ-
ent projects share partial models. In this context, the cur-
rent centralised and disjoint repositories constitute a severe
limitation, as they do not provide any global consistency
guarantees. Consider, for instance, the case where a model
element is deleted from some repository even though it was
referenced from another repository; this case is not currently
supported, which results in an inconsistent model.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’11 March 21-25, 2011, TaiChung, Taiwan.
Copyright 2011 ACM 978-1-4503-0113-8/11/03 ...$10.00.

Moreover, in a multi-project and multi-developer context,
each one has its own policies and development patterns.
A single, global collaboration policy cannot be assumed.
Contrast the Linux project, with its hierarchical organiza-
tion and well-defined access rights for individual developers,
to other projects, which define access rights for individual
model parts. Furthermore, some developers commit their
changes quickly and often, in order to pre-empt possible con-
flicts with other developers, whereas others prefer to work
in isolated, disconnected mode, and commit only when their
task is ready. We argue that an efficient, reliable, flexible
support tool is required for MDE projects, where developers
collaboratively modify models throughout the entire devel-
opment life cycles of different projects.

We present C-Praxis, a collaborative modeling framework
that supports editing of models within a multi-project and a
multi-developer context. C-Praxis is based upon Telex [1], a
middleware layer designed for collaborative application soft-
ware. Telex is based on a sound formal model that flexibly
incorporates application semantics, supports many different
collaboration styles, and provides well-defined consistency
guarantees.

Telex is well suited to support collaborative MDE. Each
site in the system stores a replica of the shared data. Each
may independently perform update actions on its local replica.
Sites synchronise by exchanging their actions in a peer-to-
peer manner. The rate of synchronisation is a policy that
can be set by each project. A developer may work in isola-
tion or completely disconnected from the network. Telex is
designed to support partial replication, whereby a site repli-
cates only the data of interest to it; however, this article
focuses on full replication, as partial replication is not cur-
rently functional. Telex supports the dynamic disconnection
and reconnection of sites. Once reconnected, a site will be
able to merge its own changes with those made by other
sites. Conflicts may cause tentative changes to be aborted;
however, Telex guarantees that all replicas eventually con-
verge to a common, correct state.

The remainder of this paper is organized as follows: Sec-
tion 2 details the challenges involved in designing a collab-
orative modelling environment. Section 3 presents our so-
lution, C-Praxis. Section 4 explains how we used Telex in
our approach. Section 5 presents our prototype implemen-
tation. Section 6 looks at some related work. We conclude
in Section 7.

2. CHALLENGES OF COLLABORATIVE
MODEL EDITING

Many modern software and system development projects
are model-based [13]. To be able to manage their increas-
ing complexity, multiple developers share models, and need
the ability to work independently, in isolation. In such Col-
laborative Model Editing (CME) scenarios, developers may
concurrently make overlapping or conflicting updates to a
shared model. This section considers some of the issues in
CME and outlines our approach.

CME provides each developer (or sub-group of developers)
with a separate working copy, or replica, that he can modify
in isolation. When replicas are concurrently modified, their
states diverge. Such temporary divergence provides flexi-
bility that is essential to large projects, as, for instance, it
allows developers to explore different solutions, or to focus
on a particular sub-system. However, in the long run, di-
vergence should be resolved and replicas become mutually
consistent, by reaching a consensus on the version of the
model that will be adopted for the future.

Synchronising the replicas requires a common language to
express model state and modifications thereof. The MOF
standard that was designed to construct a model as a se-
quence of fine-grain operations [10] happens to be well-suited
to express model changes and to exchange them between
replicas.

Conflict resolution and consensus is a complex issue in
general [12]. Perhaps the simplest solution is to retain one
replica and discard the other. However, this defeats the
purpose of CME. Another simple but inadequate approach
is the Last-Writer-Wins (LWW) algorithm [6]. Here, each
update is timestamped; when two updates are in conflict,
the one with the highest timestamp (assumed to be newer)
is retained, and the other one is discarded. This approach
is very simple and is easy to understand, and it ensures
that replicas eventually converge. However, it has severe
drawbacks in the CME context, discussed next.

