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Abstract

Solving large permutation Combinatorial Optimization Problems (COPs) using Branch-

and-Bound (B&B) algorithms results in the generation of a very large pool of subproblems.

Therefore, defining a dedicated data structure is crucial to store and manage efficiently

that pool. In this Ph.D thesis, we propose an original data structure called Integer-Vector-

Matrix (IVM) for permutation COPs based on the factorial number system. Consequently,

we redefine the operators of the B&B algorithm acting on it. For performance evaluation

in terms of memory footprint and CPU time usage, we conduct a complexity analysis

and an extensive experimentation using the permutation Flow-Shop Scheduling Problem

(FSP) as a case study. The deque data structure referred to as LL is considered in our

work as a basis for comparison with IVM. Compared to LL, IVM requires up to n less

memory than LL, n being the size of permutations. Moreover, the IVM-based B&B is up

to one order of magnitude faster than its LL-based counterpart in managing the pool of

subproblems. Another advantage of IVM over LL is that its memory requirement is constant

and predictable.

On the other hand, according to the Top500 international ranking the tendency of

HPC technologies is to use multi-core processors and many-core accelerators/coprocessors

as key-building blocks. Another contribution of this thesis is to revisit parallel B&B for

multi-core processors, GPU accelerators and MIC coprocessors using IVM and LL. As

the tree explored by a B&B applied to FSP is highly irregular in shape and size, the

thread-based Work Stealing (WS) paradigm is used for parallelization on multi-core

processors. Unlike most related works that use concurrent data structures, we propose a

private IVM-based and LL-based WS mechanism. In addition, work units are coded in a

coalesced thus optimized way using factoradic-based intervals. We also investigate five

different WS strategies. Extensive experiments show that in overall IVM outperforms

LL in memory footprint and CPU time usage whatever is the used WS strategy. For the

many-core parallelization, the proposed approach consists in performing the branching

and bounding operators on the coprocessor. Such approach raises some issues, addressed

in this thesis, mainly thread mapping, thread/branch divergence and data placement

optimization on GPU, and vectorization on Intel Xeon Phi. An extensive experimental

study shows that IVM is particularly more efficient than LL within the many-core context.

Moreover, even with vectorization (of the lower bound), which allows a significant

performance improvement on Intel Xeon Phi, the GPU-based approach is faster. Finally,

the many-core approaches are faster than their multi-core counterpart by one order of



ii

magnitude.

Keywords: Branch-and-Bound, Multi-core, Many-core (GPU, MIC), Permutation opti-

mization problems, Flow-Shop.

Résumé

La résolution de problèmes de permutation en optimisation combinatoire au moyen

d’algorithmes Branch-and-Bound (B&B) génère un très grand pool de sous-problèmes.

Par conséquent, la définition d’une structure de données dédiée est cruciale pour stocker

et gérer efficacement ce pool. Dans cette thèse, nous proposons une structure de don-

nées originale appelée Integer-Vector-Matrix (IVM) pour les problèmes de permutation

basée sur la numération factorielle. En conséquence, nous redéfinissons les opérateurs

de l’algorithme B&B agissant sur celle-ci. Pour l’évaluation de performance en termes de

consommation mémoire et d’utilisation du CPU, nous avons réalisé une analyse de com-

plexité et une expérimentation intensive en utilisant le problème d’ordonnancement de

type Flow-Shop (FSP) comme étude de cas. La structure de données deque, désignée par LL

dans ce manuscrit, est utilisée comme base de comparaison pour évaluer la performance

d’IVM. Par rapport à LL, IVM nécessite jusqu’à n fois moins de mémoire que LL, n étant la

taille des permutations. En outre, B&B basé sur IVM est environ 10 fois plus rapide que

son équivalent basé sur LL dans la gestion du pool de sous-problèmes. Un autre avantage

d’IVM sur LL est que ses besoins en mémoire sont constants et prévisibles.

D’autre part, d’après le classement international Top500 la tendance des technologies

HPC est d’utiliser des processeurs multi-coeurs et des accélérateurs/coprocesseurs comme

des briques-clés pour la construction de machines. Une autre contribution de cette

thèse est de revisiter l’algorithme B&B parallèle pour les processeurs multi-coeurs, les

accélérateurs GPU et les coprocesseurs MIC en utilisant IVM et LL. Comme l’arbre exploré

par un B&B appliqué au FSP est hautement irrégulier en forme et en taille, le paradigme

de vol de cycles (WS) basé sur les threads est utilisé pour la parallélisation multi-coeur.

Contrairement à la majorité des travaux existants, qui utilisent des structures de données

concurrentes, nous proposons un mécanisme de WS utilisant des structures (IVM et LL)

privées ou "distribuées". En outre, les unités de travail sont codées de manière compressée

et donc optimisée en utilisant des intervalles de factorielles. Nous étudions également

cinq stratégies de WS différentes. Une expérimentation intensive montre que globalement

IVM est plus efficace que LL en termes d’empreinte mémoire et d’utilisation du temps CPU

et ce quel que soit la stratégie WS utilisée. Pour la parallélisation multi-coeur, l’approche

proposée consiste à effectuer le branchement et l’évaluation des bornes sur le coprocesseur.
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Cette approche soulève des problèmes, adressés dans cette thèse, notamment le mapping

de threads, la divergence de branches/threads et l’optimisation du placement des données

sur GPU, et la vectorisation sur Intel Xeon Phi. Une étude expérimentale montre qu’IVM

est particulièrement plus efficace que LL dans le contexte many-core. En outre, même

avec la vectorisation (de la borne inférieure), ce qui permet une amélioration significative

des performances sur les processeurs Intel Xeon Phi, l’approche sur GPU est plus rapide.

Enfin, les approches many-core sont environ 10 fois plus rapides que leurs homologues

multi-core.

Mots clés: Branch-and-Bound, Multi-coeur, Many-core (GPU, MIC), Problèmes de per-

mutation, Flow-Shop.
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C H A P T E R 1

Introduction

The Ph.D thesis presented in this manuscript has been realized within the DOLPHIN 1

research group from Inria Lille-Nord Europe, CNRS/CRIStAL and Université Lille 1. The

thesis has been funded by Inria and took place in the premises of Maison de la Simulation

at Saclay.

In practice, many problems can be modeled as combinatorial optimization problems

(COPs) which consist in maximizing or minimizing a cost function under some constraints.

In this thesis, we focus on permutation-based COPs such as the Quadratic Assignment

Problem (QAP), the Traveling Salesman Problem (TSP), the Flow-Shop problem, and

so on. For those problems permutations are used to code/represent the candidate

solutions. For instance, for a scheduling problem such as Flow-Shop the numbers of a

permutation coding a given solution may designate jobs. For example, a solution coded as

a permutation (3, 4, 2, 1) means that the 4 jobs should be executed in the following order:

job 3, then jobs 4 and 2, and finally job 1.

Solving permutation COPs consists in finding an optimal permutation among a large

finite set of possible permutations. A wide range of these problems are known to be

NP-hard. Therefore, metaheuristics are often used to solve them especially when the

considered instances are very large [Mehdi 2011, Luong 2011]. Although these approxi-

mate methods allow to reduce the size of the explored search space and to speed up its

exploration they fail in general to provide exact solutions. Conversely, exact optimization

methods allow to find optimal solutions with proof of optimality. The branch-and-bound

(B&B) algorithm is one of the most used exact methods to solve permutation COPs: QAP

in [Mautor 1994a], TSP in [Carneiro 2011], Flow-Shop in [Melab 2012], and so on. This

tree-based algorithm is based on an implicit enumeration of all the feasible solutions

of the problem to be solved using four operators: branching, bounding, selection and

pruning. It proceeds in several iterations during which it recursively decomposes the

problem into subproblems and progressively improves the best solution found so far. The

1Discrete multi-objective Optimization for Large-scale Problems with Hybrid dIstributed techNiques
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pool of generated and not yet examined subproblems are kept into some data structure

initialized to the original problem. The proposition of an efficient data structure, that is

considered in this thesis, is one of the major challenging issues that should be addressed

for an efficient implementation of B&B [Mans 2006]. At each iteration, a subproblem is

selected from this data structure, according to some strategy (depth-first, best-first,...),

using the selection operator. The branching operator performs its decomposition into

other subproblems. The bounding operator calculates a lower bound of each generated

subproblem. Each subproblem having a lower bound greater than the best solution found

so far is discarded using the pruning operator.

The lower bound-based pruning mechanism is a key idea of the B&B algorithm

that significantly reduces the number of explored nodes. However, B&B remains time-

intensive when it comes to solve very large problem instances. Therefore, only small

or moderately-sized instances are often solved in practice in a reasonable amount of

time using a single processing core [Garey 1976]. For this reason, over the last decades,

parallel computing has been revealed as an attractive way to deal with larger instances

of COPs including permutation-based ones. The design and implementation of parallel

B&B is strongly influenced by the target execution platform [Bader 2005]. To take into

account the associated hardware characteristics, different parallelization approaches have

been proposed in the past for Massively Parallel Processors (MPP) [Allen 1997], Networks

or Clusters of Workstations [Quinn 1990, Dowaji 1995, Tschöke 1995] and Shared

Memory or SMP machines [Mans 2006, Casado 2008]. Recently, the parallelization

of B&B has been revisited for multi-core (clusters of) processors [Barreto 2010] and

Graphics Processing Units (GPU) [Carneiro 2011, Lalami 2012] and their combina-

tion [Chakroun 2013a, Vu 2014]. MIC coprocessors are becoming more and more used in

High Performance Computing and serious competitors of GPU accelerators. Indeed, the

first ranked machine of Top500 (June 2015) includes Xeon Phi coprocessors. However,

to the best of our knowledge the parallelization of B&B for MIC architectures has not yet

been considered in the literature. In addition to multi-core and GPU accelerators, the

parallelization of B&B on MIC coprocessors is also considered in this thesis.

On the other hand, the focus is put here on parallel B&B algorithms applied to per-

mutation COPs. Without loss of generality, the Flow-Shop Scheduling Problem (FSP) is

considered as a case study. The problem consists in scheduling a pool of jobs on a set of

machines with respect to two constraints: the jobs are processed on all the machines in the

same order and each machine cannot process more than one job at a time. The objective

is to find a processing order on each machine such that the time required to complete all
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jobs is minimized. The lower bound function considered in our work is that proposed by

Johnson in [Johnson 1954] for two machines and generalized in [Lenstra 1978] to more

than two machines. The overall major objective of this thesis is twofold: (1) proposing a

new data structure for an efficient storage and management of the subproblems generated

during the resolution of a permutation COP ; (2) according to this new data structure,

revisiting the design and implementation of serial and parallel B&B algorithms for multi-

core processors and coprocessors for solving challenging permutation COPs. Rethinking

B&B algorithms for multi-core processors and coprocessors raises several design and im-

plementation challenges. These challenges and associated contributions are summarized

in the following:

• As for other algorithms, data structures play a major role in the performance of

a B&B algorithm [Mans 2006] and irregular applications in general [Acar 2013].

Indeed, the efficiency of its four operators depends strongly on the data structure

they act on. Several abstract data structures have been proposed in the literature for

B&B algorithms including priority queues for best-first B&B, stacks for depth-first

B&B, and so on. Moreover, different implementations have been proposed for their

efficient management. For instance, in [Mans 2006] two implementations of the

priority queue have been investigated: a skew heap (self-adjusting form of heap)

and funnel tree. More generally, efficient implementations of the priority queue

are provided in programming languages such as C++ and Java. Another popular

data structure provided in those languages is the double-ended queue (or deque). A

deque is a sequence container with dynamic size that can be expanded or contracted

on both ends (either its front or its back). This data structure is important and

often used in the multi-core context using the work stealing mechanism in which

stealing operations are performed from the back of the queue. This is why it is

considered in our work as a basis for comparison with our new data structure. In

the literature, deque is also called head-tail linked list. In the rest of this manuscript,

it is abbreviated by LL which stands for Linked-List. LL is a generic data structure

which makes it frequently used. However, we believe that it is important to take

into account the specificity of the COPs to be tackled to define more efficient data

structures. This is crucial especially when the pool of subproblems generated during

their resolution is very big which is the case for permutation COPs. Indeed, the

complexity of a single-permutation COP of size n is n! which is very high for large

problem instances. For example, for a Flow-Shop with 50 jobs to be scheduled on

20 machines, the number of candidate permutations is 3× 1064 and the number of

potential subproblems to be solved is about 1064. In this thesis, we propose a new
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data structure called Integer-Vector-Matrix (or IVM) dedicated to permutation COPs.

Consequently, we redefine the B&B operators acting on it at execution. Although

IVM is less generic than LL it is more efficient in terms of storage and management

of the pool of subproblems generated during the resolution of a COP.

