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Abstract
We study a family of implementations for linked lists using fine-
grain synchronisation. This approach enables greater concurrency,
but correctness is a greater challenge than for classical, coarse-grain
synchronisation. Our examples are demonstrative of common de-
sign patterns such as lock coupling, optimistic, and lazy synchro-
nisation. Although they are are highly concurrent, we prove that
they are linearisable, safe, and they correctly implement a high-
level abstraction. Our proofs illustrate the power and applicability
of rely-guarantee reasoning, as well of some of its limitations. The
examples of the paper establish a benchmark challenge for other
reasoning techniques.

Categories and Subject Descriptors D.2.3 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Algorithms, verification

Keywords Concurrent programming, shared-memory concur-
rency, formal verification, linearisability, Rely-Guarantee reason-
ing.

1. Introduction
A concurrent object is a data structure (such as a list or a hash table)
shared by multiple threads in a shared-memory multiprocessor.
Classical implementations use coarse-grain synchronisation: the
objects manipulated by the program are controlled by a single
owner thread for as long as the program takes actions that might
impact the program’s or the object’s invariants. Common design
patters are monitors or a set of synchronized methods in JavaTM,
which ensure that only one method call at a time can access the
data structure. This approach makes it relatively easy to reason
about correctness, but it limits concurrency, negating some of the
advantages of modern multi-core or multi-processor architectures.
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A fine-grain implementation permits more concurrency by per-
mitting multiple threads to access inside a same object simultane-
ously. Reasoning about such algorithms is a greater challenge. Our
contribution is to show, by extended example, that rely-guarantee
reasoning [13] can be applied successfully to several rather chal-
lenging concurrent object implementation. We provide the first for-
mal proof [22] of these algorithms, whereby we show that, de-
spite high concurrency: (i) each operation appears to take effect
instantaneously (a property called linearisability [11]); (ii) the low-
level list code implements a high-level specification, that of a set;
and (iii) the code is safe, i.e., each operation satisfies a specified
post-condition and maintains the structural invariants of the ob-
ject. Another contribution is our development of a version of rely-
guarantee reasoning suitable for linearisable specifications.

There is a large body of research investigating fine-grained syn-
chronisation [2, 8, 18, 19]. A number of standard design patterns
have emerged. For example, in lock coupling [2], locks are ac-
quired and released in a “hand-over-hand” order, acquiring the next
lock in a sequence before releasing the previous. In optimistic syn-
chronisation, a thread searches a data structure without acquiring
locks, locks the sought-after component, and then validates after
the fact (but before updating it) that the locked component is the
correct one. In lazy synchronisation, the task of removing a com-
ponent from a data structure is split into two phases: the compo-
nent is logically removed simply by setting a flag, and later, the
component can be physically removed as a “benevolent side-effect”
of a later (or concurrent) method call. A lock-free implementation
ensures that some thread always completes a method call in a fi-
nite number of steps, even in the presence of failures or delays by
other threads. These techniques are important in practice: for ex-
ample, the widely-used Java util.concurrent library includes
fine-grain, lock-free implementations of lists and hash maps [16].
We suggest that the examples considered here be used as a kind
of benchmark challenge for techniques for reasoning about highly-
concurrent data structures.

We consider examples of list implementations that employ
many of these fine-grained synchronisation techniques. We study
in some detail a highly-concurrent linked-list implementation of a
set [9] that uses a combination of optimistic and lazy synchronisa-
tion.

The rest of the paper proceeds as follows. We first introduce
rely-guarantee reasoning and some notation, in §2. Then, Section 3
provides the axioms for a simple concurrent programming lan-
guage. We examine a simple example, mutex locks, in §4. Section 5
discusses linearisation points. Now we may study fine-grain list al-



gorithms, in §6, and lazy concurrent lists in §7. §8 compares this
work to the state of the art. We conclude, in §9 with a summary of
results. In the interest of legibility, this paper focuses on the high-
level ideas; detailed proofs and technical discussions are relegated
to a companion technical report [22].

2. Setting the scene
Operationally, a concurrent system consists of a collection of se-
quential threads that apply atomic (i.e., isolated) read and write ac-
tions to shared memory. Threads can be interleaved arbitrarily: each
successive pair of actions issued by one thread may be separated by
an arbitrary sequence of actions invoked by concurrent threads, a
phenomenon called interference. We assume that the shared mem-
ory is sequentially consistent1 (SC): all threads see the operations
performed to shared memory in the same order.

At a higher level of abstraction, threads communicate by calling
methods of shared objects. Each shared object has a type, which
defines a set of possible values and a set of methods to modify and
observe the object’s state. An object’s methods can be invoked by
concurrent threads.