First, in LWW, the choice is arbitrary. In contrast, CME
requires the ability to merge conflicts according to data se-
mantics and under human supervision. Consider the fol-
lowing example. Developers Rita and James are editing a
UML class HelloWorld, which is replicated onto Rita’s and
James’ terminals. Rita changes the value of the class name
property to GoodbyeMars. Concurrently, James changes the
class name to AlohaJupiter. However, as the UML2 stan-
dard specifies that a class has a single, unique name [11],
the two concurrent name changes conflict. Note that there
is no single best solution to this conflict: only the developers
can know whether the outcome should be HelloWorld, Good-
byeMars, AlohaJupiter, or some combination such as Hello-
World GoodbyeMars AlohaJupiter; furthermore, James, Rita
and their supervisor may each have a different opinion. This
illustrates that: (i) developers should have access to the mul-
tiple solutions of a given conflict, (ii) a developer should be
able to pick a solution for his local view, and (iii) there
should be a procedure for consulting the views and finally
committing one of the solutions, which henceforth is consid-
ered authoritative.

The second major drawback of LWW is that the set of
updates retained is not necessarily consistent. For instance,
suppose that the class has a print method that outputs the
class name as a string. Rita updates the string to be“Good-
byeMars”and James to“AlohaJupiter”. With LWW, the times-
tamps may be such that the class name changes to Good-
byeMars while at the same time the string changes to Aloha-

Jupiter! In contrast, CME requires that updates that belong
together stay together. C-Praxis solves this issue in a very
general way, by leveraging Telex’s constraints, i.e., relations
that assert that a given operation is causally dependent, non-
commuting, atomic or antagonistic with respect to another
given operation. This ensures that updates follow a correct
workflow and that the models are well formed.

3. C-PRAXIS: AN APPROACH TO COLLAB-
ORATIVE MODEL EDITION

In this section we depict C-Praxis, our approach to CME.
A representation formalism is introduced and then enriched
with semantics which have been identified.

3.1 Representing a model as a sequence of op-
erations

The MOF standard defines a model as a set of model
elements, which are instances of meta-classes [10]. A model
can be considered as a set of model elements that own values
and refer to each other. Each model element is an instance
of a meta-class that defines the properties it can own and
the references it can have [10]. Blanc et al. show that “Any
model, regardless of its meta-model, can be represented as a
sequence of operations performed to construct it, rather than
by the set of model elements it contains” [3]. These authors
defined four elementary model building operations inspired
by the MOF reflective API [10], later extended to six [9]:

create(me,mc) creates model element me, instance
of meta-class mc.

delete(me) deletes model element me.

addProperty(me,p,v) assigns value v to the prop-
erty p of model element me.

remProperty(me,p removes the value, if any, of prop-
erty p from model element me.

addReference(me,r,met) assigns a target model el-
ement met to the reference r of model element me.

remReference(me,r) removes the value, if any, of
reference r from model element me.

Each operation is meta-model independent. The latter four
operations are modification operations.

The sequence below illustrates the use of these six model
building operations to construct the class diagram depicted
in Figure 1:

1. create(c1,Class)

2. addProperty(c1,name,‘Apple’)

3. create(c2,Class)

4. addProperty(c2,name,‘Fruit’)

5. create(a1,Attribute)

6. addProperty(a1,name,‘variety’)

7. addProperty(a1,type, ‘String’)

8. addReference(c1,attribute,a1)

9. create(a2,Attribute)

10. addProperty(a2,name,‘nbPips’)

11. addProperty(a2,type, ‘int’)

12. addReference(c1,attribute,a2)

13. addReference(c1,super,c2)

Figure 1: A simple UML class diagram

3.2 Communicating Change Information
The state of a model is represented by its correspond-

ing sequence of operations. When a change is made to a
model, a new operation is added to the sequence. These
changes need to be added to the sequences of all other sites
working on the same model as part of the effort to main-
tain consistency between all replicas. Indeed, two replicas
are consistent if their corresponding sequences of operations
are equivalent. In order for these changes to be taken into
account by other sites, they are transmitted to Telex who
propagates them. Because the system is totally replicated,
every change regardless of its type is propagated to all sites.

3.3 Definition of Application Invariants
Application invariants are a set of rules that must be re-

spected in order for models to remain correct. These invari-
ants are properties that can be verified over the sequence
of operations that represents the state of a model. Replicas
that respect these invariants can be merged together.

The following set of meta-model independent invariants
have been identified. They are based on the model rep-
resentation described above and inspired by previous work
[3, 9]:

• Causality : Given an operation sequence σ, if opera-
tion O is part of σ and affects model element me, then
create(me) is part of σ and create(me) <σ O.

• Delete Semantics : Given a model element me and
an operation sequence σ, if delete(me) is included in σ
then there does not exist an operation O that targets
me such that delete(me) <σ O.