• B&B algorithms applied to permutation problems are highly irregular due to the

bounding operator [Chakroun 2013c]. Indeed, the explored tree is unpredictable

and highly irregular in size and shape from a run to another of the same problem

instance. Therefore, work stealing-based work pool parallel model is well-suited for

their parallelization as for irregular applications in general [Acar 2013]. In most

existing works related to multi-core B&B, the work pool model is implemented

using concurrent data structures [Mans 2006, Chakroun 2013a]. In such approach,

each thread continuously picks a subproblem from the shared pool and the

generated subproblems are returned back to be inserted in the pool. The major

problem with this approach is that the use of concurrent data structures is limited

in terms of efficiency and scalability. Instead, private data structures are highly

recommended [Shavit 2011, Acar 2013]. In this thesis, we revisit the work stealing

paradigm on multi-core processors using private IVM and private LL. The challenge

here is twofold: (1) Defining the work units and the way they are communicated ;

(2) Defining victim selection and granularity policies to manage the stealing

operations performed on these work units. We first propose an efficient coalesced

coding of work units using factoradic-based intervals. Then, we investigate various

work stealing strategies based on different victim selection and granularity policies.

• An experimental study performed in [Chakroun 2013b] has shown that the time

spent by the B&B evaluating the lower bounds of the generated subproblems is on

average between 98% and 99% of its total execution time. This result demonstrates

that the bounding operator needs massively parallel computing. On the other hand,

coprocessors including GPUs and MIC allow to boost the performance of traditional

processors through the combination of a larger number of processing cores, vector-

SIMD processing and multi-threading. These specific features raise several issues

including the optimization of data transfer between the processor and its coprocessor,

vectorization, memory optimization, etc. In this thesis, having in mind these issues,

we revisit the parallel bounding model combined with the parallel tree exploration

model of B&B algorithms for GPU accelerators and Intel MIC Xeon Phi coprocessors.
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This thesis is organized into six chapters. Chapter 2 introduces the factorial number

system for permutation problems. This later is used to define our IVM data structure. We

first give some examples of permutation COPs: TSP, QAP, Job-Shop and Flow-Shop. Then,

we recall the factorial number system and remind to the reader some basic concepts in

number systems, such as positional numbering systems and mixed radix systems. Finally,

we detail the two main techniques used to convert a permutation into a factorial number,

and to transform a factorial number into a permutation.

Chapter 3 describes the conventional serial B&B algorithm, its associated four

operators, and the implementation of its pool of subproblems using the LL data structure.

Then, the implementation of the pool using our newly proposed IVM data structure is

detailed. Finally, some experimental results are reported comparing the performance of

the IVM-based B&B to the LL-based B&B in terms of memory and CPU time usages.

Chapter 4 presents the different parallel models of B&B algorithms and their investi-

gation for different parallel hardware architectures in some related works. Then, B&B

is revisited using the IVM data structure and the work stealing paradigm. Five different

strategies are presented, experimented and compared considering the IVM and LL data

structures.

In Chapter 5, we first present the general design of the coprocessor-accelerated

B&B. Then, we describe the implementation of the GPU-accelerated and Phi-accelerated

approaches. After that, we report some experimental results comparing the two

coprocessor-based many-core implementations and their multi-core implementation

counterpart.

Finally, some concluding remarks are drawn in Chapter 6. In addition, we propose

some future extensions of the proposed approaches and some perspectives related to the

evolution of the context of High Performance Computing and to the generalization of the

proposed approaches to other permutation COPs and other B&X tree-based algorithms.
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2.1 Introduction

Many industrial and economic problems are permutation combinatorial optimization prob-

lems. Solving these problems consists in finding the optimal permutation of elements

among a large finite set of possible permutations. In order to find the optimal permu-

tation, one of the used techniques is to explicitly or implicitly list all the set of possible

permutations. The factorial number system is well suited for listing and enumerating these
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permutations. This special enumeration system is considered as positional mixed radix

system in which the numerical base varies from position to position.

The chapter is divided into three sections. Section 2.2 gives four examples of permu-

tations problems: TSP, QAP, Job-Shop and Flow-Shop. Section 2.3 presents the factorial

number system. This section reminds to the reader some basic concepts in number systems,

such as positional numbering systems and mixed radix systems. Finally, Section 2.4 details

the two main techniques used to convert a permutation into a factorial number, and to

transform a factorial number into a permutation.

2.2 Permutation optimization problems

2.2.1 Traveling-salesman problem

In the literature, the traveling salesman problem (TSP) is well studied mostly because of

its hardness and the number of its applications [Garey 1979]. The TSP as input gives a set

of n cities to travel to. The cost of the trip between each pair of cities is given by a cost

matrix. The objective of the problem is to find the tour of all cities that has the lowest cost

while visiting each city only once. A more formal description of the problem is generally

given in the form of the graph G = (V,A), where V = v1, ..., vn is the set of vertices and

A = (vi, vj)/vi, vj ∈ V is the set of edges. Each edge (vi, vj) has an associated cost (or

weight) cij . Solving this problem requires finding a Hamiltonian circuit for which the total

cost of all the arcs is minimal. A number of variants of this problem exist, such as the

symmetric TSP (TSTP) where the cost of each vertex follows this property:

cij = cji∀i, j ∈ 1, 2, ..., n (2.1)

When traveling between two cities, the cost of the associated arc is the same no matter

the direction, so the graph can be undirected.

The asymmetric TSP (ATSP) on the other hand, takes the form of a complete directed

graph where the edges have a different cost (or weight) depending on the direction. The

TSP can be represented as a permutation where the order in which each city is visited

during the tour is viewed as a sequence which is a permutation of size n. Since this is a

tour of all the cities, the last visited city is connected to the first one. Equation 2.2 gives a

permutation formulation of the TSP. The cost of a valid tour is the sum of the distances

between each pair of adjacent cities in the tour.

Minimize
n−1∑
i=1

Cπ(i)π(i+1) + Cπ(n)π(1) (2.2)
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2.2.2 Quadratic assignment problem

One of the hardest combinatorial optimization problems is the quadratic assignment prob-

lem (QAP). Koopmans and Beckmann introduced this problem in 1957 [Koopmans 1957],

their objective was to provide a mathematical model for the allocation of indivisible eco-

nomical activities. The problem consists in finding a location for plants while taking into

account the cost of transportation between plants. This makes the QAP more complex

than the linear assignment problem (LAP). This particular application of the QAP is called

facility location.

Later, Sahni and Gonzalez [Sahni 1976] have proven that the QAP is NP-hard. Two

factors have given the QAP the attention of the optimization community: the huge number

of real life applications in a variety of domains and its complexity making it well known as

one of the fundamental problems in optimization. The QAP is applied in various domains

outlined in [Loiola 2007] where the authors propose a review of different applications

and mathematical formulations as well as a complete state-of-the-art for heuristic and

exact methods applied to the QAP.

The problem originally stated by Koopmans and Beckmann can be described this

way: a given set of n plants (or facilities) must be assigned to a set of n locations. The

distances between each pair of locations are stored in a distance matrix D = (dkp), D is

a square matrix of size n. The flows between the facilities (for a hospital, this can be the

transportations between different clinics) are stored in a matrix F = (fij) , F is called a

flow matrix. The problem is to assign each facility to a location in a way that minimizes

the sum of the flows between each pair of facilities. The QAP is more complex than the

LAP because not only the cost of each assignment of a facility to a location depends on

the distance and the flow between two adjacent facilities, but it also depends on the rest

of the assignments of a facility to a location.

Equation 2.3 shows the general mathematical formulation of the QAP, it is called the

Koopmans-Beckmann formulation. The term dkp represents the distance between locations

k and p. The term fij represents the flow between facilities i and j. The binary variables

xij represent the assignment of a facility i to a location j. When considering the cost of

the act of assigning a facility to a location (e.g. installation cost), the term bik represents

the cost of the assignment. The sum of the assignment cost for each facility is then added

to the overall cost of a solution to QAP. Many researchers omit this term because it is a

simple linear assignment that can be optimized easily.
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Equation 2.4 shows the uniqueness constraints of QAP (one facility per location, one

location per facility).

Minimize
n∑

i,j=1

n∑
k,p=1

fij .dkp.xik.xjp +
n∑

i,k=1

bik.xik , x ∈ X (2.3)

x ∈ X ≡


x ∈ {0, 1}∑n

i=1 xij = 1, j = 1, ..., n∑n
j=1 xij = 1, i = 1, ..., n

(2.4)

Later, Lawler [Lawler 1963] proposed a different formulation of the QAP, based on

integer linear programming (LP). Lawler’s LP formulation replaces the terms fij .dkp by a

single term cijkp representing the cost of assigning a facility i to a location k and assigning

a facility j to a location p. These costs are placed in a square matrix of size n2 called a

cost matrix. However, the permutation formulation of the QAP is more pertinent within

the context of this thesis. In this case, the QAP can be described as the assignment of n

facilities to n adjacent locations, the objective is then to minimize the overall cost of the

assignments. It follows that a solution to the QAP can be described as a permutation π

of n integers (1, 2, ..., n) which represent the facilities, whereas the positions within the

permutation represent the n locations. Equation 2.5 shows this formulation.

Minimize
n∑

i,j=1

fij .dπ(i)π(j) (2.5)

The use of permutations guarantees that the constraints of the assignment are re-

spected.

As said earlier, Sahni and Gonzalez [Sahni 1976] have proven that the QAP is NP-hard.

They argued that it is not even possible to find a polynomial f-approximation algorithm

for the QAP.

Different authors have studied the practical complexity of the QAP from various points

of view. Roucairol et al. [Mautor 1994b] studied how difficult it is for exact methods to

solve the QAP. They argued that the structure of the instances is a factor in explaining the

difficulty of solving the QAP for exact methods such as Branch-and-Bound. The product of

the two matrices can produce many solutions of good quality whose cost is within a very

narrow range. Under such conditions, the Branch-and-Bound algorithm can not eliminate

many branches in the tree. Many authors use the related notion of flow dominance to

explain the hardness of some of the instances. Angel et al. [Angel 2002] define flow

dominance as: flow dominance is when a few facilities exchange a lot of materials between

each other but few materials with the rest of the facilities.
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2.2.3 Job-Shop problem

The Job-Shop problem (JSP) is a generalized version of the permutation Flow-Shop prob-

lem. Brucker [Brucker 2007] provides a definition of JSP. A set of n jobs Ji, J2, ..., Jn must

be scheduled on a set of m machines. Every job Ji is made of ni operations defined as Oi,j ,

i = 1, 2, ..., n and j = 1, ..., ni. There is a precedence constraint which ensures that the

sequence of operations Oi,1, Oi,2, ..., Oi,ni of every job has to be processed in this specific

order on all machines. For operation Oi,j on machine Mi,j with j = 1, ..., ni , we define

pi,j as the processing time of this operation. We assume that each operation Oi,j will be

processed on a different machine Mi,j , meaning that Mi,j 6=Mi,j+1 for j = 1, ..., ni−1. The

objective of JSP is to find a valid schedule which minimizes the completion time or the

makespan Cmax of the last operation in the schedule.

The use of multi-permutations makes it possible to have a permutation representation

of the JSP [Bierwirth 1996, Ponsich 2010]. Each permutation is a representation of the

sequence of operations on one machine. The total number of operations is equal to n×m,

n being the number of jobs and m being the number of machines. However, Bierwirth

points out in [Bierwirth 1996] that due to the different constraints, it is not possible to

find a representation of the JSP that uses standard permutations without including invalid

solutions in the coding. For example, using a multi-permutation to describe the problem as

described earlier, it is possible that two jobs scheduled on two different machines violate

the precedence constraint. In order to overcome this obstacle, some authors use weight

penalties to progressively discard invalid solutions from the search, or use reparation to

transform an invalid solution into a valid one. However, the search can be disrupted if this

happens too often. [Bierwirth 1996] provides a new representation for the JSP. This new

representation makes use of a single permutation which uses repetition to represent the

sequencing of all the operations on all the machines.

The use of this representation means that each solution requires a phase of decoding

(or reading) before it is evolved. Using this representation, each job number appears m

times within the permutation, i.e. as many times as there are operations that belong to

this job. This representation is called an indirect representation. There is no decoding step

required when using classic neighborhood and genetic operators, which means that the

permutation should be read according to the properties of the problem.

2.2.4 Permutation Flow-Shop problem

In manufacturing environments, it is common to find Permutation Flow-Shop Scheduling

Problems [Bonney 1976, King 1980, Allahverdi 1999] where n jobs have to be processed

on m machines where the goal is to optimize an objective function. The objective of the
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FSP is to schedule a set of n jobs on a set of m machines where each job J1, J2, ..., Jn
is processed on the machines M1, M2, ..., Mm organized in the line. Each job Ji with

i = 1, 2, ..., n is made of a sequence of m operations Oi1, Oi2, ...,Oim where operation

Oik is the processing of job Ji on machine Mk for a processing time pik that can not be in-

terrupted. The objective of the FSP is to find a processing order on each machineMk which

minimizes the time necessary to complete all jobs, also known as the makespan. Within

the context of this thesis, each reference to the FSP is actually a reference to the permu-

tation FSP [Allahverdi 1999, Hejazi 2005]. Using Johnson’s algorithm [Johnson 1954],

it is possible to find an optimal schedule for the FSP in O(n log n) steps when m = 2.

The problem is NP-hard when m ≥ 3 [Garey 1976]. This is why it is often tackled using

metaheuristics [Basseur 2005] for solving large problem instances.

These are the constraints that a valid FSP solution should satisfy:

• A machine can not start processing a job before the preceding machines have finished

processing that job. In other words, machineMj can not process operationOij before

it is completed on machine Mj−1.