2.1 Sequential reasoning
It is useful to distinguish between the abstract type being imple-
mented (for example, a set of integers), and the underlying concrete
type (for example, a linked list). In the standard proof methodology
for sequential objects [7], a linking invariant (sometimes called an
abstraction or refinement map) describes how concrete values rep-
resent abstract values. Not every concrete value necessarily repre-
sents an abstract value: only values satisfying a particular repre-
sentation invariant are valid representations. Each of the object’s
methods may rely on this invariant when called, and it must guar-
antee the invariant holds when it returns, but it is free to violate the
invariant while the method call is in progress. Because the repre-
sentation and linking invariants capture what each method needs
to know about the others, an object’s methods can be implemented
and verified independently, a property sometimes called composi-
tionality.

Classically, a single atomic action is specified by a pair of
predicates (p, q), where p is the pre-condition assumed to hold
when the action starts, and q is the post-condition established if
and when the action terminates. As the post-condition describes an
update, we write it as a “two-state” predicate, relating the state of
the store at the start (written↼−σ ) with the state σ which it leaves on
termination. Initial and final values of each variable x are similarly
denoted by↼−x and x.

We shall use relational notation to abbreviate operations on
predicates of two states. Relational composition of predicates de-
scribes exactly the intended behaviour of the sequential composi-
tion of programs:

(P ; Q)(↼−σ, σ)
def
= ∃τ. P (↼−σ, τ) ∧ Q(τ, σ)

The program that makes no change to the state is described exactly
by

ID(↼−σ, σ)
def
= (↼−σ = σ).

1 For simplicity, our proofs assume that the order of function calls and re-
turns is also sequentially consistent. This is, however, not strictly necessary,
because the only way of detecting a non-SC execution would be through
shared memory which is SC. The only place where our programs could en-
counter non-SC behaviour is in the lazy contains method of Section 7;
this can be avoided in Java by declaring the .next and .marked fields as
volatile.

The familiar notation R∗ describes any finite number of iterations
of the program described by R. It is defined

R∗ def
= ID ∨ R ∨ (R; R) ∨ (R; R; R) ∨ · · ·

2.2 Ownership-based methodologies
Ownership-based methodologies [12, 20] generalise sequential rea-
soning to concurrent objects that synchronise via coarse-grained
synchronisation. At most one thread at a time can own an object.
While the object is unowned, it must satisfy its representation in-
variant. While it is owned, however, the owner is free to violate the
invariant, as long as it restores the invariant before it relinquishes
ownership.

Concurrent objects that rely on fine-grained synchronisation do
not provide the same clear-cut distinction between “owned” and
“unowned” states. Because multiple threads may access an object
concurrently, perhaps interleaving atomic operations in complex
ways, fine-grained synchronisation requires identifying invariants
that hold all the time, not just during coarse-grained intervals. How-
ever invariants are not enough. The updates to shared memory are
constrained to satisfy certain predicates; and because they describe
updates, these must be predicates over two states.

2.3 Rely-guarantee reasoning
In rely-guarantee (R-G) reasoning, each thread is assigned a rely
condition that characterises the interference that thread can tolerate
from the other threads. In return, the thread is assigned a guarantee
condition that characterises how that thread can interfere with the
others. Proving the safety of a program requires proving that (1)
if each thread’s rely condition is satisfied, then that thread satisfies
its guarantee condition, and (2) each thread’s guarantee condition
implies the others’ rely conditions.

Specification of a fine-grain concurrent program requires four
predicates: (p, R, G, q). The predicates p and q are the pre-
condition and post-condition, as described above, and they describe
the behaviour of the thread as a whole, from the time it starts to the
time it terminates (if it does). R and G summarise the properties
of the individual atomic actions invoked by the environment (in the
case of R) and the thread itself (in the case of G). They are two-
state predicates, relating the state↼−σ before each individual atomic
action to σ, the one immediately after that action. The rely con-
dition R bounds the interference the thread can tolerate from the
environment, whereas the guarantee condition G bounds the inter-
ference that it can impose on the other threads.

We require that the pre-condition is always preserved by the
rely condition (i.e.,↼−p ∧ R ⇒ p), but we do not impose a similar
requirement for the post-condition.

In the rely condition, we often want to specify that there are
certain variables the environment does not update, or that if some
condition is satisfied, the environment actions preserve it [3]. We
introduce the following notation for these specifications.

ID(x)
def
= (↼−x = x)

ID(P )
def
= (

↼−
P = P )

Preserve(P )
def
= (

↼−
P ⇒ P )

For convenience in the post-condition and guarantee condition, we
define Mod(X) to mean that only variables in the set X are modi-
fied by the action. We extend these notations to multiple variables
and conditions.

3. Axioms
In this section, we will define the semantics of a simple concurrent
programming language by means of axioms and proof rules. We



will write C |= (p, R, G, q) for the judgement saying that the
program C meets the R-G specification (p, R, G, q).