• Unique Identifiers : Two model elements may not
share the same unique identifier.

If any of these invariants are not respected, the result-
ing sequence of operations is incoherent and cannot be in-
terpreted correctly. Without them, meaningless operations
could be executed such as modification of a model element
that has not yet been created or modification of an element
after it has been deleted.

3.4 Conflict Identification and Resolution
Edition conflicts occur when a pair of developers concur-

rently modify the same parts of a model. These parts can
be narrowed down to model elements. If a pair of opera-
tions affect the same model element(s), they are potentially
in conflict. For example, two operations which modify the
value of a property belonging to a certain model element
are in conflict. To resolve this conflict, it must be decided
which of the operations is to be taken into account, while
the other will be ignored. Indeed, in this context there is
no reason to attempt to merge the value from both property
change operations - this does not make sense as the result
will correspond to neither of the authors’ intentions.

The following list presents the conflicts that have been
identified:

1. different property values: If two sites change the
property value of one shared model element and if they
provide different values.

2. add and remove property value: If one site changes
a property value of one shared model element and if
another one removes the value.

3. different reference values: If two sites change the
reference value of one shared model element and if they
provide different values.

4. add and remove reference value: If one site changes
a reference value of one shared model element and if
another one removes the value.

5. delete a model element and add a reference
value that targets it: If one site deletes a shared
model element and if another one adds a reference that
targets it.

6. delete a model element and add a reference
value from it: If one site deletes a shared model ele-
ment and if another one adds a reference from it.

7. delete a model element and add a property value
to it: If one site deletes a shared model element and
if another one adds a property value to it.

Note that the operations in conflicts 1, 2, 3 and 4 can co-
exist. It is their execution order that will affect the resulting
state of the affected model elements. In order for these con-
flicts to be resolved, an order must be decided upon and
reproduced on all sites.

However, when it comes to conflicts involving the deletion
of a model element (as in conflicts 5, 6 and 7), resolution
is more complicated. First of all, as stated in the delete
semantics invariant earlier in Section 3.3, an operation on
a model element cannot occur once the model element has
been deleted. Therefore, if both operations are taken into
account, the delete operation must always be performed last
and therefore its effect will be taken into account (the ele-
ment will be deleted). There is another way to resolve these
conflicts which offers two valid solutions. In this approach,
delete operation delete(me) is considered to be antagonistic
with all modification operations on model element me. The
first solution is to omit the delete operation in which case
the modification operations are taken into account and the
model element is not deleted. The second solution is to omit
all modification operations on me and to simply take into
account the delete operation. These two approaches shall
be further examined in section 5.2.

4. PRAXIS OVER TELEX
This section explains how we use Telex to support C-

Praxis. We first review basic Telex concepts, then detail
how we leverage them to efficiently support CME.

4.1 Overview of Telex
Telex [1] is a middleware specifically designed to support

collaborative applications and disconnected work settings.
More precisely, Telex handles replication, consistency, stor-
age and access control, as well as collecting, transmitting
and persisting operations. Telex detects conflicts between

concurrent operations, and computes high-quality conflict-
free schedules. It also offers forward execution, rollback,
checkpointing and consensus. Telex uses semantic informa-
tion provided by the application to execute consensus. This
novelty gives Telex flexibility when merging concurrent mod-
ifications - as opposed to classical approaches such as last-
writer-wins.

4.1.1 Telex fundamentals
Collaborative applications using Telex share documents.

A document is an abstract data type that links different
sites together based on the principle that they share data.
A collaborative application interacts with Telex by submit-
ting actions and constraints on one or more documents. An
action is a reified application-level operation. A constraint is
a concurrency control statement between two actions. Con-
straints materialize either workflow or application-specific
invariants. Table 1 details the available constraints in Telex
as well as their semantics.

Each Telex site maintains an Action-Constraint Graph
(ACG) The ACG contains all actions and constraints known
at one site. When a change is made to a document, Telex
sends new actions and constraints to concerned replicas which
update their local graphs.

To execute remote or local actions, an application is pro-
vided with Telex schedules. A schedule defines the state
of the documents which are locally replicated. Every Telex
schedule is sound, i.e., consistent with the constraints, pos-
sibly across multiple documents. This provides a synthetic,
high-level view of conflict resolution.