• An operation can not be interrupted, and since a machine processes one job at a

time, the machines are critical resources.

• The sequence of jobs must be the same on all machines, e.g. if job j3 is processed

in second position on the first machine, job j3 must also be processed in second

position on all the other machines.

Figure 2.1 shows an example of an FSP instance where n = 3 and m = 4, it also shows

the optimal solution.

2.3 Factorial number system

The proposed IVM data structure (presented in Chapter 3) and the coding of work units

in the multi-core context (presented in Chapter 4) are based on the factorial number

system. The definition of this system is quite different compared to other known systems

such as decimal and binary systems. Subsection 2.3.1 reminds the main concepts used to

define any number system. Subsection 2.3.2 presents the factorial number system. Then,

Subsection 2.3.3 and Subsection 2.3.4 explain the implementation of some arithmetic

operations in the factorial system. The four arithmetic operations used in our work are

addition, subtraction, division, and comparison. These factoradic-based operators are used

in Chapter 4 for the factoradic interval-based work stealing strategies.
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Figure 2.1: Illustration of a permutation FSP where n = 3 and m = 4. The table shows

the processing times of the jobs on each machine. The Gantt diagram shows the optimal

solution for this particular instance.

• Comparison: This operation is relatively easy to implement. It consists of comparing

all the positions of the two operands starting with the most significant position (i.e.

from left to right).

• Addition: This operation is directly implemented in the factorial system. Subsec-

tion 2.3.4 explains the method used to perform this operation.

• Subtraction: The algorithm of this operation is similar to the one used for the

addition. Subsection 2.3.4 also explains the implementation of this operation.

• Division: Unlike addition and subtraction, the division is more difficult to implement

for factorial numbers. In our work, division is implemented by converting factorial

numbers to decimal numbers, thereafter, by performing division of these decimal

numbers, and finally, by converting the result of the division to a factorial number.

Subsection 2.3.3 explains the implementation of division using decimal system.

2.3.1 Definition of number system

A number system, called also numeral system or system of numeration, is a writing system

or a mathematical notation in order to express and represent a set of numbers using

symbols in a consistent manner. A number system is defined by its digits, its bases, also

called radixes, and its place-values. This subsection reminds these concepts before their

definitions for the factorial system are given in Subsection 2.3.2.
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Digits:

Etymologically, the word digit comes from ancient Latin word digit which means fingers.

Therefore, this word is related to the decimal system where ten digits are used like the ten

fingers. However, the word digit is used nowadays for all other number systems including

the binary system where the word bit is more appropriate. A number is a sequence of digits

which can have an arbitrary length. Each digit, in a number system, represents an integer.

In the decimal and the hexadecimal systems, for instance, the digits 1 and A represent

the integers one and ten, respectively. In Roman numerals, where seven symbols are used,

each symbol represents also a different integer as shown in Table 2.1.

Symbol Value

I 1

V 5

X 10

L 50

C 100

D 500

M 1,000

Table 2.1: Roman digits and their values.

There is a particular number system defined only with one digit. This simplest numeral

system is called the unary numeral system, and can be used to represent all natural num-

bers. In order to represent any number N , an arbitrarily symbol, which represents the

integer 1, is simply repeated N times. This system is often used in tallying. For example,

using the tally mark |, the number 5 is represented as |||||. Unlike multiplication or divi-

sion, the other operations, namely addition, subtraction and comparison, are particularly

simple to be implemented in the unary system. Compared to other numeral systems, the

unary system is not used in practice for large calculations but can be convenient for small

operations, like representing a number with fingers. Unary system is used in some data

compression algorithms such as Golomb coding [Golomb 1966].

Place-value:

Roman system, used in ancient Rome, employs combinations of letters from the Latin

alphabet in order to express numbers. For example, the first ten numbers can be expressed

as follows: I, II, III, IV, V, VI, VII, VIII, IX, X. In this system, numbers are written by combin-

ing symbols and adding or subtracting the values this symbols. For example, XIII means
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thirteen by adding a ten and three ones, and IX means nine by subtracting one from ten.

Unlike the decimal system, there is no zero in Roman system and symbols do not represent

tens or hundreds according to their positions. Therefore, unlike Roman system, which is

not a positional system, decimal system is a positional numeral system.

Ancient number systems, like Roman system, were not positional, and all of the number

systems most commonly used today, like binary system, are positional systems. Place-value

is a positional system of notation in which the position of a number determines its value.

In other words, the value of a number in such system is determined not just by the digits

but also by the positions of each of the digits. For example, all place-values, also called

order of magnitudes, in the unary system are equal to 1, the places-values of decimal are

powers of ten, like ones-place, tens-places, hundreds-place, etc. One of the advantages of

positional notation is the use of the same symbols for different order of magnitudes. This

greatly simplifies arithmetic operations.

Radix:

Etymologically, the word radix is a Latin word for the word root, and root is a synonym

for base in the arithmetical sense. In a positional numeral system, the radix is the number

of unique digits, including zero, used to represent numbers. For example, the radix is

ten for decimal system since this system uses ten digits from 0 through 9 in order to

represent its numbers. In a positional numeral system, the number X and the radix Y are

conventionally written as (X)Y . However, the radix can be implicitly assumed and not

written for some systems like decimal or unary systems.

Mixed radix numeral systems are non-standard positional numeral systems. Unlike

most common systems, where the base is similar to all positions, the numerical base can

vary from position to position. Such representation is used when a value or a number

is written using a sequence of units that are each a multiple of the next smaller unit.

For example, this type of number systems can be found when expressing time. A time of

10 hours, 30 minutes, and 50 seconds might be expressed as 10 : 30 : 50 in mixed-radix

notation where the radix of the first and second positions is 60 and the radix of the third

position is 24.

In positional fixed radix number system, where the base R is fixed, each digit ai in any

number (an−1...a0)R is an integer in the range 0 to (R− 1) and the number is interpreted

as shown in Equation (2.6).

(an−1...a0)R = an−1R
n−1 + ...+ a1R

1 + a0R
0 (2.6)
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Since Equation (2.6) is a polynomial in R, fixed radix system can be also called polyno-

mial system. The decimal and binary systems are both fixed-radix systems, with a radix of

10 and 2, respectively. Fractional values can also be represented with the same polynomial

notation.

0.a1a2...an = a−1R
−1 + a2R

−2 + ...+ anR
−n (2.7)

In mixed-base or radix number system, the digit ai in any number belongs to the

interval 0 to Ri, where Ri is not the same for all the values of i. The number is then

interpreted as shown in Equation (2.8).

an−1...a0 = (...((an−1 Rn−1) + an−2)Rn−2 + ...+ a1)R0 + a0 (2.8)

For example, 10 hours 30 minutes 50 seconds is interpreted as

10 : 30 : 50 = ((10× 24 + 30)× 60 + 50 seconds (2.9)

2.3.2 Definition of factorial number system

Factorial system, also called factoradic, is a mixed radix number system which is well

adapted for numbering permutations. This system is not named like most numeral systems.

For example, unary, binary and decimal are named like this because their radixes are one,

two and ten, respectively. Unlike these systems, the factorial system is named according to

its place-value instead of its mixed-radix. The term "factorial number system" is used the

first time recently in 1998 [Knuth 1998] while the French name numération factorielle is

first used in 1888 [Laisant 1888]. The term "factoradic" appears to be much more recent

[McCaffrey 2003]. General properties of mixed radix number systems also apply to the

factorial system.

As explained in Table 2.2, the ith digit from the right has base i and the place-value i! .

Therefore, the ith digit must be less than i. And in order to compute the value of a number,

the value of the ith digit must be multiplied by i!. From this, it follows that the rightmost

digit is always 0, the second can be 0 or 1, the third 0, 1 or 2, and so on.
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Place ... 7th 6th 5th 4th 3rd 2nd 1st

Radix/base ... 7 6 5 4 3 2 1

6! 5! 4! 3! 2! 1! 0!

Place-value ... = = = = = = =

720 120 24 6 2 1 1

0 0 0 0 0 0 0

1 1 1 1 1 1

2 2 2 2 2

allowed digits ... 3 3 3 3

4 4 4

5 5

6

Table 2.2: Factorial system and its radixes, place-values and digits for the seven first

positions.

It is possible to define factorial numbers without writing the rightmost digit since

it is always equal to zero. In our thesis report, a factorial number representation will

be flagged by a subscript "!", so for instance (322110)! stands for (35!24!23!12!11!00!). In

principle, the factorial system may be extended to represent fractional numbers. However,

the natural extension of place-values (-1)!, (-2)!, etc. are undefined. In factorial system,

the symmetric choice of radix values n = 0, 1, 2, 3, 4, etc. after the point may be used

instead. The correspondent place-values are therefore 1/(0!), 1/(1!), ..., 1/(n!), etc. In our

work, factorial fractional numbers are not used.

2.3.3 Operations based on decimal system

This subsection explains the used methods, in our work, to perform the division operation

in the factorial system. Unlike other operations, the division is hardly feasible directly in

the factorial system. Another way to do this operation is to convert the dividend and the

divisor to the decimal system, to perform the division in the decimal system, and thereafter

to convert the result to the factorial system. So this subsection explains how to convert a

factorial number to a decimal number, and how to convert a decimal number to a factorial

number.
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Decimal to factoradic:

When converting a decimal number into its factorial representation, digits are produced

from right to left. This conversion consists in repeatedly dividing the number by the

radixes 1, 2, 3, etc. After each division, the remainder should be considered as the digit.

The division operation continues with the integer quotient until this quotient becomes 0.

Let assume a decimal number D = 349 to convert into a factorial number. This conversion

is done using successive Euclidean division as shown in Equation (2.10).

349 = 1× 349 + 0

349 = 2× 174 + 1

174 = 3× 58 + 0

58 = 4× 14 + 2

14 = 5× 2 + 4

2 = 6× 0 + 2

(2.10)

Euclidean division is the operation of division of two integers, which produces a quo-

tient and a remainder. Each line of Equation (2.10) represents an Euclidean division

Qi = i×Qi+1 +Ri such as:

• Qi+1 is the quotient of the division Qi

i

• Ri is the reminder of this division

• Q1 = A is the decimal number to convert

• Qn+1 is always equal to zero and is the last quotient

• R1 is always equal to zero and is the first remainder
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The factorial representation F ofA is equal to concatenation of all reminders, as shown

in Equation (2.11), is F = (Rn...R2R1)! = 242010.

349 = 1× 349 + 0

= 1× (2× 174 + 1) + 0

= 1× (2× (3× 58 + 0) + 1) + 0

= 1× (2× (3× (4× 14 + 2) + 0) + 1) + 0

= 1× (2× (3× (4× (5× 2 + 4) + 2) + 0) + 1) + 0

= 1× (2× (3× (4× (5× (6× 0 + 2) + 4) + 2) + 0) + 1) + 0

= 2 5! + 4 4! + 2 3! + 0 2! + 1 1! + 0 0!

= (242010)!

(2.11)

Algorithm 1 explains the used method to perform this conversion.

Algorithm 1 DECIMAL-TO-FACTORIAL(D)

1: Place← 1

2: while D 6= 0 do

3: Fi−1 ← D mod i

4: D← D div i

5: i← i+1

6: end while

7: return F

Factoradic to decimal:

Converting a factorial number to a decimal number is simpler. Let (Rn−1...R1R0)! a fac-

torial number. In order to have its decimal equivalent, it suffices to calculate the value of

the polynomial
∑i=n−1

i=0 Ri i!. The conversion of a factorial number to its decimal equiv-

alent is therefore a sum of multiplications, while the conversion of a decimal number to

its factorial equivalent is a concatenation of divisions. Algorithm 2 explains this sum of

multiplications.
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Algorithm 2 FACTORIAL-TO-DECIMAL(F)

1: Place-value← 1

2: D← 0

3: for i← 1 to n do

4: Place-value← Place-value × i

5: D← D + Fi × Place-value

6: end for

7: return D

2.3.4 Operations based on factorial system

It is possible to use the conversion to the decimal system for implementing the addition

and subtraction. However, this results in loss of performance. The other technique is to

directly implement these operations into the factorial system. This subsection first explains

the implementation of the addition and then the implementation of the subtraction.

Addition:

Let assume two factorial numbers A = (An−1...A1A0)! and B = (Bn−1...B1B0)! to be

added and both having the size n. As these numbers are factorial, both conditions ∀i, Ai ≤ i
and ∀i, Bi ≤ i are always true. The addition of A and B would be simple if ∀i, Ai+Bi ≤ i.
In this case, the result of the addition would be C = (Cn−1...C1C0)! such as ∀i, Ci = Ai+Bi.

However, the condition ∀i, Ai + Bi ≤ i is not always satisfied. Let assume i such as

Ai +Bi > i. The value of Ci can be calculated as explained in Equation (2.12).

Ci = Ai i! +Bi i!

= [Ai +Bi]i!

= [(i+ 1)− (i+ 1) + (Ai +Bi)]i!

= (i+ 1)i! + [−(i+ 1) + (Ai +Bi)]i!

= (i+ 1)! + [(Ai +Bi)− (i+ 1)]i!