Atomic actions are denoted by enclosing a program in diamond
brackets 〈C〉. The corresponding proof rule is:

{p} C {q} in Hoare-logic
C |= (p, Preserve(p), q ∨ ID, q)

(ATOM)

The pre-condition and post-condition remain the sequential ones;
this thread guarantees it either does q or nothing; and the other
threads are required to preserve the precondition. The implemen-
tation of atomicity must ensure that this interference cannot take
place within the diamond brackets, so the proof of correctness of
the atomic region are unaffected by interference. We will show later
how the programmer is responsible for ensuring that interference is
harmless in-between the atomic actions.

We take the convention in this paper that the only atomic state-
ments are individual memory reads and writes. In the interest of
legibility, we omit diamond brackets.

3.1 Sequential composition
For simplicity, we define sequential composition for programs with
identical rely and guarantee conditions. (These conditions can al-
ways be weakened or strengthened as discussed in Section 3.3.)

C1 |= (p1, R, G, q1)
C2 |= (p2, R, G, q2) q1 ⇒ p2

C1 ; C2 |= (p1, R, G, (q1; R
∗; q2))

(SEQ)

A sequential composition has the same pre-condition p1 as its first
operand, and the same guarantee conditions as both its operands.
For its proper execution, the pre-condition of the second operand
must follow from the post-condition of the first. Since the entire
program will tolerate the same interference R as both its operands
except at the very transition between the two operands, its total
action will be given by the composition of the actions of its com-
ponents accounting for environment interference in between.

3.2 Parallel composition
When threads run concurrently, each thread must ensure that its
atomic actions do not interfere with the other threads except as ex-
pected. It is therefore essential to prove that the guarantee condition
of each thread implies the rely condition of the others. The total ac-
tion of the program is given by the composition of the actions of
the two threads in either order, allowing for environment interfer-
ence (R1∧R2)

∗ in between. All pre-conditions and rely conditions
must hold, but concurrent combination can guarantee only the dis-
junction of the separate guarantee conditions.

C1 |= (p1, R1, G1, q1) G1 ⇒ R2

C2 |= (p2, R2, G2, q2) G2 ⇒ R1

C1 ‖C2 |= (p1∧p2, R1∧R2, G1∨G2, q)
(PAR)

where q = (q1; (R1 ∧ R2)
∗; q2) ∨ (q2; (R1 ∧ R2)

∗; q1).
In plain English, and generalising to any number of threads, it

means that proving the safety of a parallel program reduces to: (i)
a sequential proof of the post-condition and guarantee condition
of each individual thread, assuming its rely condition is true, com-
bined with (ii) a pairwise proof that every other thread’s guarantee
condition implies this thread’s rely condition.

3.3 Refinement
Programs and specifications can be compared with each other by
the standard refinement ordering. A stronger specification is possi-
bly more desirable but more difficult to meet. When developing a
program from its specification, it is always valid to replace the spec-
ification by a stronger one. A specification is weakened by weak-
ening its post-condition or its guarantee condition. Conversely, it is
strengthened by weakening its assumptions.

p′ ⇒ p R′ ⇒ R
G ⇒ G′ q ⇒ q′

C |= (p, R, G, q)

C |= (p′, R′, G′, q′)
(REFINE)

3.4 Further detail
We sometimes introduce abstract variables to aid reasoning. These
variables do not affect program flow or outputs, and can be accessed
only in abstract statements that write only to abstract variables and
are guaranteed to terminate. Since these abstract operations do not
actually take place, we can always group them atomically with their
preceding or following atomic statement in the control flow.

When a new object is first allocated, only the allocating thread
can access that object’s fields; we say the object is private. Once
the reference is placed in a shared location, it becomes public.2

Since rely and guarantee conditions should not mention private
objects, we introduce the following notation to quantify over all
public objects of type T .

∀T x. P (x)
def
= ∀x. (x : T ∧ Public(x)) ⇒ P (x)

It is often useful to assume that each thread has a unique iden-
tifier. Within a thread specification the notation self refers to the
identifier of the current thread. (One aspect of compositionality of
R-G is that thread identifiers are abstract, and the only ones of in-
terest are self and non-self.) The parallel composition rule, how-
ever, does not know anything about the special meaning of self.
Therefore before applying the rule, one needs to substitute the ac-
tual thread identifier at all occurrences of self in the specifications.
Given some expression P , we denote by P[self := t] this substitu-
tion of self by the actual thread identifier t in P . For example the
implication G1 ⇒ R2 will become:

G1 [self := 1] ⇒ R2 [self := 2]

4. Mutual exclusion locks
This section specifies and implements a locking primitive (mutex)
used in the later concurrent list algorithms. It is a simple example
of the theory described in the previous section.

