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Abstract. The closeness and the betweenness centralities are two well-
known measures of importance of a vertex within a given complex net-
work. Having high closeness or betweenness centrality can have positive
impact on the vertex itself: hence, in this paper we consider the problem
of determining how much a vertex can increase its centrality by creating
a limited amount of new edges incident to it. We first prove that this
problem does not admit a polynomial-time approximation scheme (unless
P = NP ), and we then propose a simple greedy approximation algorithm
(with an almost tight approximation ratio), whose performance is then
tested on synthetic graphs and real-world networks.

1 Introduction

Looking for the most important vertices within a given complex network has
always been one of the main goals in the field of real-world network analysis.
Different measures of importance have been introduced in the literature, and
several of them are related to the notion of “centrality” of a vertex. This lat-
ter notion, in turn, has been explicitly formalized in different ways: two of the
most popular ways are closeness centrality and betweenness centrality (see, for
example, [5]). The first one somehow measures the efficiency of a vertex while
spreading information to all other vertices in its connected component, while the
second one intuitively quantifies how much a vertex controls the information flow
between all pairs of vertices in a graph. More formally, the closeness centrality
of v is equal to the sum of the reciprocal of the distances to v from all other
vertices, while the betweenness centrality of a given vertex v is the portion of
the shortest paths between all pairs of vertices that pass through v.

Both closeness and betweenness centrality, however, are computationally
expensive, since they require O(nm) time [7] (in order to be computed for
each vertex) which is clearly infeasible for networks with millions of vertices
and edges (which is the “normal” size of many interesting real-world networks).



For this reason, several randomized and/or approximation algorithms have been
proposed for the computation of these two centrality measures [9,20].

In this paper, instead, we consider a different problem related to the closeness
and betweenness centrality, that is, the problem of identifying which “strategy” a
vertex should adopt in order to increase its own centrality value. Indeed, increas-
ing its own ranking in terms of centrality, can have positive consequences for the
vertex. For example, in the field of author citation networks both closeness and
betweenness centrality seem to be significantly correlated with citation counts
(as it has been already observed in the case of collaboration networks) [23], while,
in the field of transportation network analysis, the betweenness centrality seems
to be positively related to the efficiency of an airport, as observed in [16] where
a network of 57 European airports has been analyzed.

More specifically, we consider the problem of efficiently determining, for a
given vertex v, the set of k edges entering v that, when added to the original
directed graph, allows v to increase as much as possible its closeness (respectively,
betweenness) centrality and its ranking according to this measure. We first prove
that this problem is hard to be approximated within an approximation factor
greater than 1− 1

3e (respectively, 1− 1
2e ), and we then show that a greedy approach

yields an (1− 1
e )-approximation algorithm (for both closeness and betweenness).

Successively, we present several experiments that we have performed (i) in order
to evaluate how good is the approximation factor in the case of relatively small
randomly generated graphs, and (ii) in order to apply the greedy approach to
real-world citation and transportation networks. As a result of the first set of
experiments, we have that the greedy algorithm seems to perform much better
than the theoretical results, since it often computes an optimal solution and,
in any case, it achieves an approximation factor significantly larger than 1 − 1

e .
By applying the greedy algorithm to real-world networks, instead, we observe
that by adding very few edges a vertex can drastically increase its centrality
measure and, hence, its ranking. For example, the first (respectively, second)
author of this paper could pass from ranking 2540 to ranking 346 (respectively
from ranking 6398 to 380), with just three citations. However, he has to convince
Robert Tarjan, Christos Papadimitriou and Leslie Valiant (respectively, Richard
Karp) to cite one of his papers. In the field of transportation networks, instead,
the Paris Orly airport could increase its betweenness centrality (in the Easyjet
connection network) by 218%, and pass from ranking 22 to ranking 15, with just
three new connections from Ljubljana, Newquay, and Ponta Dalgada.

As far as we know, the problem analyzed in this paper has never been
attacked before, even though similar problems have been studied for other cen-
trality measures, i.e. page-rank [4,19], eccentricity [10], average distance [17], and
some measures related to the number of paths passing through a given node [13].
Hence, we had no other algorithms to compare with. However, we also consider
the naive approach of connecting the vertex with the top-k vertices in the central-
ity ranking and we experimentally show that the greedy algorithm significantly
outperforms this simple heuristic, whenever k > 1.