(2.12)

Therefore, there is a carry +1 for the calculation of Ci+1, and Ci = (Ai +Bi)− (i+ 1)

since the rule of Equation (2.13) is always true.

[(Ai ≤ i) and (Bi ≤ i) and (Ai +Bi > i)]⇒ 0 ≤ [(Ai +Bi)− (i+ 1)] ≤ i (2.13)
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Equation (2.14) gives the value of Ci for any values of Ai and Bi.

Ci =

{
(Ai +Bi) If (Ai +Bi) ≤ i
(Ai +Bi)− (i+ 1) Otherwise

(2.14)

Algorithm 3 explains the method used for the addition of A and B. The algorithm

proceeds from the least significant position to the most significant one, in other words,

from right to left. So, it is possible to check whether there is a carry +1 when computing

Ci. If this is the case, this carry is taken into account when computing Ci+1.

Algorithm 3 FACTORIAL-ADDITION(A, B)

1: for i← 0 to (n-1) do

2: Ci ← Ci +Ai +Bi

3: if Ci > i then

4: Ci ← Ai − (i+ 1)

5: Ci+ 1← 1

6: end if

7: end for

8: return C

Subtraction:

Let assume two factorial numbers A = (An−1...A1A0)! and B = (Bn−1...B1B0)!. As these

numbers are factorial, both conditions ∀i, Ai ≤ i and ∀i, Bi ≤ i are always satisfied.

The objective of this subsection is to explain how to perform a subtraction A − B when

assuming A ≥ B. To facilitate the explanation, both numbers are assumed to have the

same size n. If the size of B is smaller than A, then it is possible to complete B with zeros

at the left.

The subtraction A − B would be simple if ∀i, Ai ≥ Bi. In this case, the result of the

subtraction would be C = (Cn−1...C1C0)! such as ∀i, Ci = Ai−Bi. However, the condition

∀i, Ai ≥ Bi is not always satisfied. Let assume i such as Ai < Bi. The value of Ci can be

computed as explained in Equation (2.15).

Ci = Ai i!−Bi i!

= [Ai −Bi]i!

= [−(i+ 1) + (i+ 1) + (Ai −Bi)]i!

= [−(i+ 1)]i! + [(i+ 1) + (Ai −Bi)]i!

= [−1](i+ 1)! + [(i+ 1) + (Ai −Bi)]i!

(2.15)
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Therefore, there is a carry −1 to be taken into account when computing Ci+1, and

Ci = (Ai +Bi)− (i+ 1) since the rule of Equation (2.16) is always true.

[(Ai ≤ i) and (Bi ≤ i) and (Ai < Bi)]⇒ 0 ≤ [(Ai −Bi) + (i+ 1)] ≤ i (2.16)

Equation (2.17) gives the value Ci for any values of Ai and Bi.

Ci =

{
(Ai −Bi) If (Ai −Bi ≥ 0)

(Ai −Bi) + (i+ 1) Otherwise
(2.17)

Algorithm 4 explains the operation of the subtraction A − B. Like the addition, the

subtraction algorithm proceeds from the least significant position to the most significant

position. It is possible to check if there is a carry −1 when computing Ci. If this is the case,

this carry is taken into account when computing Ci+1.

Algorithm 4 FACTORIAL-SUBTRACTION(A, B)

1: for i← 0 to (n− 1) do

2: Ci ← Ci +Ai −Bi
3: if Ci < 0 then

4: Ci ← Ci + (i+1)

5: Ci+1 ← -1

6: end if

7: end for

8: return C

2.4 Handling permutations with factorial numbers

2.4.1 Basic concepts

Representation of a permutation:

In the remainder of this section, three representations are used to describe a permutation π.

• The element-based representation: π = π0π1...πn−1. The positions are implicitly

assumed sorted. The presentation gives therefore the position of each element. For

example, the element 7 of Equation (2.18) is scheduled at the position 2.

π = 527038614 (2.18)
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• The set-based representation: π = {(0, π0), (1, π1), ...(n− 1, πn−1)}. In this represen-

tation, the permutation is described as a set of pairs. For each pair, the first part gives

the position, and the second part gives the element of this position. The example of

Equation (2.18) can be written by Equation (2.19).

π = {(0, 5), (1, 2), (2, 7), (3, 0), (4, 3), (5, 8), (6, 6), (7, 1), (8, 4)} (2.19)

• The position-based representation: It is possible to represent a permutation by as-

suming that the elements are implicitly sorted. Therefore, it is necessary to give the

position of each element. The examples of Equation (2.18) and (2.19) can be written

using Equation (2.20).

π = 371480625 (2.20)

To facilitate the understanding of the methods of this section, it is therefore important

to see a permutation as a bijective relationship between the components of a vector of

elements and the components of a vector of positions.

Inversions:

Lehmer code (explained in this chapter) and inversion table (explained in Appendix B)

are both based on the inversion concept. Let assume π a permutation. An inversion in a

permutation π = π0π1...π(n−1) is a pair (πi, πj) which satisfies the two conditions stated

in Equation (2.21).

(πi, πj) is an inversion ⇐⇒ (i < j) and (πi > πj) (2.21)

In this section,

• Inversions(π) indicates all the inversions of a permutation π;

Inversions(π) = {(πi, πj)/(i < j) and (πi > πj)} (2.22)

• Inversions(πi, π) indicates all the inversions of a permutation π where πi appears

at the left side of the pairs;

Inversions(πk, π) = {(πi, πj) ∈ Inversions(π)/i = k} (2.23)
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• Inversions(π, πi) indicates all the inversions of a permutation π where πi appears

at the right part of the pairs;

Inversions(π, πk) = {(πi, πj) ∈ Inversions(π)/j = k} (2.24)

If all elements of a permutation are ordered, then this permutation contains no inver-

sions. A permutation with no inversions is called identity permutation. Equation (2.25)

gives some examples to illustrate all these concepts.

Inversions(527038614) = {(5, 2), (5, 0), (5, 3), (5, 1), (5, 4), (2, 0), (2, 1), ..., (6, 4)}

Inversions(5, 527038614) = {(5, 2), (5, 0), (5, 3), (5, 1), (5, 4)}

Inversions(527038614, 0) = {(5, 0), (2, 0), (7, 0)}

Inversions(012345678) = ∅

(2.25)

Basic vector operations:

In the explanation of the two methods of the conversion between factorial numbers and

permutations, three basic operations for handling vectors are used.

• The first operation, called VECTOR-INITIALIZE-ZERO accepts as input a vector, and initial-

izes each position of the vector by zero. This operation is used in Subsection 2.4.2

• The second operation, called VECTOR-INITIALIZE accepts as input a vector, initializes each

position of this vector by a number equal to its position, and returns the initialized

vector. This operation is used in Subsection 2.4.3

• The third operation, called VECTOR-SELECT, receives as input a vector v and a position i,

reads the integer r located at position i of vector v (i.e. r = vi), shifts all the elements

located at the right of i with one position towards the left, and returns the integer r.

This operation is used in Subsection 2.4.3
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Algorithm 5 Vector and some of its basic operations

1: procedure V E C T O R - I N I T I A L I Z E - Z E R O(V)

2: for i← 0 to (N-1) do

3: Vi ← 0

4: end for

5: end procedure

6:

7: procedure V E C T O R - I N I T I A L I Z E(V)

8: for i← 0 to (N-1) do

9: Vi ← i

10: end for

11: end procedure

12:

13: procedure V E C T O R - S E L E C T(V,I)

14: r← VI

15: for i← I to (N-1) do

16: Vi ← Vi+1

17: end for

18: return r

19: end procedure

2.4.2 Permutation to factorial number

When encoding and decoding a permutation, it is important that the used code has to be

compact and the coding and decoding operations have to be fast. With a set of n elements,

it is possible to get n! permutations, and from 0 to (n!− 1), there are n numbers. So the

idea is to associate for each of these permutations one and only one number. In other

words, the objective is to encode each permutation with one and only one number. There

are two main methods, almost equivalent, which are used to code a permutation as a

factorial number. The first is based on the Lehmer code (explainted in this section) and

the second on the inversion table (explained in Appendix B).

Lehmer code, introduced by Derrick Lehmer [Lehmer 1960], allows to encode a per-

mutation as a factorial number. The example of Table 2.3 shows how to transform a

permutation π = π0π1...π8 in order to obtain its Lehmer code L = (L0L1...L8)!. This exam-

ple assumes that the permutation π is equal to 527038614. In the figures of this table, the

elements of the permutation are represented by black circles, positions by blue triangles

topped with a bow, and the obtained Lehmer code by a red rectangle. Each of the nine
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cells of the table describes the obtained value Li of a Lehmer code position.

As shown in the first cell of the table, to obtain the first code L0, it is necessary to count

the number of inversions where the element π0 = 5 appears on the left side of a pair. In

this example and as shown in Equation (2.26), there are 5 inversions of this type. This

means that L0 is equal to 5.

Inversions(5, 41032) = {(5, 2), (5, 7), (5, 0), (5, 3), (5, 4)} (2.26)

In the same way, L1 is equal to 2 since π1 is equal to 2 and there are 2 pairs of

inversions where 2 appears at the left side of the pair. It is possible also to deduce the other

values Li as shown in Equation (2.27). Therefore, the Lehmer code of the permutation

π = 527038614 is equal to L = (525013200)!.

Li = |Inversions(πi, π)| (2.27)

The figure of the first cell shows that the number of inversions associated to π0 can not

exceed 8 since there are only 8 elements at the right of π0. In the same way, the number

of inversions associated to π1 can not exceed 7. Those associated to π2 can not exceed 6,

etc. So the general rule stipulates that the associated number of inversions for πi can not

exceed 8− i. Since the value Li is always smaller than 8− i, the obtained Lehmer code is

a factorial code.

Algorithm 6 describes the used method for obtaining the Lehmer code of any permu-

tation. This algorithm has a complexity O(n log(n)) and contains two loops. The outer

loop allows the algorithm to point the code i to compute, and the inner loop counts the

number of inversions where the element πi appears at the left side of an inversion of a

permutation π.

Algorithm 6 PERMUTATION-TO-LEHMER(π)

1: Vector-initialize-zero(L);

2: for i← 0 to (N-1) do

3: for j← (i+1) to (N-1) do

4: if πi>πj then

5: Li ← Li + 1;

6: end if

7: end for

8: end for

9: return L
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Table 2.3: Encoding a permutation using a Lehmer code.

2.4.3 Factorial number to permutation

Figures of Table 2.4 explain the procedure for obtaining a permutation π from its Lehmer

code L = (525013200)!. In these figures, a position is represented by a blue triangle, and

an element is illustrated by a black circle.

This algorithm does not operate on the vector of positions but on the vector of elements.

In this algorithm, the Lehmer code L0 is decoded first to find π0, then L1 to find π1, ...,

until decoding L8 to find π8. In other words, decoding Li allows to find the element πi of

the permutation π.

At the beginning, L0 is equal to 5. The decoding is thus performed by taking the

element that is located at position 5 of the vector of elements, put this element at position

0 of the permutation π, and shift with one position to the left all the elements which

are at the right of the position 5 of the vector of elements. Decoding a code Li consists

therefore to take the element which is located at position i of the vector of elements, put

this element at the position i of the permutation π, and shift with one position to the left

all the elements which are at the right of the position i of the vector of elements. Decoding

the Lehmer code L = (525013200)! provides therefore the permutation π = 527038614.

The method of decoding a Lehmer code is summarized by Algorithm 7. The algo-
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9th code = 5 8th code = 2 7th code = 5

6th code = 0 5th code = 1 4th code = 3

3rd code = 2 2nd code = 0 1st code = 0

Table 2.4: Decoding a permutation represented by a Lehmer code.

rithm receives as input a factorial number corresponding to a Lehmer code, and returns

as output the permutation which corresponds to this code. The algorithm begins by ini-

tializing a vector of elements called Items. This initialization is performed by the function

VECTOR-INITIALIZE explained in Subsection 2.4.1. The vector Items contains therefore all

the elements sorted. Then, the algorithm performs the generation of the permutation π

starting with the element π0 and ending with the element πn−1.

Generating the element of position i is done by decoding the Lehmer code Li. The

element of position Li of the vector Items is read using the function VECTOR-SELECT. As

explained in Subsection 2.4.1, this function also performs a left shift with one position. The

element read by this function corresponds to the element of position i of the permutation.

This algorithm also has a complexity O(n log(n)).
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Algorithm 7 LEHMER-TO-PERMUTATION(L)

1: Vector-initialize(Items)

2: for i← 0 to (n-1) do

3: li← Li

4: ITEM← Vector-select(Items,li)

5: πi ← ITEM

6: end for

7: return π

2.5 Conclusion

Many problems encountered in combinatorial optimization are permutation problems.

This chapter provides some examples of basic NP-hard problems which are often studied in

the combinatorial optimization literature. These problems are the TSP, where the objective

is to find the shortest route that connects a certain number of cities, the QAP, where the

objective is to assign facilities to locations in order to minimize the sum of the distances

multiplied by the corresponding flows, the Flow-Shop, where the objective is to find the

same schedule on all machines for a set of jobs in order to minimize the processing time,

and the Job-Shop, where unlike the Flow-Shop, jobs may have distinct schedules for each

machine. These examples are given to illustrate the large number of permutation problems

encountered in combinatorial optimization. In the rest of this report, our approaches are

validated on the flow-shop problem.