Formally, a mutex L is just a variable that holds the thread
identifier of its owner, or null when unowned. A mutex provides
two operations with (abstract) implementations: (where 〈b → C〉
is a conditional critical region)

L.lock()
def
= 〈L.owner = null → L.owner := self〉

L.unlock()
def
= 〈L.owner := null〉

By applying the critical region axiom and refinement, we can de-
duce:

L.lock() |= (L.owner 6= self, R, G, L.owner = self)
L.unlock() |= (L.owner = self, R, G, L.owner 6= self)

2 A precise specification of the public property is outside the scope of this
paper.



where
R = LockRely = ID(L.owner = self)
G = LockGuar = (∀i /∈ {self, null}. ID(L.owner = i))

Since these are the only two operations that can modify L.owner,
all threads automatically guarantee LockGuar . Note the guarantee
condition of one thread implies the rely condition of another thread.
More formally, for all i 6= j

LockGuar [self := i] ⇒ LockRely [self := j]

A common use for these axioms is to establish R-G conditions
of the following form (where P is some property that we want
to hold when we hold the lock: for example, stating that some
variables/conditions are preserved).

R = LockRely ∧ (L↼−−−−.owner = self ⇒ P ) and
G = LockGuar ∧ (L↼−−−−.owner 6= self ⇒ P )

This makes the “locking discipline” explicit.

5. Linearisation points
A module implementing an abstract data type contains a local
shared state and a set of methods operating on that state. The
external specification of the module mentions only abstract state
variables, which are disjoint from the concrete state. A linking
invariant can be defined which relates the two.

In the sequential case, to prove that the concrete methods are
equivalent to their abstract counterparts, it is sufficient to embed
the abstract operations within the concrete method implementa-
tions and show that the linking invariant Inv is preserved by each
method.

In the concurrent case, we must also establish that the externally
visible (i.e., the abstract) effect of each method takes place at some
instant between the method’s invocation and return, atomically with
respect to other concurrent method calls. This property is known
as linearisability [11]. It ensures that every concurrent execution
history is equivalent to some sequential one that preserves the order
of non-overlapping operations.

Usually, the linearisability of an algorithm is shown by identi-
fying a linearisation point in the code. At that point, we embed the
abstract implementation of the algorithm and prove that the link-
ing invariant is preserved by all atomic actions of the code (i.e., the
guarantee condition contains Preserve(Inv)).

Sometimes however, the position of the linearisation point can-
not be identified, because it depends on future behaviour. There are
two cases to consider: the linearisation point either simply depends
on the future execution of the same thread, or it also depends on the
future execution of other concurrent operations. The first case arises
quite commonly in optimistic algorithms, but is relatively simple to
deal with. We identify a set of candidate linearisation points such
that the linearisation point of the algorithm is the last one encoun-
tered in the control flow.

The second case is much subtler: depending on the schedul-
ing, the linearisation point may in fact be between actions of other
threads. Clearly, reasoning about the existence of such linearisation
points requires some knowledge about the actions of other concur-
rent threads and requires global reasoning. With our approach at
least, the precise assumptions are documented in the rely condition,
and are therefore enforced by the parallel composition rule.

Since any changes after the linearisation point are not visible
externally, the post-condition can be “lifted” to the whole function.
Consider for instance an abstract integer x that is implemented
in some complex way; for instance x maintains an audit trail.
The increment function inc appears atomic, but internal operations
might still occur after the linearisation point; for instance the audit
trail is trimmed if it reaches a certain size. Other methods might

AbsContains(e) : < AbsResult := e ∈ Abs >
AbsAdd(e) : < AbsResult := e /∈ Abs ;

Abs := Abs ∪ {e} >
AbsRemove(e) : < AbsResult := e ∈ Abs ;

Abs := Abs \ {e} >

Figure 1. Abstract list operations

take effect in the interval between the linearisation point and when
the inc operation returns, and modify the value of x. It would
appear that this violates the post-condition of inc; but since the
internal operations have no visible effect, it is as if the interference
occurred immediately after inc returned. Thus we may attach the
post-condition x =↼−x + 1 to the whole inc function.3

6. Fine-grained list algorithms
In the rest of the paper, we consider a few fine-grain algorithms
whose correctness we have proved manually using R-G reasoning.
All the algorithms are concurrent, linearisable implementations of
the set abstract data type presented in Fig. 1. It consists of the
operations contains , add and remove: add adds the item to the set
and returns true if the item was absent, otherwise it leaves the set
unchanged and returns false. The remove behaves symmetrically.

The concrete representation used in all the algorithms is a sorted
linked list representation. The list has two sentinel nodes: Head
with value −∞ and Tail with value +∞. Intermediate nodes are
sorted in a strictly increasing order; thus, there are no duplicates.
We assume all elements e to be added to or removed from the list
are in the range −∞ < e < +∞. Each node in the list is associated
with a lock; a private method locate(e) locks and returns the two
adjacent list nodes whose values enclose e. For brevity, we assume
there is only one set in existence. This section is just an overview;
the following one examines a challenging algorithm in detail.

