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ABSTRACT
Replicas of a commutative replicated data type (CRDT)
eventually converge without any complex concurrency con-
trol. We validate the design of a non-trivial CRDT, a repli-
cated sequence, with performance measurements in the con-
text of Wikipedia. Furthermore, we discuss how to eliminate
a remaining scalability bottleneck: Whereas garbage collec-
tion previously required a system-wide consensus, here we
propose a flexible two-tier architecture and a protocol for
migrating between tiers. We also discuss how the CRDT
concept can be generalised, and its limitations.

1. INTRODUCTION
Shared read-only data is easy to scale by using well-under-
stood replication techniques. However, sharing mutable data
at a large scale is a difficult problem, because of the CAP
impossibility result [4]. Two approaches dominate in prac-
tice. One ensures scalability by giving up consistency guar-
antees, for instance using the Last-Writer-Wins (LWW) ap-
proach [6]. The other guarantees consistency by serialising
all updates, centralising at a single database, or using state
machine replication), which does not scale beyond a small
cluster [11]. Another approach is optimistic replication, al-
lowing replicas to diverge, eventually resolving conflicts ei-
ther by LWW-like methods or by serialisation [10].

In some (limited) cases, a radical simplification is possible.
If concurrent updates to some datum commute, and all of its
replicas execute all updates in causal order, then the repli-
cas converge.1 We call this a Commutative Replicated Data
Type (CRDT). The CRDT approach ensures that there are
no conflicts, hence, no need for costly concurrency control.
CRDTs are not a universal solution, but, perhaps surpris-
ingly, we were able to design highly useful CRDTs. This

1Technically, LWW operations commute; however they
achieve this by throwing away non-winning operations. We
aim instead for genuine commutativity that does not lose
work, i.e., the output should reflect the cumulative effect of
the operations.
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new research direction is promising as it ensures consistency
in the large scale at a low cost, at least for some applica-
tions. While the advantages of commutativity are well doc-
umented, we are the first (to our knowledge) to address the
design of CRDTs.

A trivial example of a CRDT is a set with a single add-
element operation. A delete-element operation can be emu-
lated by adding “deleted” elements to a second set. This suf-
fices, for instance, to implement a mailbox [1]. However, it
is not practical, as the data structures grow without bound.
Another example is WOOT, a CRDT for concurrent editing
[8], but its metadata overhead is large, and it too grows with-
out bound. Logoot [14] allows deleted items to be removed,
at the cost of very large item identifiers and metadata. We
conclude that efficiency and garbage collection are difficult
issues for CRDTs.

As an existence proof of non-trivial, useful, practical and
efficient CRDT, we previously published the design of Tree-
doc, which implements an ordered set with insert-at-position
and delete operations [9]. Sequence elements are identified
compactly using a naming tree. Metadata overhead is much
better than in WOOT or Logoot. Concurrent user-level up-
dates (i.e., edits) commute genuinely. To garbage-collect
metadata requires (internal) rebalancing operations, which
must be scheduled carefully, to avoid violating commutativ-
ity. In this paper, we address how to reconcile the system-
wide consensus required for rebalancing with the require-
ments of a large and dynamic system.

After a brief summary of the CRDT concept and of the
Treedoc design (Section 2), the contributions of this paper
are as follows:

• We validate the design with performance measurements
of a demanding Wikipedia benchmark (Section 3).

• For scalability, we propose a flexible two-tier architec-
ture: A small, stable core supports both updates and
consensus. It coexists with a unlimited, uncontrolled,
dynamic nebula supporting only updates (Section 4).

• We present a novel protocol that allows a nebula site
to catch up with the with the core’s past consensuses,
in order to send its updates to the core, and possibly
to migrate into the core (Section 5).

• Section 6 discusses lessons learned and possible gener-
alisations.



Finally, Section 7 concludes and outlines future work.

2. AN ORDERED-SET CRDT
We begin by a brief summary of a CRDT providing the ab-
straction of an ordered sequence of (opaque) atoms. Readers
interested in more detail are referred to our previous publi-
cations [9, 12].