As explained in this chapter, it is easy to transform permutations to factorial numbers,

and factorial numbers to permutations. Indeed, the Lehmer code and the inversion table

are effective methods to perform these conversions. The approaches developed in this

thesis are based on seeking the optimal permutation using the factorial number system

instead of searching this optimal permutation directly in the permutation space. As shown

in the following chapters, we have developed approaches based on the factorial system

which are more efficient than those working directly in the permutation space.
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3.1 Introduction

One of the most popular exact methods, for solving to optimality permutation combinato-

rial optimization problems, is the Branch-and-Bound (B&B) algorithm. This algorithm is

based on an implicit enumeration of all the feasible solutions of the problem to be tackled.

Building the B&B tree and its exploration are performed using four operators which work

on a pool of subproblems. One of the challenging issues related to the implementation

of B&B is to define an efficient data structure for the management of that pool of sub-

problems. In this chapter, we present a new data structure to implement the B&B pool.

This data structure, called IVM which stands for Integer Vector Matrix, uses an integer, a

vector and a matrix in order to explore the tree. IVM is based on factorial number systems

explained in the previous chapter.
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The chapter is divided into three sections. Section 3.2 describes the conventional B&B

algorithm, its associated four operators, and the implementation of the pool of subprob-

lems using LL. Section 3.3 presents the implementation of the pool using our new IVM

data structure. Finally, Section 3.4 compares the performance of LL-based B&B and the

IVM-based B&B in terms of memory and CPU time usages.

From now on, the LL-based Branch-and-Bound algorithm will be referred to as LL-B&B,

whereas the IVM-based Branch-and-Bound algorithm will be referred to as IVM-B&B.

3.2 Conventional serial B&B

Before introducing our new approach based on IVM, this section reminds to the reader

how a conventional B&B works using LL data structure. The section is divided into three

subsections. The first subsection provides a general overview about the B&B algorithm,

the second subsection explains the role of the pool based on LL data structure, and the

third subsection details the four operators of this algorithm.

3.2.1 Algorithm description

Several exact resolution methods used in combinatorial optimization are Branch-and-

Bound (B&B)-like algorithms. These methods are mainly divided into three basic vari-

ants: simple B&B, Branch-and-Cut (B&C), and Branch-and-Price (B&P). There are other

B&B variants less known such as Branch-and-Peg [Goldengorin 2004], Branch-and-Win

[Pastor 2004], and Branch-and-Cut-and-Solve [Climer 2006]. This list is certainly not ex-

haustive. It is also possible to consider divide-and-conquer algorithm as a B&B algorithm.

It is enough to remove the pruning operator, explained below, from the B&B to get a

divide-and-conquer algorithm. Some authors consider B&C, B&P, and the other variants

as different algorithms from B&B. These authors use B&X to refer to algorithms like B&B,

B&C, B&P, etc. In what follows, B&B algorithm refers to simple B&B or any other variant

of this algorithm.

This algorithm is based on an implicit enumeration of all the solutions of the problem

being solved. The space of potential solutions (search space) is explored by dynamically

building a tree where:

• The root node represents the initial problem to solve.

• The leaf nodes are the possible solutions of this initial problem.

• And the internal nodes are subspaces of the total search space. Internal nodes can

be also considered as subproblems of the initial problem.
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The size of the subspaces is smaller and smaller as one gets closer and closer to the

leaves. The construction of such a tree and its exploration are performed using four

operators: branching, bounding, selection and pruning. The algorithm proceeds in several

iterations. The best solution found is saved and can be improved from an iteration to

another. Subproblems generated and not yet processed are kept in a pool. In the beginning,

this pool contains the initial problem.

The LL version of the Branch-and-Bound algorithm is shown in Algorithm 8. The

pool of Figure 3.1 is represented as a tree in order to visualize the problem/subproblem

relationships between nodes, and as a matrix to facilitate the comparison with the IVM-

based approach described in Section 3.3. In our work, this pool is implemented using a

deque (head-tail linked-list), referred to as LL, as shown in Figure 3.2. In Figure 3.1, for

instance, the node 24/13 means that job 2 is scheduled at the first position, job 4 at the

second position, and jobs 1 and 3 are not yet scheduled. In this figure, strike-through

nodes represent subproblems which are added into LL and selected from it. At each B&B

iteration, the algorithm points to a node of the B&B pool. In the example of Figure 3.1, the

algorithm is currently pointing to the solution 2314/. Therefore, Figure 3.2 represents the

state of the pool just before removing 2314/. Before selecting this solution, LL contains

five nodes, namely 3/124, 4/123, 24/13, 234/1 and 2314/.

Before having LL in this state, some operations are applied. At the beginning of the B&B,

none of the four jobs is scheduled (i.e. /1234). The node /1234 is branched/decomposed

into four nodes which are 1/234, 2/134, 3/124 and 4/123. In each of these nodes, one

job is scheduled and the three other jobs are not yet scheduled. This example assumes

that the first node 1/234 is processed or pruned, and the algorithm branches the second

node 2/134. The decomposition of this node generates three nodes, namely 21/34, 23/14

and 24/13. The example also assumes that the first node 21/34 is processed or pruned.

Therefore, the algorithm decomposes the second node 23/14, and obtains two new nodes

which are 231/4 and 234/1. The node 231/4 represents a simple subproblem and accepts

only one solution 2314/.
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Figure 3.1: An example of a pool obtained when solving a permutation problem of size 4.

Algorithm 8 LL-based B&B algorithm.
1: procedure L L - B & B - M A I N

2: best=+∞ (or −∞)

3: insert(pool, root)

4: while (pool is not empty) do

5: subproblem p←take(pool)

6: if leaf(p) then

7: cost←evaluate(n)

8: if best>cost then

9: best←cost

10: end if

11: else

12: cost←bound(n)

13: if (best>cost) then

14: subproblems ps←decompose(p)

15: for all p ∈ ps do

16: insert(pool, p)

17: end for

18: end if

19: end if

20: end while

21: end procedure
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3.2.2 LL data structure

The pool of subproblems:

In order to explore all the possible subproblems, the B&B algorithm must maintain a pool

of subproblems that are ready to be processed. At the beginning, the B&B algorithm places

the root problem in the pool of subproblems. The root problem is the subproblem where

no job has been scheduled yet. So, the pool of subproblems contains [1234].

The selection operator then takes the first subproblem from the pool and sends it to the

branching operator which will decompose this subproblem in a new set of subproblems

where one more job has been scheduled. The branching operator needs to know which

subproblems to add to the pool. For this, the branching operator first calls the bounding

operator for each possible new subproblem in order to determine whether the new job

should be placed at the beginning or at the end. In this example the branching operator

will compute the bounds of the following subproblems:

• 1234, 2134, 3124, 4123 as the first set of subproblems.

• 2341, 1342, 1243, 1234 as the second set of subproblems.

Then the branching operator calls the elimination operator in order to remove the

jobs whose bound is higher than the best known bound. Then the branching operator

can finally place the new subproblems in the pool of subproblems. Let’s suppose that the

first set has the highest sum and is the one that is chosen, so the job will be placed at

the beginning, then the elimination operator removes the first subproblem and keeps the

remaining three. Those three subproblems are placed back into the pool of subproblems

which now contains the following [2134, 3124, 4123]. Then a new round of the B&B

algorithm begins with the selection operator, which chooses the 2134 subproblem and

sends it to the branching operator.

The pool of subproblems is sorted so that the first subproblems are the ones that are

deepest in the tree, this means that the new subproblems are not simply placed at the

beginning or the end of the pool of subproblems, but at a location determined by a sorting

algorithm which considers two criteria: first the depth, then the order of the scheduled

jobs. For example if the 2134 subproblem is decomposed into 2143 and 2134, when these

subproblems are placed into the pool, it will contain [2143, 2134, 3124, 4123] where

the first two subproblems are one level deeper in the tree than the last two. The B&B

algorithm stops when the selection operator finds an empty pool of subproblems.
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Size of the pool of subproblems:

While the size of the pool of subproblems is variable, we can find a formula that gives an

upper bound for the number of subproblems in the pool of subproblems. When the best

solution is unknown a worst case scenario occurs where the branching operator of the

B&B algorithm has to decompose each node from the root node to the first explored leaf.

This means that every time the B&B algorithm selects a node, it will be removed from the

pool of subproblems, but all its children will be added to the pool of subproblems because

the elimination operator will never be used as long as the best solution is unknown. This

means that for a problem of size N , the maximum number of subproblems stored in the

pool will be N×(N−1)
2 .

LL data structure for serial B&B:

The LL data structure used to store the subproblems is shown in Figure3.2. When selecting

a new subproblem to process, the B&B algorithm takes one element from LL and uses the

bounding operator in order to determine whether it should be either pruned or decom-

posed into subproblems. If the lower bound computed by the bounding operator is greater

than the best known solution, the subproblem is eliminated by simply removing it from

LL. On the other hand, if the lower bound computed by the bounding operator is smaller

than the best known solution, the branching operator decomposes the subproblem. The

branching operator then inserts the new subproblems into LL. LL can therefore be seen as

a queue of subproblems waiting to be processed.

The subproblems in LL are not inserted randomly, or even put at the beginning or the

end of LL. There is a comparison operator which ensures that the subproblems are sorted

and inserted in the right position within LL. This sorting algorithm applied to LL allows

to explore the tree of subproblems in a certain way. For example, if LL is sorted in such

a way that the deepest subproblems are taken first by the selection operator, the tree is

explored in a Depth First Search manner. The tree can also be explored in a Breadth First

Search manner if LL is sorted in such a way that the deepest subproblems are taken last

by the selection operator.

Figure 3.2: LL-based (or deque-based) representation of a pool of subproblems
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Growth of the pool of subproblems:

When the branching operator inserts new subproblems into the pool of subproblems, the

size of this latter will vary depending on the number of subproblems to insert into the

pool. Considering that the selection operator already removed one subproblem from the

pool, three cases may appear:

• If the elimination operator removed all subproblems, then no new subproblem will

be inserted and the size of the pool of subproblems decreases by one.

• If the elimination operator removed all but one subproblem, then the size of the pool

of subproblems remains unchanged.

• If more than one subproblems are inserted, then the size of the pool of subproblems

grows by at most N − 1, N being the size of the problem.

The first two cases are unlikely to happen in the early stages of the B&B algorithm

when the subproblems explored are still close to the root problem, especially with a higher

number of jobs. It is easy to see why the pool of subproblems will grow rapidly and

in the worst cases reaches its upper bound of N×(N−1)
2 subproblems as established in

Section 3.2.2. The growth of the pool can become an issue when it goes beyond the

available memory, which is why a data structure which would allow for the execution of

the B&B algorithm within a constant amount of memory is a desirable goal. This is the

objective of the IVM data structure which is presented in Section 3.3.

3.2.3 B&B operators

Selection operator:

The selection operator often uses two main strategies, namely the depth-first and best-first

strategies. In the best-first strategy, the algorithm explores the tree by expanding the most

promising node chosen according to its upper or lower bounds. While in the depth-first

strategy, the algorithm explores as far as possible along each branch before backtracking.

Compared to the depth-first strategy, the best-first strategy enables the algorithm to

produces good solutions. With these good solutions, the algorithm can quickly prune

subproblems. However, the depth-first strategy manages a smaller pool than the the best-

first strategy. Therefore, the B&B uses a hybrid depth-first and best-first strategy. Our

algorithm selects the deepest subproblems, and if there are several subproblems with the

same depth, then the algorithm selects the best subproblem.
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The used selection operator is quite simple to implement: It chooses the subproblem

that is located at the top of LL. However, LL is assumed to be sorted according to depths

and bound costs of the subproblems.

Branching operator:

The role of the conventional branching operator is to decompose a subproblem into new

subproblems that are candidates for further exploration and to insert them back into the

pool of subproblems at the right positions. The decomposition itself is accomplished by

a combination of the bounding operator and the elimination operator, therefore the only

concrete responsibility of the branching operator is the insertion of the new subproblems

into the pool of subproblems. The time complexity for an insertion in LL is linear and

depends on the number of elements of that pool. In this case, the time complexity depends

on the number of subproblems in the pool of subproblems.

As shown in Subsection 3.2.2, N×(N−1)2 is the maximum size of the pool of subproblems,

where N is the size of the problem. The sorting algorithm needs to compare two arrays of

N elements to determine whether a subproblem can be inserted at a particular position,

this means that the number of comparisons required for each insertion is at most N
2×(N−1)

2 .

Finally there are at most N subproblems to insert into the pool, so the maximum number

of comparisons required to insert all the subproblems is N3×(N−1)
2 . The time complexity

of the branching operator in the worst case is therefore O(N4).