6.1 Pessimistic list
The first algorithm (see Fig. 2) is pessimistic in its concurrency
management: it always locks a node before accessing it.4 locate
traverses the list using lock coupling: the lock on some node is
not released until the next one is locked, somewhat like a person
climbing a rope “hand-over-hand.” Note that lock operations are
staggered, not nested.

An element is added to the set by inserting it in the appropriate
position, while holding the locks of its two adjacent nodes. It is
removed by redirecting the previous node’s pointer, while both
the previous and the current node are locked. This ensures that
deletions and insertions can happen concurrently in the same list.

In the following representation invariant ListInv , the predicate
noOwn(n) is introduced to allow temporary violation of the list
structure. The invariant specifies that (i) Head and Tail contain the
infinity values, (ii) if a public node other than Tail is unlocked, it
points to a valid next node, (iii) if two unlocked nodes follow each
other in the list, then their values are in ascending order; and (iv) the
abstract set Abs and the set of values of non-sentinel nodes reach-
able from Head are equal. The latter clause links the abstraction
with the implementation. Locked nodes may be arbitrarily modi-
fied by the thread holding the lock, as long as it maintains the ab-

3 A formal discussion of ‘lifting’ is given in the companion technical report
[22, Section 6.5].
4 Our pseudocode uses a Java-like notation, without its more complex fea-
tures such as object orientation, interrupts, class loaders, etc.



locate(e) :
pred := Head ;
pred.lock() ;
curr := pred.next ;
curr.lock() ;
while (curr.val < e) {

pred.unlock() ;
pred := curr ;
curr := curr.next ;
curr.lock()

} ;
return pred, curr

add(e) :
n1, n3 := locate(e) ;
if n3.val 6= e then

n2 := new Node(e) ;
n2.next := n3 ;
n1.next := n2 [*A] ;
Result := true

else

Result := false [*B]
endif ;
n1.unlock() ;
n3.unlock() ;
return Result

remove(e) :
n1, n2 := locate(e) ;
if n2.val = e then

n3 := n2.next [*C] ;
n1.next := n3 ;
Result := true

else

Result := false [*D]
endif ;
n1.unlock() ;
n2.unlock() ;
return Result

Figure 2. Lock-coupling list algorithm

straction and re-establishes the invariant when it unlocks the node.

noOwn(n)
def
= n.owner = null

ListInv
def
= Node(Head)

∧ Head.val = −∞ ∧ Tail.val = +∞
∧ ∀Node n. (noOwn(n) ∧ n.val < +∞) ⇒ Node(n.next)
∧ ∀Node nm. (noOwn(n, m) ∧ n → m) ⇒ n.val < m.val
∧ Abs = {n.val | Head →∗ n ∧ n.val 6= ±∞}

Note that the node allocated in add is private until the assign-
ment n1.next := n2; therefore, as explained earlier, there can
be no interference in the fields of n2 until that point. We write
Node(n) for the assertion that n is a valid public node. Further-
more, we write n → m for Node(n.next) ∧ n.next = m, and →∗

for the reflexive and transitive closure of →.
To prove linearisability, we embed the abstract implementa-

tions AbsAdd , AbsRemove at the points marked *A, *B, *C,
*D in Fig. 2 and show that (i) the list invariant is preserved by all
atomic statements, and (ii) the post-condition of add and remove
is Result = AbsResult . This proves that the marked points are
indeed linearisation points.

To do the proof, the following R-G conditions are maintained
by every thread:

R
def
= ∀Node n. Preserve(ListInv) ∧ n.LockRely

∧ n↼−−−−.owner = self ⇒ ID(n.val, n.next, Head →∗ n)

G
def
= ∀Node n. Preserve(ListInv) ∧ n.LockGuar

∧ n↼−−−−.owner 6= self ⇒ ID(n.val, n.next, Head →∗ n)

The rely condition specifies that the environment actions preserve
the list invariant and use locks properly. Furthermore, if a thread
locks a node, other threads cannot update its fields or remove it
from the list.

6.2 Optimistic list
Now consider the same algorithm, but with a different implemen-
tation for locate(e) (add and remove are unchanged from Fig. 2;
locate is given in Fig. 4, and validate in Fig. 3). The new locate is
optimistic: it traverses the list without taking any locks, then locks
two candidate nodes, and re-traverses the list to check whether the
nodes are still present in the list and adjacent. If either test fails, the
nodes are unlocked and the algorithm is restarted.

In this case, we cannot apply an ownership-based argument.
While one thread has locked part of the list and is updating it,
another thread may optimistically traverse it. The success of the
optimistic traversal clearly depends on some properties of locked
nodes (e.g., that they point to valid next nodes).