1.1 Preliminary Definitions and Results

Let G = (V, E) be a directed graph. For each node v, Nv denotes the set of
in-neighbors of v, i.e. Nv = {u | (u, v) ∈ E}. Given two vertices s and t, we
denote by dst, σst, and σstv the distance from s to t in G, the number of shortest
paths from s to t in G, and the number of shortest paths from s to t in G that
contain v, respectively. Given a set S of edges not in E, we denote by G(S) the
graph augmented by adding the edges in S to G, i.e. G(S) = (V, E ∪ S). For a
parameter x of G, we denote by x(S) the same parameter in graph G(S), e.g. the
distance from s to t in G(S) is denoted as dst(S). For each node v, the closeness
centrality (also called harmonic centrality [5]) of v is defined as follows

cv =
�

s∈V \{v}
dsv<∞

1
dsv

,

while the betweenness centrality [5] of v is defined as

bv =
�

s,t∈V
s�=t;s,t�=v

σst �=0

σstv

σst
.

The closeness and the betweenness centralities of a vertex clearly depend on the
graph structure: if we augment a graph by adding a set of edges S, then the
centrality of a vertex might change. Generally speaking, adding edges incident
to some vertex v can only increase the centrality of v. We are interested in
finding the set S of edges incident to a particular vertex v that maximizes such
an increment. Therefore, we define the following optimization problem.

Maximum Closeness Improvement (MCI)
Given: A directed graph G = (V, E); a vertex v ∈ V ; and an integer k ∈ N
Solution: A set S of edges incident to v, S = {(u, v) | u ∈ V \ N(v)}, such

that |S| ≤ k
Goal: Maximize cv(S)

Analogously, we can define the Maximum Betweenness Improvement
(in short, MBI), by referring to the betweeness centrality measure.

In this paper, we will use the the maximum set coverage problem [12] to
derive approximation hardness results. Such problem is defined as follows.

Maximum Set Coverage (MSC)
Given: A set X; a family of subsets of X, F = {S1, S2, . . . S|F|}; and an

integer k�

Solution: A family F � ⊆ F such that |F �| ≤ k�

Goal: Maximize s(F �) = | ∪Si∈F � Si|

It has been shown [12] that MSC cannot be approximated within a factor greater
than 1 − 1

e , unless P = NP . Moreover, the following greedy algorithm matches



Algorithm: GreedyImprovement
Input : A directed graph G = (V, E); a vertex v ∈ V ; and an integer k ∈ N
Output: Set of edges S ⊆ {(u, v) | u ∈ V \ Nv} such that |S| ≤ k

1 S := ∅;
2 for i = 1, 2, . . . , k do
3 foreach u ∈ V \ (Nv ∪ S) do Compute fv(S ∪ {(u, v)});
4 umax := arg max{fv(S ∪ {(u, v)}) | u ∈ V \ (Nv ∪ S)};
5 S := S ∪ {(umax, v)};

6 return S;

Fig. 1. The greedy centrality improvement algorithm (fv denotes cv or bv)

such upper bound [18]: start with the empty set, and repeatedly add an element
that gives the maximal marginal gain. The greedy algorithm can be extended
to any monotone submodular1 objective function defined on F thanks to the
following result.

Theorem 1 ([18]). For a non-negative, monotone submodular function f , let S
be a set of size k obtained by selecting elements one at a time, each time choosing
an element that provides the largest marginal increase in the value of f . Then S
provides a

�
1 − 1

e

�
-approximation.

In this paper, we exploit this result by showing that cv and bv are mono-
tone and submodular w.r.t. the possible set of edges incident to v. Hence, the
greedy algorithm reported in Fig. 1 (where fv denotes either cv or bv) provides
a

�
1 − 1

e

�
-approximation. Note that the computational complexity of such algo-

rithm is O(k · n · g(n, m)), where g(n, m) is the complexity of computing either
cv or bv.

2 Improving Closeness Centrality

We first prove that the problem of improving the closeness centrality of a vertex
does not admit a polynomial-time approximation scheme.

Theorem 2. Problem MCI cannot be approximated within a factor greater than
1 − 1

3e , unless P = NP .