4.1.2 Replication and data accessibility
The replication strategy used in Telex is optimistic replica-

tion, this means that sites access documents without a priori
synchronization. Modifications are performed locally then
propagated to other Telex sites in the background. Thanks
to optimistic replication, Telex supports disconnected ac-
tivity, i.e., an application can update its local replica of a
document while disconnected from the network. Upon re-
connecting, Telex notifies the application with new updates.

4.1.3 Consistency and consensus
Due to optimistic replication, replicas may diverge. In

order to bound divergence, Telex runs a consensus protocol
between sites. This protocol is based on proposals which are
schedules approved by applications. Each site decides on a
preferred proposal amongst those generated from the local
ACGs. Telex picks the longest common sound prefix that
exists based on each site’s preference. When Telex cannot
find common elements, it makes arbitrary decisions in order
to finish the process. In the resulting decision, every action
is either aborted or committed, and non-commuting com-
mitted actions are ordered. The result is then given a name
and made to persist. The consensus protocol ensures even-
tual consistency, i.e., replicas eventually agree on a correct,
common state for each replicated document.

4.2 Supporting C-Praxis with Telex

4.2.1 Conflict Identification and Resolution
An edition conflict is detected by Telex when a site re-

ceives a remote action on a locally replicated model. Telex
compares the keys associated with the new changes to those

associated to all the changes from the local edition history.
If any of the keys match, then Telex has identified a po-
tential conflict. The keys associated with an action have
therefore been made to correspond to the unique identifiers
of the model elements affected by the operation. Hence if
two actions share the same key then they target the same
model element.

When Telex detects a conflict it calls the application by
transmitting it the pair of actions that provoked the detec-
tion. The application must then determine how to resolve
the conflict between these two actions. To do this, the ap-
plication has the option of creating a constraint between the
two actions and returning it to Telex.

For example if Telex detects that two concurrent addProp-
erty operations A and B affect the same model element, it
will inform the application. The application then checks to
see if the same property is being modified by both opera-
tions. If so, then the application has the option of deciding
on an order between the two actions by using the not-after
constraint. Using the formalism described in Table 1, this
can be written A→ B which indicates that A never occurs
after B, therefore operation B’s result is taken into account.
Conflicts one through four described in Section 3.4 can be
resolved this way.

Let us now consider the case of conflicts 5 through 7
from Section 3.4 which involve delete operations. Both ap-
proaches described in section 3.4 can be achieved using Telex.
The symbols used are taken from table 1.

Approach 1: Given model element me, and a sequence
of operations σ, if operation delete(me) is in σ, then any
modification operation mod(me) in σ is such that mod(me)
→ delete(me). This approach strictly favours the effect of
the delete operation.

Approach 2: Consider model element me, and a se-
quence of operations σ. If delete operation delete(me) is
present in σ, then given any modification operation mod(me),
delete(me) � mod(me). Given the antagonist constraint
used, this approach offers two possible solutions. The dele-
tion can be ignored, in which case the modification oper-
ations are executed. Alternativeley, the deletion is taken
into account, and the modification operations are not even
executed in order to save time. Approach 2 has been re-
tained in our solution because it offers a choice and is more
economical.

4.2.2 Choosing a Schedule
As seen in the previous section, Telex will guarantee that

a set of invariants are respected in order to generate safe
(executable) schedules.

Telex can often generate more than one schedule from the
action-constraint graph that contains the model’s building
operations and associated constraints. However, one solu-
tion must be chosen in order to continue working. Telex
lets an application select a schedule, increasing its chances
of being committed and reproduced on all replicating sites.

In order to benefit from the ability to choose, two cate-
gories of selection criteria have been defined : organisational
criteria and high-level criteria.

Organisational criteria are used to select schedules based
on the organisation and preferences of the development team.
They target schedules that favour productivity and ergonomics.
For example, the edition history length criterion gives pri-
ority to the developer with the longest edition history on

Name Notation Meaning for scheduling Meaning for consensus
NotAfter a→ b a is never after b in any schedule a is not after b in agreed prefix
Enables a � b b in a schedule implies a in same schedule b commits implies a commits

NonCommuting a / b N/A Conflict: Agree on either a→ b or b→ a

Atomic a
�
� b a and b both execute or neither does a and b both commit or both abort

Causal a
�→ b b executes after a, and only if a succeeds b commits implies a commits

Antagonism a
←→ b Conflict: a and b never both in same schedule a commits implies b aborts, and vice-versa

Table 1: Constraint types. (a, b are arbitrary actions)

a conflicting part of a model. This is achieved by select-
ing a schedule that takes into account the most operations
by the said developer. The hierarchical priority criterion
favours schedules that include operations by developers that
are higher up in the team hierarchy. These decisions can be
made automatic in C-Praxis.