In the B&B implementation that was investigated in this thesis, the jobs are not simply

put next to each other from the beginning to the end of the subproblem. When scheduling

the next job, this version of the B&B algorithm first evaluates whether it is better to put

the job at the beginning or at the end of the subproblem that will be sent to the bounding

operator. For example, if the first job chosen is 2 and is placed at the beginning, and the

second job chosen is 3 and placed at the end, the resulting subproblem will be 2143 where

the bolded jobs are scheduled and the jobs in italics are not yet scheduled. The branching

operator accomplishes this by computing the bound of each possible job that has to be

scheduled, first at the beginning, then at the end. For example, if job 2 is already scheduled

at the beginning, then the following subproblems will be sent to the bounding operator:

• 2134, 2314, and 2413 as the first set of subproblems.

• 2341, 2143, and 2134 as the second set of subproblems.

The branching operator then computes the sum of the bounds for the subproblem

where the jobs were placed at the beginning, and do the same for the subproblem where

the jobs were put at the end. The highest sum determines which one will be chosen. In this
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example, if the sum of the second set of subproblems is higher, then the first set is discarded

completely. After that, the elimination operator removes the subproblems whose bound is

higher than the best known solution. The remaining subproblems are then inserted in the

pool of subproblems.

Elimination operator:

The conventional elimination or pruning operator takes a set of subproblems and removes

all the subproblems whose bound is greater than the best known solution. The time

complexity of a deletion in LL is O(1). Each element of LL will be considered for deletion

and there are at most N elements in the list, N being the size of the problem. This

means that the elimination operator will perform at most N deletions. Therefore, the time

complexity of the elimination operator is O(N).

Bounding operator:

As indicated by its name, the Branch-and-Bound algorithm requires two main operations:

branching and bounding. The bounding operator is a procedure that computes upper and

lower bounds for a given subproblem. This operator is the core of the B&B algorithm since

the quality of the bounding largely determines the resolution time. Besides, the bounding

operator often consumes the biggest part of this resolution time [Chakroun 2013c].

3.3 IVM-based serial B&B

The use of LL to store a pool of subproblems described in Subsection 3.2.2 has a number of

disadvantages. The insertion of new subproblems in LL can be very costly, since it implies

finding the right position in LL for each subproblem, which involves the comparison of

each subproblem to the ones already present in LL until its place is found. Considering

that LL can grow and get very large, the branching operator can take a significant amount

of time due to the insertions in LL. Another problem to consider is the memory usage of

LL, which can grow rapidly. The use of a Depth First Search approach to explore the tree

can make this problem less significant than in a Breadth First Search, but LL can still grow

rapidly for problems of a significant size.

It is therefore necessary to create a new data structure which exhibits a better behavior

in the management of the subproblems of a permutation problem. The IVM (Integer

Vector Matrix) data structure allows to store and manage subproblems in a more efficient

way than LL. It uses a constant amount of memory which makes its behavior much more

predictable than LL. Its branching operator is also less costly than the one described in
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Subsection 3.2.2. It is however less generic than the LL data structure when used in the

B&B algorithm. It can only be used for permutation problems and only allows for a Depth

First Search exploration of the tree of subproblems.

3.3.1 IVM data structure

The IVM version of the Branch-and-Bound algorithm (IVM-B&B) is shown in Algorithm 9.

Figure3.3 shows the representation of the state of the pool of Figure 3.1 using an integer, a

square matrix of integers and a position-vector instead of LL used in Section 3.2. The size

of these square matrix and vector is equal to the size of the problem. In this new version,

the values of the position-vector belong to factorial number system, and this vector behaves

like a counter in the factorial system. In this example, their size is equal to four. Each cell

of the matrix represents a subproblem from the B&B pool. In other words, a single integer

represents a subproblem rather than a permutation of integers. In this matrix, a cell with

a row number strictly greater than its column number is never used (upper triangular

matrix). In each cell, only the new not yet scheduled jobs are represented. For example,

the three subproblems obtained after the decomposition of the second cell of the first row

are written in the second row. In this second row, only job 1 is written in the first cell, job

3 in the second cell, and job 4 in the third cell.

For each row, the associated position vector index always points to the cell which is

currently explored. In other words, the index points to the last decomposed subproblem of

its row. In Figure 3.3, the first and second indexes point to the second cell, while the third

and fourth indexes point to the first cell of their rows. The last index always points to the

first cell. Jobs already scheduled are deduced from previous rows using the position-vector.

And of course, non-scheduled jobs are those which do not belong to the list of scheduled

jobs. For example, when the algorithm points to the first cell of the last row, the scheduled

job in this cell is 4. Before this job, the indexes of the position-vector indicate that the jobs

scheduled are 1 in the third row, 3 in the second row, and 2 in the first row. All jobs are

scheduled. Therefore, this cell of the matrix encodes the subproblem 2314/ which is a

solution.

Figure 3.3: IVM representation of a pool of subproblems.
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Algorithm 9 IVM-based B&B algorithm.
1: procedure I V M - B & B - M A I N

2: while (true) do

3: if (row-end) then

4: if (first-row) then

5: exit-program

6: else

7: cell-upward

8: end if

9: else

10: if (cell-eliminate) then

11: cell-rightward

12: else

13: next-row-process

14: cell-downward

15: end if

16: end if

17: end while

18: end procedure

19: procedure N E X T- R O W- P R O C E S S

20: cell-branch

21: for all cell of the next row do

22: cell-selection

23: cell-bound

24: end for

25: end procedure

The IVM data structure within the context of the tree:

In order to clarify the relationship between the IVM data structure and the tree that is

explored, Figure 3.4 shows the whole tree and the parts that are stored in the IVM data

structure. It shows the same solution 2314/ as Figure 3.3 within the context of the entire

tree, the root of this tree is the starting problem /1234.

In this tree, the job numbers are shown in black inside the nodes, the blue number

below and to the left of each node is the index of that job with respect to its parent node.

The red numbers are the jobs which have been scheduled, those jobs are the ones whose

indices correspond to the 1100 position vector of Figure 3.3. As can be seen, the numbers

in the position vector represent the index of the job that is currently scheduled. In this

example, the position vector 1100 points to the jobs 2314.
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Each red box shown in the tree corresponds to one line in the matrix of the IVM data

structure. This shows that at any given moment, the IVM data structure can store only

one complete branch of the whole tree. However by modifying the values of the position

vector, it is possible to store any of the possible branches, therefore it is possible to explore

the tree in its entirety using an IVM data structure.

Figure 3.4: Representation of the IVM data structure within the context of the whole tree.

3.3.2 IVM advanced techniques

Scheduling a job at the beginning or at the end with IVM:

As explained in Section 3.2.3, this particular implementation of the B&B algorithm chooses

whether it will put a newly scheduled job at the beginning or at the end of the permutation.

The choice is made in the same way as the Linked LL version, however IVM-B&B stores

these choices in a different manner. IVM-B&B uses a direction vector which contains either

"BEGIN" or "END" for each row of the matrix. This way the selection operator knows

whether a job should be scheduled at the beginning or at the end.

In the example shown in Figure 3.5, job 2 is scheduled at the beginning and job 3

is scheduled at the end, job 1 and job 4 are non-scheduled. Therefore, the subproblem

represented by this instance of IVM is 2143. Since the Integer is pointing at the second

row of the matrix, only the first two rows have a BEGIN or END value, the other two rows

do not contain scheduled jobs yet, so a BEGIN or END value would have no meaning.
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1 2 3 41

86

1
1

0

0

1 3 4

BEGIN

END

Figure 3.5: IVM representation of a pool of subproblems with a direction vector

Keeping track of which subproblems have been eliminated:

The B&B algorithm eliminates the subproblems whose cost is superior to the best known

solution. However, keeping track of the cost of each subproblem would require a second

matrix containing these costs. In order to avoid that, we need a way to mark subproblems

as eliminated that does not use more memory. The subproblems are all stored as integer

greater than or equal to zero, which leaves the negative integers unused. By using the

negative integers to represent the eliminated subproblems, we can keep track of the elimi-

nated subproblems without having to store their cost, which means we do not use more

memory for a second matrix. If a subproblem is stored as the integer N in the matrix, then

it will be stored as −N − 1 if it is eliminated (Or as −N in the case where job 0 is assumed

does not exist). For example, subproblem 1 will be stored as −2 if it is eliminated, then by

doing the same operation, we can find out what the original subproblem was.

In the example shown in Figure 3.6a, let’s suppose that on the first row, the bound

computed for subproblems 1 and 4 is superior to the best known solution. This means that

subproblems 1 and 4 have been removed by the elimination operator. The actual contents

of the Matrix are shown in Figure 3.6b, subproblems 1 and 4 are stored as the negative

integers −2 and −5. This allows IVM-B&B to know that those two subproblems should be

skipped when exploring the tree of subproblems.

1 2 3 41

86

3
0

0

0

1 3 4

BEGIN

END

3 4

4

BEGIN

BEGIN

(a) Abstract representation.

-2 2 3 -51

86

3
0

0

0

1 3 4

BEGIN

END

3 4

4

BEGIN

BEGIN

(b) In-memory representation.

Figure 3.6: IVM representation of eliminated subproblems.
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3.3.3 Revisited B&B operators

The B&B algorithm consists of four operators: selection, branching, elimination and bound-

ing. The IVM data structure does not affect the bounding operator. However the selection,

branching and elimination operators have to be revisited to work with this new data

structure.

Selection Operator:

As shown in Figure 3.7b, the integer always points to one component of the vector, and

this component points to a cell of the matrix. The selection operator simply has to decode

the subproblem associated to this cell. The list of scheduled jobs are those that are pointed

by the vector: 2 3, and the list of non-scheduled jobs are those of the last row: 1 4, job 3

is excluded because it is pointed by the vector and thus is one of the scheduled jobs.

Therefore, the selected subproblem is 23/14.

In order to generate the permutation, the vector must be read up to the index stored

in the Integer, which means at most N reads, N being the number of jobs. In this example,

2 and 3 are read, not 1 and 4 because the integer points to 1. The matrix must also be

read, however only one element on each row is read, except for the last row pointed by

the integer, where the other elements contain the non-scheduled jobs. This means that N

elements are read from the Matrix. In this example, only 2 is read in the first row, then 3

in the second row, the remaining jobs of the second row 1 and 4 are the unscheduled jobs.

So, at most 2N elements are read for the selection operator and N elements are written

to the permutation, which means that its time complexity is O(N).

1/234 2/134 3/124 4/123

21/34 23/14 24/13

/1234

.

.

. .

(a) LL representation.

1 2 3 4

1/234
86

1

1

1
1

3 4

0

0

(b) IVM representation.

Figure 3.7: Selection Operator.
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Branching Operator:

To divide the subproblem 23/14 seen in Figure 3.7b, the branching operator only has to

copy the row pointed by the Integer to the next row excluding the job that is pointed by

the position Vector. The Integer is then incremented to point to the new row.

As shown in Figure 3.8b, two new subproblems have been created, 231/4 and 234/1.

To be able to fill the new row, all the elements of the previous row must be read. This

means that there will be at most N reads and N − 1 writes, N being the number of jobs.

In this example, jobs 1 and 4 are read then written to the next line, while job 3 is ignored

because it is pointed to by the Vector.

After the new row is created, it needs to be sorted according to the lower bound

of each subproblem. When multiple subproblems have the same lower bound, they are

sorted according to the number of the subproblem. The better behaved sorting algorithms

generally have a time complexity of O(N log(N)) and the number of elements to sort is at

most N , therefore the time complexity of the branching operator is O(N log(N)), where

N is the size of the problem.

The reason for sorting the subproblems is to make sure that the subproblems are

explored in the same order for both LL-B&B and IVM-B&B. While this does not change

the number of explored subproblems when the best known solution is initialized with

the optimal solution, it makes a difference when it is initialized with infinity. In general

use, the sorting of subproblems is not required, which reduces the time complexity of the

branching operator to O(N).

1/234 2/134 3/124 4/123

21/34 23/14 24/13

231/4 234/1

/1234

.

.

. .

(a) LL representation.

1 2 3 4

1/234
86

1

1

1

0 1

3 4

4

0

2

(b) IVM representation.

Figure 3.8: Branching Operator.
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Elimination Operator:

As shown in Figure 3.9b, to discard the subproblem 231/4, the elimination operator only

has to increment the component of the Vector which is pointed by the Integer. The selected

subproblem is now 234/1.

If the Vector component points to the end of the row, the Integer is decremented

and this component of the Vector is incremented. Figure 3.10b shows that the selected

subproblem is now 24/13.

The incrementation of an element in an array has an O(1) complexity. When the

subproblem is the last of its row, the elimination must decrement the Integer and increment

the pointed element of the Vector. However, it is possible that the subproblem pointed to

on the previous row is also at the end of the row, leading to another decrementation of the

Integer. In the worst case, the Integer can go from the last row all the way up to first row,

which requires N − 1 decrementations. Therefore, the time complexity of the elimination

operator is O(N).

3.4 Experimentation

This section compares the LL-based B&B and the IVM-based B&B in terms of memory and

CPU time usage.

3.4.1 Experimental settings

The performance of a B&B algorithm depends mainly on the efficiency of the used bound-

ing operator. The lower bound proposed by Lageweg et al. [Lenstra 1978] is used in our

bounding operator. This bound is known for its good results and has a complexity of

O(M2Nlog(N)), where N is the number of jobs and M the number of machines. This

lower bound is mainly based on Johnson’s theorem [Johnson 1954] which provides a pro-

cedure for finding an optimal solution for Flow-Shop scheduling problem with 2 machines.