Proof. We give an L-reduction with parameters a and b [22]. In detail, we will
give a polynomial-time algorithm that transforms any instance IMSC of MSC
into an instance IMCI of MCI and a polynomial-time algorithm that transforms
any solution S for IMCI into a solution F � for IMSC such that the following two

1 For a ground set X, a function f : 2X → N is submodular if for any pair of sets
S ⊆ T ⊆ X and for any element e ∈ X\T , f(S∪{e})−f(S) ≥ f(T ∪{e})−f(T ) [18].
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v

Fig. 2. The reduction used in Theorem 2 (in this example, x1 ∈ S1, x1 ∈ S2, x2 ∈ S1,
and x2 ∈ S|F|). The dashed edges denote those added in a solution.

conditions are satisfied for some values a and b:

OPT (IMCI) ≤ aOPT (IMSC) (1)
OPT (IMSC) − s(F �) ≤ b (OPT (IMCI) − cv(S)) . (2)

where OPT denotes the optimal value of an instance of an optimization prob-
lem. If the above conditions are satisfied and there exists a α-approximation
algorithm for MCI, then there exists a (1 − ab(1 − α))-approximation algorithm
for MSC [22]. Since MSC is hard to approximate within a factor greater than
1− 1

e , then 1−ab(1−α) < 1− 1
e , unless P = NP . This implies that α < 1− 1

abe .
Given an instance IMSC = (X, F , k�) of MSC, we define an instance IMCI =

(G, v, k) of MCI as follows (see Fig. 2): k = k� and G = (V,E), where V =
{v} ∪ {vxi

| xi ∈ X} ∪ {vSj
| Sj ∈ F} and E = {(vxi

, vSj
) | xi ∈ Sj}.

Without loss of generality, we can assume that any solution S of MCI con-
tains only edges (vSj

, v) for some Sj ∈ F . In fact, if a solution does not satisfy this
property, then we can improve it in polynomial time by repeatedly applying the
following rule: if S contains an edge (vxi

, v), for some xi ∈ X, then exchange such
edge with an edge (vSj

, v) such that (vSj
, v) �∈ S (note that such an edge must

exist, since otherwise |F| ≤ k = k� and IMSC could be easily solved). The above
rule does not decrease the value of cv(S): indeed, if we exchange an edge (vxi

, v)
with an edge (vSj

, v) such that (vSj
, v) �∈ S, then the closeness centrality of

v decreases by either 1 or 1
2 (because of the deletion of (vxi

, v)) but certainly
increases by 1 (because of the insertion of (vSj

, v)).
Given a solution S of MCI, let F � be the solution of MSC such that Sj ∈ F �

if and only if (vSj
, v) ∈ S. We now show that cv(S) = 1

2s(F �) + k. To this
aim, let us note that the distance from a vertex vxi

to v is equal to 2 if an
edge (xSj

, v) such that xi ∈ Sj belongs to S, and it is ∞ otherwise. Similarly,
the distance from a vertex vSj

to v is equal to 1 if (xSj
, v) ∈ S, and it is ∞

otherwise. Moreover, the set of elements xi of X such that dvxi
v(S) < ∞ is

equal to {xi | xi ∈ Sj ∧ (vSj
, v) ∈ S} =

�
Sj∈F � Sj . Therefore,



cv(S) =
�

s∈V \{v}
dsv(S)<∞

1
dsv(S)

=
�

xi∈X
dvxi

v(S)<∞

1
dvxi

v(S)
+

�

Sj∈F
dvSj

v(S)<∞

1
dvSj

v(S)

=
1
2
|{xi ∈ X | dvxi

v(S) < ∞}| + |{Sj ∈ F | dvSj
v(S) < ∞}|

=
1
2

������
�

Sj∈F �

Sj

������
+ |{Sj | (vSj

, v) ∈ S}| =
1
2
s(F �) + k� =

1
2
s(F �) + k.

It follows that Conditions (1) and (2) are satisfied for a = 3
2 and b = 2.

Indeed, OPT (IMCI) = 1
2OPT (IMSC) + k ≤ 3

2OPT (IMSC), where the inequal-
ity is due to the fact that OPT (IMSC) ≥ k, since otherwise the greedy algo-
rithm would find an optimal solution for IMSC. Moreover, OPT (IMSC)−s(F �) =
2 (OPT (IMCI) − k) − 2 (cv(S) − k) = 2 (OPT (IMCI) − cv(S)). The theorem fol-
lows by plugging the values of a and b into α < 1 − 1

abe . 
�

2.1 Greedy Algorithm and Submodularity

We now prove that the GreedyImprovement algorithm provides a (1 − 1
e )-

approximation for the MCI problem. To this aim, because of Theorem 1, it suf-
fices to prove that the closeness centrality measure is monotone and submodular.