2.1 Model
We consider a collection of sites (i.e., networked computers),
each carrying a replica of a shared ordered-set object, and
connected by a reliable broadcast protocol (e.g., epidemic
communication). We support a peer-to-peer, multi-master
execution model: some arbitrary site initiates an operation
and executes it against its local replica; each other site even-
tually receives the operation and replays it against its own
replica. All sites eventually receive and execute all opera-
tions; causally-related operations execute in order, but con-
current operations may execute in different orders at differ-
ent sites.

The update operations of the ordered-set abstraction are the
following:

• insert(ID,newatom), where ID is a fresh identifier. This
operation adds atom newatom to the ordered-set.

• delete(ID), deletes the atom identified ID from the
ordered-set.

Two inserts or deletes that refer to different IDs commute.
Furthermore, updates are idempotent, i.e., inserting or delet-
ing the same ID any number of times has the same effect as
once. To ensure commutativity of concurrent inserts, we
only need to ensure that no two IDs are equal across sites.
Our ID allocation mechanism will be described next.

2.2 Identifiers
Atom identifiers should have the following properties: (i) Two
replicas of the same atom (in different replicas of the ordered-
set) have the same identifier. (ii) No two atoms have the
same identifier. (iii) An atom’s identifier remains constant
for the entire lifetime of the ordered-set.2 (iv) There is a
total order “<” over identifiers, which defines the ordering
of the atoms in the ordered-set. (v) The identifier space is
dense.

Property (v) means that between any two identifiers P and
F , P < F , we can allocate a fresh identifier N , such that
P < N < F . Thus, we are able to insert a new atom between
any two existing ones.

The set of real numbers R is dense, but cannot be used for
our purpose, because, as atoms are inserted, the precision
required would grow without bound. We outline our alter-
native solution next.

2.3 The Treedoc CRDT
In Treedoc, an atom identifier, henceforth called a TID, rep-
resents a path in a tree. If the tree is balanced, the average
TID size is logarithmic in the number of atoms. We exper-
imented with both binary and 256-ary trees; for simplicity,
2Later in this paper we will weaken this property.
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Figure 1: Example Treedoc. The TID for ”b” is 0;
the TID of ”c” is the empty string; the TID of ”d”
is 10.
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 Figure 2: A treedoc major node

we present only the binary version. The order “<” is infix
traversal order (i.e., left to right). Figure 1 shows a binary
Treedoc that contains the text ”abcdef”. (The concrete im-
plementation might store the ordered-set directly as a tree,
or alternatively as a set of (TID , atom) pairs.)

In a distributed environment, different sites might concur-
rently allocate the same TID. To avoid this, we extend the
basic tree structure, allowing a node to contain a number of
internal nodes, called mini-nodes. A node containing mini-
nodes will be called a major node. Figure 2 shows an exam-
ple major node. Inside a major node, mini-nodes are dis-
tinguished by a disambiguator, which is the identifier of the
site that inserted the node. Disambiguators are unique and
ordered, giving a total order between entries in the ordered-
set.

Figure 3 shows a Treedoc structure with disambiguators rep-
resented at every node. Site A with disambiguator dA in-
serted atom a, site B inserted atom b, and so on. Mini-nodes
are traversed in disambiguator order.

2.4 Treedoc insert and delete
We now describe the ordered-set update operations, insert
and delete.

To insert an atom, the initiator site chooses a fresh TID
that positions it as desired relative to the other atoms. For
instance, to insert an atom R to the right of atom L: If
L does not have a right child, the TID of R is the TID of
L concatenated with 1 (R becomes the right child of L).
Otherwise, if L has a right child Q, then allocate the TID
of the leftmost position of the subtree rooted at Q.

A delete(TID) simply discards the atom associated with
TID . We retain the corresponding tree node and mark it
as a tombstone, to avoid inserting a new node with the same
identifier.