In our experiments, we used the Flow-Shop instances defined by Taillard

[Taillard 1993]. These standard instances are often used in the literature to evaluate

the performance of methods that minimize the makespan. In the experiments of this chap-

ter, we used the 10 instances defined with 20 jobs and 20 machines (These instances are

named Ta021, Ta022, ..., and Ta030), and the 10 instances defined with 50 jobs and 10

machines (These instances are named Ta041, Ta042, ..., and Ta050). The other instances

are not used in our validation because they are either easy or difficult to solve with a serial

algorithm. For example, the resolution of the instance Ta056 (The sixth instance with 50
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Figure 3.9: Elimination Operator when the subproblem is not the last of its row.
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Figure 3.10: Elimination Operator when the subproblem is the last of its row.

jobs and 20 machines), performed in [Mezmaz 2007b], lasted 25 days with an average of

328 processors and a cumulative computation time of about 22 years.

The serial LL-B&B and IVM-B&B have been implemented in C++ and compiled using

GCC 4.6 with −O3 option. All the experiments were run on the computer Poincaré which

belongs to Maison de la Simulation. Each of Poincaré’s 92 CPU nodes is composed of 2

8-core Intel Xeon Sandy Bridge E5-2670 processors running at 2.60 GHz and has 32 Gb of

memory. Each of the 16 physical cores has 32 KB of L1 instruction cache, 32 KB of L1 data

cache and 256 KB of L2 cache. Each of the 2 processors has 20 MB of L3 cache.The 32 GB

of memory are spread across 2 NUMA nodes, one for each processor. For each Flow-Shop

instance the computational time spent in managing the pool of subproblems is measured

using the clock_gettime function with a nanosecond precision.
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3.4.2 Memory evaluation

It is possible to make a theoretical study of the maximum memory needed by the LL and

IVM approaches to store their pool. For both approaches, the maximum size depends only

on the number of jobs N of an instance. The size of the memory used by an IVM data

structure is always constant. In bytes, this size can be calculated using Equation (3.1).

Maximum− size(IV M) = [
N (N + 1)

2
+ 3 N + 1] bytes

= [
1

2
N2 +

7

2
N + 1] bytes

(3.1)

Unlike IVM, the advantage of LL is to not require additional CPU calculation time for

generating a subproblem. In the LL approach, a conventional coding of a subproblem is to

write the list of scheduled jobs and the list of unscheduled jobs. By assuming that a job is

encoded with 1 byte, the size of a subproblem of an instance defined by N jobs is always

equal to N bytes, and therefore, the size of a pool LL, which contains X subproblems,

is equal to N × X bytes. In LL, a pool reaches its maximum size when visiting the first

solution. At this moment, the pool contains N−1 subproblems with 1 job scheduled,N−2

subproblems with 2 jobs scheduled, ..., until N − (N − 1) (i.e. 1) subproblem with N − 1

jobs scheduled. The maximum size of a pool LL can be calculated using Equation (3.2).

Maximum− size(LL) = [
i=N−1∑
i=1

(N − i)] subproblems

= [

k=N−1∑
k=1

k] subproblems

= [
N (N − 1)

2
] subproblems

= [
N2 (N − 1)

2
] bytes

= [
1

2
N3 − 1

2
N2] bytes

(3.2)

In terms of space, this means that the IVM data structure has a maximum of O(N2)

complexity, while the LL data structure has a maximum of O(N3) complexity. Therefore,

IVM approach can be up to N better than the LL approach in terms of memory size.

Besides, Table 3.1 concretely shows the ratio between the two approaches. These ratios

are computed using Equation (3.1) and Equation (3.2). The values of this table are given

for different sizes of jobs (i.e. 20, 50, 100, 200 and 500) of Taillard instances.
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Instance LL max. IVM max. IVM/LL max.

size memory size (Bytes) memory size (Bytes) memory ratio

20 3800 271 14.07

50 61250 1426 42.98

100 495000 5351 92.52

200 3980000 20701 192.27

500 62375000 126751 492.11

Table 3.1: Comparison of serial IVM and LL B&B algorithms in terms of maximum memory.

However, the comparison of Table 3.1, in terms of maximum memory of both ap-

proaches, is not the best indicator to get an idea about the ratio of memory sizes really

used by LL and IVM approaches. It is therefore important to compare the IVM and LL struc-

tures in terms of their memory size really used during a resolution. The average size of

IVM is constant and is the same than the value given in Equation (3.2), while the average

size of LL can not be deduced from a theoretical study. It is therefore necessary to solve

an instance to know its average memory size when the resolution uses an LL structure.

Tables 3.2 and 3.3 give the average obtained sizes for the instances defined with 20

jobs and 50 jobs, respectively. In these two tables, the first column gives the name of the

instance, the second column the average number of subproblems when using LL, the third

column the average size in bytes for LL, the fourth column the average size in bytes for

IVM which is constant, and the last column the ratio between the sizes of LL and IVM. The

last row of the table gives the average of the values of each column.
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Instance LL average size LL average size IVM size LL/IVM size ratio

(Subproblems) (Bytes) (Bytes)

Ta021 118 2360

271

8.74

Ta022 127 2540 9.41

Ta023 111 2220 8.22

Ta024 123 2460 9.11

Ta025 117 2340 8.67

Ta026 122 2440 9.04

Ta027 115 2300 8.52

Ta028 127 2540 9.41

Ta029 124 2480 9.19

Ta030 131 2620 9.70

Average 121.50 2430.00 271 9.00

Table 3.2: Comparison of the size of IVM and the average size of LL when solving the ten

instances defined with 20 jobs.

Instance LL average size LL average size IVM size LL/IVM size ratio

(Subproblems) (Bytes) (Bytes)

Ta041 961 48050

1426

33.72

Ta042 980 49000 34.39

Ta043 1059 52950 37.16

Ta044 1085 54250 38.07

Ta045 824 41200 28.91

Ta046 1056 52800 37.05

Ta047 1038 51900 36.42

Ta048 1049 52450 36.81

Ta049 1094 54700 38.39

Ta050 993 49650 34.84

Average 1013.90 50695.00 1426 35.58

Table 3.3: Comparison of the size of IVM and the average size of LL when solving the ten

instances defined with 50 jobs.

According to Table 3.1, the maximum expected ratio between the sizes of LL and IVM
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is equal to 20 for the instances defined by 20 jobs and 50 for the instances defined by

50 jobs. The experiments show that the average obtained ratios are respectively 9 and

about 35. These results show that on average an IVM structure clearly occupies much less

memory space than LL data structure.

More results are available in the appendix in Tables A.1 and A.2.

3.4.3 CPU Time evaluation

As written in the previous subsection, it is clear that the IVM approach uses much less

memory than the LL approach. However, unlike LL, IVM requires coding and decoding

mechanisms of the subproblems of the pool. A question then arises about the cost of IVM

encoding and decoding mechanisms. Indeed, the gain in IVM memory should not be to

the detriment of an additional computing cost to manage the pool. So the objective of this

subsection is to compare the LL and IVM approaches in terms of pool management CPU

time.

In our comparative evaluation, the pool management time does not only include the

CPU time spent by reading and writing operations in the LL and IVM data structures. This

time also includes the CPU time spent by the selection, pruning and branching operations.

In other words, the pool management time includes all the operations made in the B&B

algorithm except the bounding operation. As indicated in this chapter, the selection, prun-

ing and branching operators are adapted to the IVM data structure. Therefore, these three

operators are not implemented in the same way for the LL and IVM approaches. So, it is

fair to include their CPU time cost in the pool management time.

Table 3.4 gives the average time obtained for the instances defined with 20 jobs, and

Table 3.5 for the instances defined with 50 jobs. In both tables, the first column gives

the name of the instance, the second column the pool management CPU time of the LL

approach, the third column the pool management CPU time of the IVM approach, and the

last column the ratio between the pool management CPU times of LL and IVM. The last

row of the table gives the average of the values of each column.
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Instance LL time IVM time LL/IVM ratio

Ta021 411.09 149.66 2.75

Ta022 538.89 195.10 2.76

Ta024 393.28 146.01 2.69

Ta026 1425.14 537.28 2.65

Ta027 767.72 281.55 2.73

Ta028 133.54 47.71 2.80

Ta029 424.42 153.27 2.77

Ta030 76.45 28.10 2.72

Average 521.32 192.34 ∼ 2.75

Table 3.4: Comparison of serial IVM and LL-based B&B algorithms in terms of the CPU

time used for the management of the pool when solving the instances defined with 20

jobs.

Instance LL time IVM time LL/IVM ratio

Ta041 7.45 2.44 3.05

Ta042 3235.67 1030.24 3.14

Ta043 690.58 228.17 3.03

Ta044 3.59 1.30 2.76

Ta045 19.60 6.08 3.22

Ta046 34.43 11.54 2.98

Ta047 153.76 51.66 2.98

Ta048 66.59 22.14 3.01

Ta049 4.74 1.78 2.66

Ta050 1396.59 452.31 3.09

Average 561.30 180.77 ∼ 3.00

Table 3.5: Comparison of serial IVM and LL-based B&B algorithms in terms of the CPU

time used for the management of the pool when solving the instances defined with 50

jobs.

The previous subsection shows that the IVM structure uses much less memory space

than the LL structure. As the information is encoded in IVM, unlike LL, it is intuitively

logical to expect that the management of a pool coded with IVM takes more time than the

management of a pool coded with LL. However, Table 3.4 shows that the management of

the IVM pool takes on average about 2.75 less CPU time than the LL pool when solving

instances defined by 20 jobs. In addition, Table 3.5 shows that this pool management

takes on average about 3 times less CPU time than the LL pool when solving instances

defined by 50 jobs.
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These average ratios can be certainly explained by the adaptation made for the three

operators. The selection, branching and pruning operators are more optimized in the

IVM approach compared to the LL approach. For example, the LL branching operator

involves creating a certain number of subproblems, and each subproblem must contain

a permutation almost similar to the subproblem which is branched. Unlike this LL oper-

ator, the IVM branching operator merely copies the content of a matrix row to another row.

More results are available in the appendix in Tables A.3, A.4, A.5 and A.6.

3.5 Conclusion

In this chapter, we proposed a new data structure, called IVM (Integer Vector Matrix), to

implement the pool of subproblems generated by a B&B algorithm for solving permutation

optimization problems. The position-vector of IVM behaves like a counter in the factorial

number system. In this new approach, it is necessary to transform the value of this position-

vector from a factorial value to a permutation. The IVM data structure does not affect the

bounding operator since this operator does not work directly on the pool. However, the

selection, branching and elimination operators have been revisited to operate on this new

data structure.

This new approach is validated using standard instances of the Flow-Shop which is

a permutation problem presented in the previous chapter. This evaluation is performed

in terms of memory and CPU time usages. Experiments show that the use of IVM does

not only greatly reduce the used memory size, but also significantly reduces the CPU time

spent for the pool management. Indeed, compared to LL, these experiments show that

on average the IVM structure (1) occupies 9 times less memory space for the instances

defined with 20 jobs, (2) uses about 35 times less memory for the instances with 50 jobs,

(3) manages the pool about 2.5 times faster for instances with 20 jobs, and (4) manages

the pool about 3 times faster for instances with 50 jobs.



54 Chapter 3. Serial IVM-based B&B



C H A P T E R 4

Multi-core IVM-based B&B

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Parallel models for B&B algorithms . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Multi-parametric parallel model . . . . . . . . . . . . . . . . . . . . . 56

4.2.2 Parallel evaluation of bounds model . . . . . . . . . . . . . . . . . . 57

4.2.3 Parallel evaluation of a bound model . . . . . . . . . . . . . . . . . . 58

4.2.4 Parallel tree exploration model . . . . . . . . . . . . . . . . . . . . . 58

4.3 Work stealing strategies for multi-core IVM-based B&B . . . . . . . . . . . 59

4.3.1 WS-based B&B implementation . . . . . . . . . . . . . . . . . . . . . 59

4.3.2 Coalesced work units . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.3 Dividing one factoradic interval into two intervals . . . . . . . . . . . 63

4.3.4 Victim selection and granularity policies . . . . . . . . . . . . . . . . 67

4.4 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.1 Experimental settings . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.2 Strategy and granularity policies evaluation . . . . . . . . . . . . . . 75

4.4.3 Memory evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.4 CPU time evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1 Introduction

Thanks to their bounding operator B&B algorithms can significantly reduce the computing

power needed to explore the whole solution space. However, such power may still be

huge, especially when solving large instances. That is why the use of increasingly powerful

hardware is also necessary to solve these larger instances. For years CPUs have been made

faster by increasing the clock frequency. However that method has reached a physical

barrier due to energy consumption and heat dissipation. Hardware manufacturers such
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as Intel or AMD have worked around these problems by building multi-core CPUs which

provide more computing power while not increasing the clock frequency.