Theorem 3. For each vertex v, function cv is monotone and submodular with
respect to any feasible solution for MCI.

Proof. To show that cv is monotone increasing, it is enough to observe that
for each solution S to MCI, each vertex u such that (u, v) �∈ E ∪ S, and each
s ∈ V \{v} such that dsv(S ∪{(u, v)}) �= ∞, then dsv(S ∪{(u, v)}) ≤ dsv(S) and
therefore 1

dsv(S∪{(u,v)}) ≥ 1
dsv(S) . We now show that for each pair S and T of

solutions to MCI such that S ⊆ T and for each vertex u such that (u, v) �∈ T ∪E,

cv(S ∪ {(u, v)}) − cv(S) ≥ cv(T ∪ {(u, v)}) − cv(T ).

To simplify notation, we assume that 1
dst(X) = 0 whenever dst(X) = ∞, for any

solution X to MCI. We prove that each term of cv is submodular, that is, that,
for each vertex s ∈ V \ {v} such that dsv(T ∪ {(u, v)}) �= ∞, we show that

1
dsv(S ∪ {(u, v)})

− 1
dsv(S)

≥ 1
dsv(T ∪ {(u, v)})

− 1
dsv(T )

. (3)

Let us consider the shortest paths from s to v in G(T ∪ {(u, v)}). The following
two cases can arise:

1. The last edge of a shortest path from s to v in G(T ∪ {(u, v)}) is (u, v)
or belongs to S ∪ E. In this case, such a path is a shortest path also in
G(S∪{(u, v)}), as it cannot contain edges in T \S. Then, dsv(S ∪ {(u, v)}) =
dsv(T ∪ {(u, v)}) and 1

dsv(S∪{(u,v)}) = 1
dsv(T∪{(u,v)}) . Moreover, dsv(S) ≥

dsv(T ) and, therefore, − 1
dsv(S) ≥ − 1

dsv(T ) .



2. The last edge of all shortest paths from s to v in G(T ∪ {(u, v)}) belongs to
T \S. In this case, dsv(T ) = dsv(T ∪{(u, v)}) and, therefore, 1

dsv(T∪{(u,v)}) −
1

dsv(T ) = 0. As 1
dsv(S) is monotone increasing, then 1

dsv(S∪{(u,v)}) − 1
dsv(S) ≥ 0.

In both cases, we have that the inequality (3) is satisfied and, hence, the theorem
follows. 
�

2.2 Experimental Evaluation

We conducted two types of experiments: in the first type we evaluate the quality
of the solution produced by the greedy algorithm by measuring the approxi-
mation ratio on several randomly generated networks; in the second type we
measured the improvement in the value of closeness of v and in the closeness
ranking of v within the network (these latter experiments are conducted on three
real-world networks). All our experiments have been performed on a computer
equipped with an AMD Opteron 6376 CPU with 16 cores clocked at 2.30GHz
and 64GB of main memory, and our programs have been implemented in C++
(gcc compiler v4.8.2 with optimization level O3).

We measured the approximation ratio of the greedy algorithm on four
types of randomly generated networks, namely directed Preferential Attachment
(in short, PA) [6], Erdős-Rényi (in short, ER) [11], Copying (in short, COPY) [14],
and Compressible Web (in short, COMP) [8]. The size of the graphs is reported
in Table 1. For each combination (n, m), we generated five random graphs and
used five vertices as v. These vertices have been chosen on the basis of their
original closeness ranking: in particular, we divided the list of vertices sorted by
their original ranking in five parts and choose the vertices in the boundaries. We
denote by vX% the vertex on the boundary of the top Xth percentile (e.g. v25%

is a vertices on the boundary of the top 25th percentile).
In the experiments, we measured the ratio between the value of the solution

found by the greedy algorithm and the optimal value computed by using an
Integer Program (in short, IP). We solved IP by using the GLPK solver [3].
However, since solving IP requires long time on large instances, in some cases
we used the solution to the Linear Relaxation (in short, LP) of IP as an upper
bound to the optimal value. In these cases, the ratio is obtained by using the
LP upper bound as a denominator, and therefore it represents a lower bound to
the actual approximation ratio.