Since a TID includes a disambiguator that identifies the site
that initiated its insert, it follows that a tombstone is neces-
sary on that site only. At the sites that replayed the original
insert, a later delete may discard the node immediately, if,
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Figure 3: A treedoc node with disambiguators
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Figure 4: Treedoc size over time (GWB page)

for instance, it is a leaf. (The measurements later in this pa-
per do not include this optimisation, and assume that every
site retains tombstones.)

2.5 Rebalancing the tree
In the approach described so far, depending on the pattern
of inserts and deletes, the tree may become badly unbal-
anced or riddled with tombstones. To alleviate this prob-
lem, internal operation rebalance balances the tree. Since
a balanced tree is equivalent to an array, this eliminates all
memory overhead. Rebalancing is a radical form of garbage
collection.

As rebalancing changes the TIDs, we modify Property (iii)
of Section 2.2 to allow non-ambiguous renaming.

However, rebalancing does not genuinely commute with up-
dates. We solve this using an update-wins approach: if a
rebalance occurs concurrently with an update, the update
wins, and the rebalance aborts with no effect. We use a
two-phase commit protocol for this purpose (or, better, a
fault-tolerant variant [5, 13]). The site that initiates the re-
balance acts as the coordinator and collects the votes of all
other sites. Any site that detects an update concurrent to
the rebalance votes “no”, otherwise it votes “yes.” The coor-
dinator aborts the rebalance if any site voted “no” or if some
site is crashed. Commitment protocols are problematic in
large-scale and dynamic systems; we explain how we address
this issue in Section 4.

3. LARGE-SCALE BENCHMARKS
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Figure 5: Execution time per update (GWB page)

We ran a series of experiments based on cooperative editing
traces. A number of Wikipedia pages were stored as Tree-
docs, interpreting differences between successive versions of
a page as a series of inserts and deletes. In some experi-
ments our atoms were words; in the ones reported here an
atom is a whole paragraph. We also ran similar experiments
based on traces of SVN repositories containing LaTeX Java
source code. Somewhat to our surprise, we observe a large
frequency of deletes in all the traces. Consequently, the
garbage collection issue cannot be ignored.

We studied medium-sized Wikipedia pages such as “Dis-
tributed Computing,” reaching 20 KB of text in 800 revi-
sions, or “PowerPC” reaching 25 KB in 400 revisions. Ap-
plying all the revisions for these pages required less than 1
second when using paragraphs as atoms, and 2 seconds us-
ing words. We also studied some frequently-edited pages,
e.g., “George W. Bush” (GWB) reaching 150 KB in 40, 000
revisions. Because of vandalism, the GWB page contains
an even higher proportion of deletes than in the other traces
(in the absence of rebalancing, 95% of nodes would be tomb-
stones).

Hereafter we report only on the most stressful benchmark,
i.e., the GWB traces, with a 256-ary tree, and full para-
graphs as atoms. We rebalance arbitrarily every 1, 000 re-
visions (different heuristics could be used to decide when to
rebalance; this is out of scope). Note that 1, 000 revisions
include a much larger number of individual updates; for in-
stance, in Figures 4 and 5, there are approximately 100, 000
update operations between the last two rebalances.

Figure 4 shows the size of the GWB Treedoc structure over
the first 350, 000 updates of the GWB page. Size increases
with successive updates, then falls dramatically at each pe-
riodic rebalancing. The decrease is attributable mostly to
discarding tombstones, but also to shorter TIDs: the aver-
age TID size shrinks from 60 bytes just before rebalancing,
to only 2 bytes.

Figure 5 shows execution time per update. Again, rebal-
ancing has dramatic effect. Without rebalancing, the per-



update time would grow up to 3 ms. Periodic rebalancing
decreases the depth of the tree to 2-3 levels, and the slowest
update takes only 0.3 ms.

From this, we can estimate the scalability of Treedoc. As-
sume that a user at his replica continuously initiates one
update every 3 seconds. Then the system can sustain 1, 000
simultaneous users without rebalancing, and 10, 000 when
rebalancing at 1, 000-revision intervals.