High-level criteria is used to evaluate schedules against
high level rules that are domain specific or context sensitive.
For example, Blanc et al. developed a consistency checking
engine in Prolog [3]. It takes sequences of Praxis operations
as an input, and checks them against a set of rules that can
be specified by the user. These rules can include meta-model
conformance, or compliance to structural rules such as those
found in the UML2 [11] specification. Based on the output
of this kind of checking engine, a schedule can be selected
and a conforming model state is therefore promoted.

5. IMPLEMENTATION

5.1 Implementation
Our prototype was designed as an application layer above

Telex that is generic because it is editor independent. It re-
ceives modification events produced by a model editor and
outputs modification operations to be executed on a model.
Hidden inside this layer are the semantics added to the se-
quences of operations before transmitting them to Telex,
as well as the conflict identification and resolution mech-
anisms. All communication with Telex is also managed by
this layer. An abstraction layer has been delimited that pro-
vides an API and can be plugged into any model editor. We
have produced an implementation using a JGraphX 1 based
graph editor, as well as an implementation that is integrated
into the Eclispe EMF 2 environment.

Figure 2 shows the general architecture of C-Praxis and
how a model editor is integrated into the framework. Our
prototype is composed of four main components : the Prax-
isTransmitter, Local Constraint Checker, and the Praxis Con-
troller. Praxis Constraints contains all the clauses relative
to detecting a constraint.

A listener transmits a model modification event to the
listener adaptor which converts this event into one of the six
Praxis actions. The Praxis action is then sent to the Praxis
Transmitter. Before transmitting this new action to Telex,
the Praxis Transmitter uses the Local Constraint Checker
component to check for local constraints. Given a pair of
actions A,B, Praxis Constraints will determine whether or
not a constraint exists between these two actions. The Local
Constraint Checker uses Praxis Constraints to compare a
new action with previous actions two by two. If a conflict is

1http://www.jgraph.com/
2http://www.eclipse.org/modeling/emf/

Figure 2: C-Praxis Architecture

detected, then the corresponding constraint is instantiated
and submitted to Telex along with the new action.

On the other end, the Praxis Controller receives execu-
tion schedules from Telex. These are sent to the Control
Adaptor which converts the schedule’s Praxis actions into
editor-specific operations that can be applied to the model.

5.2 Validation
In order to validate our approach, we present a scenario

that showcases the advantages obtained thanks to a more
flexible system of consensus and conflict resolution. This
scenario is based on the example presented in Section 3.1,
in which the sequence of operations required to create the
fruit UML class diagram is given.

Consider two developers, Lucy and James. They have
both begun working on a UML class diagram together. Lucy
is the most productive of the two, and performs the following
operations :

1. create(c1,Class)

2. addProperty(c1,name,‘Apple’)

3. create(c2,Class)

4. addProperty(c2,name,‘Fruit’)

5. create(a1,Attribute)

6. addReference(c1,super,c2)

James receives these operations, and the two developers
have exact copies of the model. James now disconnects from
the network. While James is disconnected, Lucy performs
the following operations which add properties to the Apple
class :

1. create(a1,Attribute)

2. addProperty(a1,name,‘variety’)

3. addProperty(a1,type, ‘String’)

4. addReference(c1,attribute,a1)

5. create(a2,Attribute)

6. addProperty(a2,name,‘nbPips’)

7. addProperty(a2,type, ‘int’)

8. addReference(c1,attribute,a2)

James on the other hand performs a delete on the Apple
class. Both developers now have different views of the model
which are not consistent with each other.

When James finally reconnects to the network, the soft-
ware attempts to merge both replicas into a consistent state.
Several edition conflicts are detected; indeed, as seen in Sec-
tion 4.2.1 each modification operation on the Apple class
performed by Lucy is in conflict with the deletion of the
Apple class performed by James. An antagonism is the con-
straint expressed between these pairs of actions. The de-
fault schedule generated by Telex at the local level gives
priority to operations performed by the developer who has
the longest edition history. Hence, the default result will
be that Lucy’s modifications are taken into account, while
James’ delete is ignored. However, the developer is given
the option of considering alternative schedules, including
those that include James’ delete operation and ignore Lucy’s
modifications. If the developer were to favour this option,
then Lucy’s modification operations are not executed by the
model editor. This avoids useless computation time, while
maintaining the modifications in the edition history for fu-
ture reference or roll-backs.