The results are reported in Table 1, where we show the number of times that
the approximation ratio is equal to one and the minimum ratio obtained. The
experiments clearly show that the measured approximation ratio is by far better
than the theoretical one proven in the previous section. In fact, in more than
91% cases, the greedy algorithm found an optimal solution, and in the worst
case the ratio is 0.9694.

For the second type of experiments we used real-world citation networks
obtained by the Arnetminer database [1]. In such networks, there is a vertex for
each author and an edge from vertex x to vertex y if the author corresponding to
vertex x cited in his paper one paper written by the author corresponding to y.



Table 1. Closeness centrality: comparison between the greedy algorithm and the opti-
mum (or an upper bound to the optimum). The first three columns report the type
and size of the graphs; the fourth column reports the relative number of times that
the greedy algorithm finds an optimal solution. The fifth column reports the minimum
measured approximation ratio. The last column indicates whether the optimum has
been found by using the integer program (IP) or its linear relaxation (LP), in the
latter case it is an upper bound to the optimum.

Network n = |V | m = |E| OPT% Min Approx. Ratio IP/LP

PA 100,500,1000 ≈ 1.3 × n 93.25 0.9831 IP

ER 100 200, 500, 1000 88.60 0.9788 IP
ER 500 5000, 12500, 25000 74.28 0.9694 LP

COMP 100 200, 500, 1000 99.88 0.9764 LP
COMP 500 5000, 12500, 25000 99.47 0.9854 LP

COPY 100 200, 500, 1000 97.48 0.9885 LP
COPY 500 5000, 12500, 25000 89.65 0.9697 LP

We parsed the Arnetminer database in order to select three sub-networks induced
by the authors that published at least a paper in one of the main conferences or a
journals in (i) algorithms (THEORY network, with 9274 vertices and 130419 edges),
social network analysis (SN network, with 3666 vertices and 32413 edges), and
computer science education (CSE network, with 3680 vertices and 35691 edges).
As in the previous experiment, for each graph, we used five vertices as v. The
value of k ranges from 1 to 100.

The results for THEORY are plotted in Fig. 3 (the results for the other networks
are similar). In the two top charts we plot the closeness centrality and the ranking
of vertex v as a function of k. We observe that any vertex become central by
adding just few edges. For example a vertex with the smallest closeness centrality
which initially has closeness 0 and is ranked 6398, improves its closeness and
ranking to 2705.97 and 215, respectively, by adding only 10 edges, and it is
among the top 10 vertices by adding 57 edges. On average, the algorithm required
3.68 seconds of computational time for each iteration of the algorithm (i.e. for
each added edge).

In the charts on the bottom, we compare the greedy algorithm with a naive
algorithm that adds the edges from the k vertices with the highest closeness
centrality to v. In this case we choose 10 vertices for v instead of 5. We report
the ratio between the closeness value (respectively, ranking) obtained by the
naive algorithm and that obtained by the greedy one. It is easy to prove that
the two algorithms find the same solution for k = 1, while in any other case the
experiments show that the greedy algorithm outperforms the naive approach. In
fact, the solution computed by this latter is up to 12 times worse in terms of
ranking.
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Fig. 3. Closeness centrality: (Top) performance of the greedy algorithm on network
THEORY. (Bottom) comparison of the greedy algorithm with the naive method on net-
work THEORY.

3 Improving Betweenness Centrality

Similarly to the case of the closeness centrality, we can prove, in the case of the
betweenness centrality, the following two results.

Theorem 4. Problem MBI cannot be approximated within a factor greater than
1 − 1

2e , unless P = NP .

Theorem 5. For each node v, function bv is monotone and submodular with
respect to any feasible solution for MBI.

As a consequence of the previous theorem and of Theorem 1, we have that the
GreedyImprovement algorithm is a (1 − 1

e )-approximation algorithm for the
MBI problem. We now report the results of our experimental study on this
algorithm. We used the same platform used for closeness and the parallel imple-
mentation of betweenness centrality of the NetworKit library [21]. First, we
measured the approximation ratio of the greedy algorithm on the four types of
randomly generated networks used for closeness centrality. The size of the graphs
is reported in Table 2. For each combination (n, m), we generated five random
graphs and used five vertices as v chosen like in the case of closeness centrality.
The value of k ranges from 1 to 100.