The representation invariant is similar to the one for the pes-
simistic algorithm, with the exception that the properties hold about

validate(pred, curr) {
succ := Head ;
while (succ.val < e)

succ := succ.next ;
return succ = curr and pred.next = curr

}

Figure 3. Optimistic validate function

all nodes, not only unlocked ones:

ListInv
def
= Node(Head) ∧ Head.val = −∞

∧ ∀Node n. n.val < +∞ ⇒ Node(n.next)
∧ ∀Node n m. n → m ⇒ n.val < m.val
∧ Abs = {n.val | Head →∗ n ∧ n.val 6= ±∞}

The R-G conditions specify that all atomic actions preserve the
list invariant, use locks properly and do not change the value of
public nodes. Furthermore, if a thread locks a node, other threads
cannot update its .next pointer or make it unreachable by any
node from which it was previously reachable. This last condition is
necessary for proving that the re-traversal corresponds to validating
that the element is still in the list. Note that the order of the two
pointer assignments in the add function is important (whereas they
could be swapped in the pessimistic version).

R
def
= ∀Node n m. Preserve(ListInv)
∧ n.LockRely ∧ ID(n.val)

∧ n↼−−−−.owner = self ⇒ ID(n.next) ∧ Preserve(m →∗ n)

G
def
= ∀Node n m. Preserve(ListInv)
∧ n.LockGuar ∧ ID(n.val)

∧ n↼−−−−.owner 6= self ⇒ ID(n.next) ∧ Preserve(m →∗ n)

7. Lazy list
In this section, we study a highly concurrent implementation using
optimistic and lazy techniques, due to Heller et al. [9], presented in
Fig. 4. The concrete representation is the same as the one used by
the algorithms in the previous section. In addition, however, nodes
have a .marked flag, which is set when the node is deleted. The
implementation of contains takes no locks.

An element is added as before. An element is removed in two
stages: first, the node is logically removed by setting the .marked
flag; then it is physically removed by redirecting reference fields.
Concurrent membership tests traverse the list without checking the
.marked flag. This flag is checked only when a candidate node
is found. Similarly, locate ignores the flag while traversing the
list. When the method locates and locks the two candidate nodes,



locate(e) :
while (true) {

pred := Head ;
curr := pred.next ;
while (curr.val < e) {

pred := curr ;
curr := curr.next

} ;
pred.lock() ;
curr.lock() ;
if validate(pred, curr) then

return pred, curr
else

pred.unlock() ;
curr.unlock()

}

contains(e) :
curr := Head ;
while (curr.val < e)

curr := curr.next ;
if curr.marked then

return false
else

return curr.val = e

validate(pred, curr) :
if ¬pred.marked

and ¬curr.marked
and pred.next = curr then

return true
else

return false

add(e) :
same as lock-coupling

remove(e) :
n1, n2 := locate(e) ;
if n2.val = e then

n2.marked := true [*C] ;
n3 := n2.next ;
n1.next := n3 ;
Result := true

else

Result := false [*D]
endif ;
n1.unlock() ;
n2.unlock() ;
return Result

Figure 4. Lazy list algorithm

it validates them by checking they are adjacent and unmarked. If
validation fails, the locate operation is restarted.

Because contains is completely wait-free, this algorithm cru-
cially depends on global invariants, such as the list being sorted,
which must hold at all times, even when part of the list is locked
and local updates are performed.

We prove safety properties of the algorithm using the axioms,
the R-G conditions for mutual exclusion locks, and reasoning based
on linearisation points. The proofs, besides the linearisability of
contains , are formal, but manual; thus they might contain errors.
The linearisability of contains is treated informally.

Note that ownership-based reasoning is inadequate for this ex-
ample. When a resource is locked for writing by one thread, its
rely condition permits other threads to update it in certain restricted
ways. For example, threads can scan through or remove list ele-
ments that are currently locked or marked for removal.

7.1 Representation Invariant
There are two sentinel nodes Head and Tail with values ±∞,
which cannot be deleted. All nodes in the list are public, and
public nodes other than Tail point to other public nodes; the nodes
are sorted. In addition, public nodes that are not in the list (i.e.,
not reachable from the head of the list), are necessarily marked
because the remove method first marks a node before removing it
physically.

ListInv
def
=

Node(Head) ∧ Head.val = −∞ ∧ ¬Head.marked
∧ Node(Tail) ∧ Tail.val = +∞ ∧ ¬Tail.marked
∧ ∀Node n. n.val < +∞ ⇒ Node(n.next)
∧ ∀Node n m. n → m ⇒ n.val < m.val
∧ ∀Node n. Head →∗ n ∨ n.marked
∧ Abs = {n.val | Node(n) ∧ ¬n.marked ∧ n.val 6= ±∞}

The last line of the invariant defines the abstract variable Abs to be
the set of values contained in non-marked public nodes other than
Head and Tail.5 This line is the coupling invariant that relates the
abstract and the concrete states.

In contrast to methods based on coarse-grained ownership, the
list invariant holds at all points during execution: it holds initially,
and is preserved by the rely and guarantee conditions.