4. SUPPORTING LARGE AND DYNAMIC
NUMBERS OF REPLICAS

The CRDT approach guarantees that replicas converge. How-
ever, we saw that metadata accumulates over time, with a
big impact on performance, and must be garbage-collected
from time to time. The attendant commitment or consen-
sus, albeit being infrequent and in the background, is still an
issue for scalability. In this section, we explain how Treedoc
addresses this issue.

Consensus requires the participation of a well-identified set
of sites. Even worse, commitment requires their unanimous
agreement. This is problematic in a large-scale system,
where sites fluctuate dynamically. For instance, in collabo-
rative editing scenarios, new participants may enter at any
time, leave the system definitely, or disconnect for an unpre-
dictable period of time, while continuing to initiate updates.

To address this problem, we partition the sites in two disjoint
tiers. The core consists of a small group of sites that are
well known and well connected. Joining or leaving the core
follows a membership protocol [2]. In the limit, the core
could reduce to a single server. Only core sites participate
in rebalancing. Core sites may freely initiate updates, and
may replay each others’ updates.

Sites that are not in the core are part of the nebula. They
are assumed to be uniquely identified (for disambiguators),
but are otherwise unrestricted. The nebula may contain any
number of sites, which are connected to the network, or may
be currently disconnected. Nebula sites may freely initiate
updates, but do not participate in commitment.

Let us call an interval between successful rebalances an epoch.
Each rebalance – each change of epoch – changes the frame
of reference for TIDs: TIDs from some epoch are invalid in
other epochs. Two sites may send updates to each other,
and replay each others’ updates, if and only if they are in
the same epoch. Core sites are all in the most recent epoch
by construction, but a nebula site may remain in a prior
epoch.

5. NEBULA CATCH-UP PROTOCOL
A site can leave the core at any time, simply by invoking
the membership protocol.

The converse is not true. As the core moves to new epochs,
nebula sites remain in prior epochs. For a nebula site to
send updates to the core, or in order for it to join the core,
a protocol is needed, allowing it to catch up with past core
rebalances.

We now describe the catch-up protocol at a high level. To
simplify the description, assume that the core and the nebula
sites started from the same initial state, and that the core
executed a single rebalance since then: If the core is in epoch
n (the “new” epoch), the nebula is in epoch n − 1 (“old”
epoch). Updates in the old epoch use “old” TIDs, whereas
those in the new epoch use “new” TIDs.

A core site maintains a buffer of update messages that it
needs to send to the nebula, some of the old epoch, some of
the new one. Conversely, a nebula site maintains a buffer of
update messages to be sent to the core; they are all in the
old epoch.

Old messages buffered in the core can be sent to the nebula
site (operating in the old epoch) and replayed there. How-
ever, the converse is not true: since the core is in the new
epoch, it cannot replay old updates from the nebula. The
nebula must first bring them into the new epoch. To this
effect, and once it has applied all old core updates, the neb-
ula site rebalances its local replica of the tree, using the tree
itself to keep track of the mapping between old and new
TIDs. Then it translates old TIDs in buffered messages into
the corresponding new TIDs. At this point, the nebula site
is in the new epoch. (It may now either join the core, or re-
main in the nebula.) Finally, it sends its buffered messages
to the core, which can now replay them.

Since epochs are totally ordered, every nebula site will go
through the same catch-up protocol. Concurrent updates
remain commutative, even if initiated in different epochs.

5.1 TID translation algorithm
We now describe in more detail how a nebula site translates
TIDs from the old to the new epoch. It needs to distinguish
updates that were received from the core and are serialised
before the rebalance, from those initiated locally or received
from other nebula sites, which must be serialised after the
rebalance. For this purpose we colour the corresponding
nodes either Cyan (C stands for Core) or Black (= Noir in
French, where N stands for Nebula).

Thus we distinguish cyan nodes, cyan tombstones, black
nodes and black tombstones. A node can be both a cyan
node and a black tombstone; the converse is not possible.