Table 2. Betweenness centrality: comparison between the greedy algorithm and an
upper bound to the optimum. The first three columns report the type and size of the
graphs; the fourth (fifth, respectively) column reports the average (standard deviation,
respectively) of the ratio between the value found by the greedy algorithm and the
upper bound to the optimal value.

Network n = |V | m = |E| Avg. Std. Dev.

PA 50 65 0.9586 0.1252
PA 100 130 0.9500 0.1739

ER 50 100, 250, 500 0.7459 0.1946

COMP 50 100, 250, 500 0.8196 0.1946

COPY 50 100, 250, 500 0.8187 0.1557

In this case, we are not able to determine the optimum of MBI by means of
an integer program. This is due to the non-linearity of the objective function.
Therefore, in the experiments, we measured the ratio between the value of the
solution found by the greedy algorithm and the optimal value of problem MBI-d,
which consists in maximizing the following centrality measure:

dv =
�

s,t∈V
s�=t;s,t �=v

1SP (s,t)(v).

In the above formula SP (s, t) denotes the set of all the vertices that belong to
a shortest path from s to t and 1A(x) is the indicator function (i.e. 1A(x) = 1
if x ∈ A and 1A(x) = 0, otherwise). It is easy to show that the optimal value
of any instance of MBI-d is an upper bound for the optimal value of the corre-
sponding MBI instance. The optimal value for MBI-d is computed by using an
integer program. We solved the linear relaxation of such integer program by using
GLPK. The results are reported in Table 2, where we show the average value
and the standard deviation of the measured lower bound to the approximation
ratio. Also in this case, the experiments show that the measured approximation
ratio is by far better than the theoretical one.

For the second type of experiments we used real-world networks representing
flight connection. Vertices in these networks represent airports and edges repre-
sent a connection from one airport to another. In detail, we used three networks:
(i) a network obtained by crawling the EasyJet website [2] (EasyJet network,
with 136 vertices and 1510 edges), (ii) the directed network of flights between
US airports in 2010 (USAirports network, with 501 vertices and 5960 edges),
and (iii) a network constructed from the USA Federal Aviation Administration
(USA Traffic Control network, with 1227 vertices and 2615 edges). The last
two networks are available from Konect [15]. As in the previous experiments, for
each graph we used five vertices as v and we let k range from 1 to 100. The results
for EasyJet are plotted in Fig. 4 (the results for the other networks are similar).
As in the case of closeness, in the two top charts we plot the betweenness cen-
trality and the ranking of node v as a function of k, in the two bottom charts,
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Fig. 4. Betweenness centrality: (Top) Performance of the greedy algorithm on network
EasyJet; (Bottom) Comparison of the greedy algorithm with the naive method on
network EasyJet

we compare the greedy algorithm with the naive algorithm. Similar results as
for closeness can be observed. However, in this case, the improvement in value
and in ranking is smaller than in the case of closeness. This is due to the fact
that we only add incoming edges while the number of shortest paths passing
through v also depends on the edges outgoing from v. We leave the problem of
adding both incoming and outgoing edges as an open problem. Also in this case
our algorithm outperforms the naive approach by computing solutions that are
up to 7 times better in terms of ranking. On average, the algorithm required
0.33 seconds of computational time for each iteration of the algorithm (i.e. for
each added edge).

4 Conclusion and Future Research

In this paper, we have proposed a greedy approximation algorithm for efficiently
computing a set of edges that a node can decide to add to a graph in order to
increase its betweenness or closeness centrality. The algorithm has been tested on
several relatively small random graphs and, then, applied to several real-world
collaboration networks. As future works, we plan to extend our approach to
weighted graphs and to other centrality measures, to analyze a generalization of



the problem considered in this paper (by allowing the addition of edges incident
to other vertices), to study the problem of maximizing the ranking improvement
(instead of the centrality value), to apply algorithmic game theoretical techniques
(in order to deal with the concurrent addition of edges by different vertices of
the graph), and dynamic algorithm techniques (in order to make the greedy
algorithm more efficient).
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