5 From the previous line, these nodes are reachable from Head.

7.2 Pre-conditions and post-conditions
All the methods share the same pre-condition:

Pre
def
= ListInv ∧ −∞ < e < +∞

The post-conditions of the external methods contains , add
and remove are just their abstract implementations given in
Fig. 1 (conjoined with ListInv ), whereas the post-condition of
(pred, curr) := locate(e) is given below.

locate.Post
def
= ListInv ∧ Head →∗ pred → curr
∧ pred.val < e ≤ curr.val
∧ pred.owner = curr.owner = self
∧ ¬pred.marked ∧ ¬curr.marked

7.3 Rely and guarantee conditions
Each thread relies on the fact that its environment preserves the list
invariant, obeys the locking rely condition, does not update fields
of nodes locked by the thread, does not unmark deleted nodes, and
does not change the values of public nodes.

R
def
= ∀Node n m. Preserve(ListInv) ∧ n.LockRely

∧ n↼−−−−.owner = self ⇒ ID(n.next, n.marked)

∧ n↼−−−−.owner = self ⇒ Preserve(Head →∗ n)
∧ Preserve(n.marked) ∧ ID(n.val)
∧ Preserve(m →∗ n ∨ n.marked)

Hence, each thread also promises to preserve the list invariant, not
to update fields n.next and n.marked unless it locks n, not to
unmark marked nodes, and not to change n.val for a public node n.

G
def
= ∀Node n m. Preserve(ListInv) ∧ n.LockGuar

∧ n↼−−−−.owner 6= self ⇒ ID(n.next, n.marked)

∧ n↼−−−−.owner 6= self ⇒ Preserve(Head →∗ n)
∧ Preserve(n.marked) ∧ ID(n.val)
∧ Preserve(m →∗ n ∨ n.marked)

7.4 Proof of safety
Locking ensures that the rely condition is implied by the guarantee
condition of other threads.

G[self := i] ⇒ R[self := j] for all i 6= j

We now need to prove that the guarantee condition holds for all
atomic actions of the algorithm. (1) LockGuar holds, because
locking is performed using its prescribed interface. (2) n.next and



n.marked are updated only for private or locked nodes. (3) Only
locked nodes are removed from the list (n2 in delete). (4) For a
public node n, n.marked is never set to false and there are no
assignments to n.val. (5) Only marked nodes can be physically
removed from the list. Finally, most statements do not update the
list, trivially preserving the list invariant ListInv . Here are the
interesting exceptions:

• In add , n1.next := n2. The newly created node n2 has already
been fully initialised, n1.val < n2.val = e, and e is also added
to Abs .

• In remove , n2.marked := false. The element e is removed
from the abstract set Abs .

• In remove , n1.next := n3. Node n2 was already marked, and
the marking is preserved by the guarantee condition. This node
may therefore become unreachable from the head of the list.

The sequential proof of locate is straightforward, and relegated
to the technical report [22]. For the public methods, it is straight-
forward to prove the post-condition ListInv , but this is not enough,
because we must show that e was added to or removed from the list.
By inlining the abstract implementation AbsAdd and AbsRemove
at the points marked in the code of add and remove , we can show
that post-condition Result = AbsResult . It follows that the points
marked *A, *B, *C, *D in add and remove are valid lineari-
sation points, and so the abstract post-conditions can be lifted to
become post-conditions of the whole add and remove methods.

7.5 Linearisability of contains(e)
The linearisability of contains is much subtler; the simple method
above cannot prove that contains is linearisable. In fact, the rely
condition given in Section 7.3 allows certain problematic environ-
ments in which contains is not linearisable. The difficulty arises
because the post-condition Result = AbsResult is invalid for any
placement of AbsContains in the body of contains . We will show,
somewhat informally, that under an additional constraint (i.e., a
condition conjoined to R and G) contains is linearisable.

It is useful to consider separately the case when contains(e)
returns true and when it returns false. If it returns true, it is easy
to show that the last assignment to curr in the loop and the read of
the .marked bit are both valid linearisations points. (We show that
contains(e) can derive the post-condition Result ⇒ AbsResult .)

If, however, contains(e) returns false, the proof is more subtle.
Initially, when contains(e) starts executing, either e is in the list or
it is not. If e is not in the list, then clearly the linearisation point can
be identified to be that initial point. If e was in the list, that means
that there exists a (unique) unmarked node m that is reachable from
Head and contains the value e.

If the node m never gets marked during the execution of
contains(e) then contains(e) will find that node and return true.
(We show that under the precondition ListInv ∧ Head →∗

m ∧ m.val = e ∧ ¬m.marked and the rely condition R ∧
ID(m.marked), the postcondition Result = true is derivable.)
Since this contradicts with our assumption that contains(e) returns
false, we conclude that the node m must have been marked (and
perhaps even physically removed).

This, however, does not mean that e will not be in the list at the
next scheduling of contains(e); indeed, another node containing e
could have been added in the meantime. What is important is that
the marking and the addition of a new node cannot happen atomi-
cally. We can capture this additional requirement by the means of
an additional predicate N to be conjoined to both the rely and guar-
antee conditions of all the methods.