We will now describe the steps that a nebula site needs to
take in order to execute a rebalance operation. We will as-
sume that all the updates from the core issued prior to the
rebalance have been executed as well as some black updates,
some local and some from other nebula sites. Once the re-
balance is performed, the site will be able to send the black
updates to the core. The rebalance will construct a list of
subtrees, each having as root a cyan node.

The first step is to go through the tree and examine only
cyan nodes and tombstones. Assume a sentinel node nb

marks the beginning of the ordered-set and ensures the tree
is not empty. We identify the following cases:

• Cyan Node (can also be a black tombstone): add to
the list along with any black children it has.

• Cyan Tombstone: add any black children to the sub-



tree of the last node in the rebalanced list. We preserve
the correct order by adding at the end of the subtree.
If no cyan nodes have been seen so far, we add the
black children to nb.

The second step is to create the new balanced tree from the
roots of the subtrees stored in the linear list. The nodes that
have black children will be transformed into major nodes if
both a cyan child and a black child should be placed on the
same position.

The last step is to go though the new tree and generate the
updates to be sent to the core. We examine only black nodes
and tombstones:

• Black Node - send insert operation with this TID
and atom

• Black Tombstone - send delete operation with this
TID

When a nebula site connects to the core, it sends not only
black updates generated locally, but also updates received
from other nebula sites. It may happen that a site receives
the same update multiple times, but this causes no harm
since updates are idempotent.

6. DISCUSSION
Massive distributed computing environments, such as Zoo-
keeper or Dynamo [3], replicate data to achieve high avail-
ability, performance and durability. Unless such systems
ensure replicas are consistent, application programmers will
be faced with overwhelming complexity. However, strong
consistency does not scale to these large-scale environments.
For some applications, eventual consistency is sufficient [3],
but in the general case it requires conflict detection and res-
olution, which is just consensus in a different guise.

In this paper, we propose to use CRDTs, because they en-
sure eventual consistency without requiring consensus. Al-
though they do require garbage collection, which generally
speaking requires consensus, this does not impact applica-
tion performance and scalability, as it is off the critical path
and remains hidden inside the abstraction boundary.

Not all abstractions can be converted into a CRDT: for in-
stance a queue or a stack rely on a strong invariant (a total
order) that inherently requires consensus. Treedoc on the
other hand maintains a local, partial order, and the out-
come of its operations need not be unique.

Even when an abstraction is not a CRDT, it is very use-
ful to design it so that most pairs of operations commute
when concurrent. Those pairs can benefit from cheap, high-
performance protocols, resorting to consensus only for non-
commuting pairs [7]. We expect that in many cases, non-
commuting operations are infrequent and can be confined to
a small core, whereas the vast majority of operations occur
in the uncontrolled nebula.

Our experience teaches us a few interesting lessons about
the requirements for CRDTs. To commute, operations must
have identical pre-condition; in practice, all operations should
have pre-condition “true.” A central requirement is the use

of unique, unchanging identifiers. To be practical, the data
structure must remain compact. The Treedoc naming tree
ensures that the metadata and identifier overhead is loga-
rithmic in the size of the data.

7. CONCLUSION
It is well known that commutativity simplifies consistency
maintenance, as it removes the need for complex concur-
rency control, allowing updates to execute in arbitrary or-
ders while guaranteeing that replicas converge to the same
result. However, the issue of designing shared data types
for commutativity was neglected. We presented the Com-
mutative Replicated Data Type or CRDT, designed to make
concurrent updates commute. CRDTs enable increased per-
formance and scalability compared to classical approaches.

We proposed a CRDT called Treedoc that maintains an or-
dered set of atoms while providing insert and delete opera-
tions. To overcome the challenges of practicality and scal-
ability, we explored some innovative solutions. Each atom
has a unique, system-wide, compact identification that does
not change between rebalances. Garbage collection is a re-
quirement in practice; it is disruptive and requires consen-
sus, but it has lower precedence that updates, and it is not
in the critical path of applications. We side-step the non-
scalability of consensus by dividing sites into two tiers with
different roles.

Our future work includes searching for other CRDTs as well
as studying the interaction between CRDTs and classical
data structures.
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