6. RELATED WORK
D-Praxis [9], a peer-to-peer collaborative model editing

framework, was the predecessor to C-Praxis. Indeed C-
Praxis is a project created out of the desire to improve
D-Praxis by adding disconnected operation and by using a
sound distribution model. D-Praxis uses a last-writer-wins
conflict resolution strategy based on a Lamport Clock [7].
Because it does not require the execution of lengthy con-
sensus algorithms, a gain in performance is achieved, but
at the cost of reduced flexibility for the end-user. D-Praxis
supports partial replication of model data, which was not
achieved with C-Praxis due to the design and immaturity of
Telex.

CVS [2, 4, 8] is a centralised approach in which a central
server stores and synchronises relevant data. Data is not
associated to semantic information so merging conflicting
modifications on data requires careful handling by the end
user and can often be complicated.

7. CONCLUSION
C-Praxis is a collaborative modeling framework that al-

lows asynchronous changes to be made on models while guar-
anteeing that a consensus is reached between replicas in the
long run.

Through the use of the Telex middleware and its opti-
mistic replication strategy, developpers can work while dis-
connected. For instance, a developer may wish to continue
working without access to the network. Also, network con-
nections are subject to faults and failures which would oth-
erwise interrupt the development process.

Optimistic replication has advantages beyond network is-
sues. Indeed, not only is it believed to be impossible to
maintain absolute consistency between replicas at all times,
it is not desirable [5]. With overly rigid consistency man-
agement, developers aren’t given enough freedom to tem-
porarily diverge from a consistent state, which is consid-
ered to be necessary in software development. Flexibility in
model inconsistency management is a key feature provided
by C-Praxis; it offers developers the advantage of choos-
ing from a selection of valid model states before committing
one. Furthermore, inconsistency management with Telex is
a background process [1] which provides a more seamless
experience.

In an effort to better evaluate the value of C-Praxis’ flexi-
bile consistency management, an empirical study would offer
interesting insights into the usability of the tool and would
provide a comparison with more convential software engi-
neering techniques.

References
[1] L. Benmouffok, J.-M. Busca, J. M. Marquès,

M. Shapiro, P. Sutra, and G. Tsoukalas. Telex: A
Semantic Platform for Cooperative Application De-
velopment. In Conférence Francophone en Systèmes
d’Exploitation, Toulouse, France, 2009.

[2] B. Berliner, P. Inc, and M. D. Blvd. Cvs ii: Parallelizing
software development, 1990.

[3] X. Blanc, A. Mougenot, I. Mounier, and T. Mens. De-
tecting model inconsistency through operation-based
model construction. In Proc. Int’l Conf. Software engi-
neering (ICSE’08), volume 1, pages 511–520, 2008.

[4] B. Collins-Sussman. The subversion project: buiding a
better cvs. Linux J., 2002(94):3, 2002.

[5] A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer,
and B. Nuseibeh. Inconsistency handling in multi-
perspective specifications. IEEE Transactions on Soft-
ware Engineering, 20(8):569–578, 1994.

[6] P. R. Johnson and R. H. Thomas. The maintenance
of duplicate databases. Internet Request for Comments
RFC 677, Information Sciences Institute, Jan. 1976.

[7] L. Lamport. Time, clocks, and the ordering of events in
a distributed system. Commun. ACM, 21(7):558–565,
1978.

[8] A. Mehra, J. Grundy, and J. Hosking. A generic ap-
proach to supporting diagram differencing and merging
for collaborative design. In Proc. Int’l Conf. Automated
software engineering (ASE ’05), pages 204–213, New
York, NY, USA, 2005. ACM.

[9] A. Mougenot, X. Blanc, and M.-P. Gervais. D-praxis
: A peer-to-peer collaborative model editing frame-
work. In Distributed Applications and Interoperable
Systems, 9th IFIP WG 6.1 International Conference,
DAIS 2009, Lisbon, Portugal, June 9-11, 2009. Pro-
ceedings, pages 16–29, 2009.

[10] OMG. Meta Object Facility (MOF) 2.0 Core Specifica-
tion, Jan. 2006.

[11] OMG. Unified Modeling Language: Super Structure
version 2.1, january 2006.

[12] Y. Saito and M. Shapiro. Optimistic replication. ACM
Computing Surveys, 37(1):42–81, 2005.

[13] B. Selic. The pragmatics of model-driven development.
IEEE Software, 20(5):19–25, 2003.