N
def
= ∀Node n. (¬n

↼−−−−−
.marked ∧ n.marked) ⇒ n.val /∈ Abs

This is a genuine two-state predicate: immediately after the step
when the .marked bit is set, n is not in the abstract set. This
guarantees that a linearisation point exists; it is exactly after the
.marked bit was set. Further, note that N is not transitive and hence
R 6= R∗. The proof that all atomic actions satisfy N is simple.

8. Previous work
Owicki and Gries originally identified the concept of non-
interference [21]. Their proof method was extended by Cliff Jones,
who invented the Rely-Guarantee Methodology [13]. As the par-
allel composition rule appears to be based on circular reasoning,
Abadi and Lamport [1] studied whether it is sound. They conclude
that it is sound for safety conditions, and provide a condition en-
suring soundness in the case of liveness as well. Our work has only
considered safety.

Elsewhere [15] Lamport argues that R-G only makes proofs
harder, by imposing a predefined modular structure to a proof that
is necessarily global. We argue that the compositional nature of R-
G constitutes a powerful reasoning tool (see Conclusion). However,
some problems, such as the identification of the linearisation point
in Section 7.5, can be tackled more directly by global reasoning.
Further research would be needed to combine the advantages of
both techniques.

In Dingel’s notation [3] rely (resp. guarantee) conditions are
predicates that are preserved by the environment’s (resp. the pro-
gram’s) atomic actions. This is a powerful idea, which we re-use in
our ID(p) and Preserve(p) notations. For Dingel a condition is a
single-state predicate; however the additional expressivity of two-
state predicates is important for some examples, e.g., Section 7.5.

We rely on annotating the original Java program with a speci-
fication. We expect that the our methodology can also be applied
within languages such as TLA [14] or IO Automata [17]. These
have been designed for reasoning about concurrent algorithms and
have been used successfully in proving properties such as safety,
liveness, or compliance of implementation to specification. They
have been used mainly for whole-system proofs of distributed al-
gorithms.

The R-G approach is widely used in hardware verification
(where it is called assume-guarantee). For instance, Henzinger et
al. [10] verify that a complex pipe-line implements a high-level
processor specification. Both are expressed in a reactive language;
writes are synchronous and parallelism occurs as non-deterministic
choice. Proofs are assisted by a formal verification tool.

The recent work of Flanagan et al. [5] is the most similar to
ours. They use a prover to statically verify properties of legacy
multithreaded Java programs (annotated with pre-conditions, post-
conditions, invariants, and R-G conditions), using R-G and other
methods to decompose the proof along procedure and thread
boundaries. They provide a number of examples of bugs detected
by their tool in sizable programs.

Our highly-concurrent linked list algorithms are similar to ones
previously published [8, 9, 18, 19]. Doherty, Groves, Luchangco
and Moir [4] offer a formal proof of the lock-free queue algorithm
of Michael and Scott [19]. Their proof is machine-verified; ours re-
mains manual, hence more prone to error (automated verification is
future work). They model the specification and the implementation
as automata, and prove that all executions of the latter are allowed
by the former. In contrast, our approach proceeds directly from the
source text, and we prove that the implementation conforms to the
specification by embedding the latter in the text.

Recently, Gao, Groote and Hesselink studied a lock-free algo-
rithm for hash tables [6]. They prove both safety and liveness using
the PVS verifier, by equipping the program text, line by line, with
a large number of assertions and invariants.



9. Conclusion
Modern research on concurrent data structures has increasingly fo-
cused on algorithms that use fine-grained synchronisation rather
than coarse-grained locking. Reasoning about these fine-grained al-
gorithms is more challenging, particularly since conventional proof
techniques may not extend easily into this new domain. In this pa-
per, we have shown how R-G reasoning can be applied to prove
the correctness of several non-trivial shared-memory concurrent al-
gorithms based on fine-grained synchronisation. We have proved
both that they satisfy their invariants, and that they implement a
high-level specification. The accompanying technical report [22]
contains the detailed proofs. We think that this example, or similar
ones, could be used to compare the expressive power of techniques
for reasoning about highly-concurrent data structures.

In our experience, the R-G structure constitutes a powerful rea-
soning tool. It allows us to decompose the proof according to the
modular structure of the program; one may reason about a sin-
gle abstraction in isolation from others, using standard sequen-
tial techniques. For instance, we identified a crucial rely condition
Preserve(m →∗ n), which was never recognised previously. R-
G conditions document precisely what interference is allowed be-
tween abstractions: thus, the “locking discipline” is formalised and
verifiable, and it will be clear whether our list module remains cor-
rect in the context of a larger program.

So far, we have addressed only safety properties of these fine-
grained concurrent algorithms. Reasoning about their liveness re-
mains future work.
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