Work stealing has been proven to be an effective method for scheduling irregular par-

allel programs such as Branch-and-Bound (B&B) on multi-core processors [Shavit 2011,

Acar 2013]. In this chapter, the focus is put on multi-core B&B algorithms for solving large

scale permutation-based optimization problems. Five work stealing (WS) strategies are

investigated using the IVM data structure presented in the previous chapter. In these strate-

gies, each thread has a private IVM allowing the local management of a set of subproblems

enumerated using a factorial system presented in the first chapter. The WS strategies differ

in the way the victim thread is selected and the granularity of stolen work units (intervals

of factoradics).

The chapter is divided into three sections. Section 4.2 describes the different ap-

proaches proposed in the literature to parallelize B&B algorithms. Section 4.3 presents

the five WS strategies investigated in our work. Finally, Section 4.4 compares this five IVM

WS strategies to their conventional linked-list-based counterparts.

4.2 Parallel models for B&B algorithms

Many approaches to parallelize B&B algorithms are proposed in the literature. A tax-

onomy of these models is presented in [Melab 2005]. This taxonomy is based on the

classifications proposed in [Cung 1994] and [Gendron 1994]. Four models are identified:

the multi-parametric parallel model, the parallel evaluation of bounds model, the parallel

evaluation of a bound model, and the parallel tree exploration model. This later, illustrated

in Figure 4.3, is the most frequently used in the literature and it is also the focus of this

thesis.

4.2.1 Multi-parametric parallel model

The multi-parametric parallel model (Figure 4.1), relatively less studied in the literature,

is based on the use of several B&B algorithms run in parallel. This is a coarse-grained

model. Several variants of this model may be considered according to the choice of one

or more parameter(s) of the B&B algorithm. The parallel B&B algorithms differ only by

the branching operator in [Miller 1993]. These parallel algorithms are different only by

the selection operator in [Janakiram 1988] where a variant of the depth-first exploration

strategy is used. Each algorithm randomly selects the next subproblem to be addressed

among the last generated subproblems. In [Kumar 1984], each algorithm uses a different

upper bound in their tests. The idea is that one algorithm uses the best upper bound found
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Figure 4.1: Illustration of the multi-parametric parallel model.

while the others use this bound reduced by an ε value(ε-optimal, where ε > 0). Another

variant of this parallel model consists of decomposing the interval defined by the lower

and upper bounds of the subproblem to be solved into subintervals. Each subinterval is

assigned to one of these algorithms.

The main advantage of the multi-parametric parallel model is its genericity allowing

its use in a transparent manner to the end-user. Its disadvantage is the overhead in the

computation it generates since some subproblems in the tree are explored in a redundant

manner. However, this extra computing cost has less consequence when the model is

deployed on a high performance computing system since it has many computing resources.

4.2.2 Parallel evaluation of bounds model

Figure 4.2: Illustration of the parallel evaluation of bounds model.

The parallel evaluation of bounds model (Figure 4.2) allows the parallelization of the
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bounding of subproblems generated by the branching operator. This model is used in the

case where the bounding operator is performed many times after the branching operator.

The model does not change the order nor the number of explored subproblems in the

parallel B&B algorithm compared to the serial B&B. Besides the fact that the bounding

phase is faster in the parallel evaluation of bounds B&B than the serial B&B, the main

advantage of this model is its genericity. However, this model can be inefficient in some

parallel computing environments for the following reasons:

• The model is synchronous and therefore unsuitable for heterogeneous and volatile

contexts.

• Its granularity (the cost of the bounding operator) can be fine and therefore unsuit-

able for high performance computing systems.

• The degree of parallelism of this model depends on the addressed problem. For the

Flow-Shop problem, the more a subproblem is deep in the tree, the more the number

of its subproblems decreases, so the less this model is suitable.

The combination of this model with the parallel tree exploration model can generate

a higher degree of parallelism than using this model alone.

4.2.3 Parallel evaluation of a bound model

This model does not change the semantics of the algorithm because it is similar to the

serial version except that the bounding operator is faster. The efficiency of this centralized

and synchronous model depends on the addressed problem. Because of its scalability, the

efficiency of this model depends on its combination with another model.

4.2.4 Parallel tree exploration model

The parallel tree exploration model consists of simultaneously exploring several subprob-

lems that define different research subspaces of the initial problem (Figure 4.3). This

means that selection, branching, bounding and pruning operators are executed in parallel

synchronously or asynchronously by different processes exploring these subspaces. In

synchronous mode, a B&B algorithm has different phases. During each phase, the B&B

processes of the algorithm do their exploration independently. Between the phases, the

B&B processes are synchronized to exchange information, such as the best solution found

so far. In asynchronous mode, the B&B processes communicate in an unpredictable

manner.
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Figure 4.3: Illustration of the parallel tree exploration model.

Compared to other models, the parallel tree exploration model is more frequently used

and is the subject of much research for two main reasons. On the one hand, the degree

of parallelism of this model may be important when solving large problem instances

justifying the use of multi-core computing or a high performance computing system. On

the other hand, the implementation of the model raises several issues that constitute

interesting research challenges in parallel computing. Among these issues, we can include

the placement and management of the set of subproblems to be solved, the distribution

and sharing of the load (generated subproblems), the communication of the best solution

found so far, detecting the termination of the algorithm, and fault tolerance.

4.3 Work stealing strategies for multi-core IVM-based B&B

4.3.1 WS-based B&B implementation

Work stealing has proven to be an effective method for scheduling irregular parallel

programs such as Branch-and-Bound on shared memory computers. In addition, the

efficiency of parallel B&B depends strongly on the implementation of the work stealing

paradigm and the data structures used to store the generated subproblems at runtime.

The design of concurrent data structures on multi-core computers is becoming increas-

ingly challenging with the advent of multi-core processors as the standard computing

platform [Shavit 2011]. For B&B algorithms, the choice of the data structure depends

on the exploration strategy. For instance, in [Chakroun 2013a] the authors propose a

parallel depth-first B&B for multi-core processors combined with GPUs. The multi-core

part is implemented using Pthreads library. The work stealing mechanism is based on
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a concurrent stack which is made non-blocking by using the try primitive instead of

lock. For the best-first B&B, the priority queue data structure is often used. For instance,

in [Le Cun 1995] this data structure is used for parallel tree search algorithms (B&B

and A*) on shared memory computers. Partial locking is used to allow non-blocking

concurrent accesses and speed up the exploration process.

Unfortunately, concurrent data structures suffer from a memory issue. For instance,

in [Acar 2013], it is reported that the deque (doubly-ended queue) operations require

expensive memory fences in modern weak-memory architectures. Therefore, there has

been a lot recent interest in implementations of work stealing with non-concurrent

(private) data structures such as deques [Acar 2013, Shavit 2011]. In this thesis, we

investigate and compare two different implementations of a private data structure

conceptually similar to deque. The first one is implemented as an IVM data structure. The

other one is based on the implementation of deque provided in C++ (referred to as LL in

this document) and used for the B&B.

Algorithm 10 describes a thread of our multi-threaded IVM-based B&B. Each thread

explores its interval using its own integer, position-vector and matrix. In this algorithm,

each one of the T threads of the algorithm runs IVM-B&B-thread procedure.

At the beginning, each thread initializes its position-vector and matrix. Threads are

numbered from 0 to T − 1. Each thread R is initialized with the interval [R ∗N !/T, (R+

1)∗N !/T [. In other words, the vector-position is set to R∗N !/T . Its matrix is initialized by

calling factoradic-set described in Subsection 4.3.2. While there is at least one non-empty

interval, IVM-B&B-thread applies a new iteration. In this iteration, IVM-B&B-thread checks

the status of its interval. Three scenarios can occur:

• interval-empty: An interval is said empty when its beginning is greater than or

equal to its end. In this case, the thread R sends a work request to the thread R′

chosen by the choose-thread function. Once an interval [B′, E′[ is received, the role

of factoradic-set is to initialize the matrix according to the value of B′.

• Not interval-empty and interval-request: The interval is not empty and a work

request is received. In this case, the thread R divides the interval using interval-steal

and sends the resulting interval to the thread that made the request.

• Not interval-empty and not interval-request: The interval is not empty and no

work request is received. In this case, the thread processes the current cell of the
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matrix by calling cell-process.

In our approach, the B&B algorithm points always to the cell [i, Pi] of the matrix such

that i is the row which is currently being processed. As indicated in the code of cell-process,

three scenarios may occur when processing a cell. These scenarios are described in the

following:

• row-end: The algorithm reaches the end of the current row. This means that the

indexes of the current cell [i, Pi] satisfy the condition Pi > i. In this case, the next

cell to process is located in the previous row and this cell is [(i − 1), Pi−1 + 1] (i.e.

cell-upward).

• cell-eliminate: The bound of the node associated to the current cell indicates that

this node can be eliminated. In this case, [i, Pi + 1] (i.e. cell-rightward) is the next

cell of the matrix to process.

• cell-promising: The bound of the node associated to the current cell indicates that

this node cannot be eliminated. In this case, [i+ 1, 0] (i.e. cell-downward) is the next

cell of the matrix to process. Before processing this cell, the thread runs next-row-

process to initialize the row i+1.

The procedure next-row-process decomposes the node associated to [i, Pi]. This decom-

position is done by copying all the jobs of the row i to the row i+1 except the job of [i, Pi].

Then for each cell of the row i+ 1, the thread reads and decodes the node associated to

this cell, and computes its bound.

4.3.2 Coalesced work units

Figure 4.4: IVM representation of a pool of subproblems.

Dynamic load balancing is strongly required for parallel B&B algo-

rithms [Dowaji 1995, Mezmaz 2007a]. To the best of our knowledge, except in rare

works such as [Mezmaz 2007b], work units exchanged between threads (or processes)
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Algorithm 10 Multi-core IVM-based B&B algorithm.
1: T: Number of threads

2: D ∈ {2, T}: Divisor of an interval

3: procedure I V M - B & B -T H R E A D (R)

4: [B,E[← [R ∗N !/T, (R+ 1) ∗N !/T [

5: factoradic-set([B, E[)

6: while (exist-no-empty-intervals) do

7: if (interval-empty) then

8: R′ ← choose-thread(R)

9: [B′, E′[← interval-receive(R’)

10: factoradic-set([B′, E′[)

11: else

12: if (interval-request) then

13: [B′, E′[← interval-steal([B,E[)

14: interval-send([B′, E′[, requester)

15: else

16: cell-process

17: end if

18: end if

19: end while

20: end procedure

21: function I N T E RVA L - S T E A L ([B,E[)

22: [B′, E′[← [(B + E)/D,E[

23: [B,E[← [B, (B + E)/D[

24: return [B′, E′[

25: end function

26: procedure C E L L - P R O C E S S

27: if (row-end) then

28: cell-upward

29: else

30: if (cell-eliminate) then

31: cell-rightward

32: else

33: next-row-process

34: cell-downward

35: end if

36: end if

37: end procedure

38: procedure N E X T- R O W- P R O C E S S

39: cell-branch

40: for all cell of the next row do

41: cell-selection

42: cell-bound

43: end for

44: end procedure
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are often sets of nodes. In our approach the tree nodes (partial or full permutations) are

numbered according to the factorial system number presented in Chapter 2. Therefore,

it is possible to define an interval of node numbers as the work unit. In the example of

the serial B&B of Figure 4.4, the interval explored by the algorithm is [0000, 3210[. It is

therefore possible to have two threads T1 and T2 such as T1 explores [0000, X[ and T2

explores [X, 3210[. If T2 ends exploring its interval before T1, then T2 sends a request to

T1 to recover a portion of its interval. Therefore, T1 and T2 can exchange their interval

portions until the exploration of all [0000, 3210[.

An original load balancing strategy was presented in [Mezmaz 2007b] where the

work unit is an interval. Compared to [Mezmaz 2007b], the new strategy presented

in this thesis brings three new contributions. The first contribution is that the B&B is

based on a matrix of integers instead of a linked list of permutations of integers. The

second is that the intervals are expressed with factoradic numbers instead of decimal

numbers. And the third is that it is not necessary to use the fold and unfold operators de-

fined in [Mezmaz 2007b] to transform an interval into a linked list of nodes and vice versa.

To implement this new strategy, it is therefore necessary to allow a thread to explore

any interval [A,B[. A B&B thread must be able to initialize its position-vector to A, to begin

the exploration of its interval by incrementing its position-vector value, and to stop when

the value of the position-vector is equal to B. To initialize its position-vector to A, a thread

must also initialize its associated matrix to the right values. The role of factoradic-set in

Algorithm 10 is to initialize this matrix. Let’s assume that the value of the position-vector

is P1P2P3, ..., Pn. The initialization of the matrix is done by starting with the first row,

followed by the second row, ..., and stops at the nth row. To fill the first row, all jobs are

written in this row from the smallest to the highest number. To fill the second row, all jobs

of the first row are copied to the second row except the job of position P1. To fill the third

row, all jobs of the second row are copied to the third row except the job of position P2,

etc. Therefore, filling the row i+ 1 is done by copying all jobs of the row i except the job

of position Pi and by keeping the same order for jobs.

4.3.3 Dividing one factoradic interval into two intervals

Dividing the interval at an arbitrary point:

The most obvious way to divide a thread’s remaining interval is to add the current position

to the end position and divide the result by two. Since the position vectors are factoradic

numbers, it is possible to apply algebraic operators to them.
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Let’s suppose that a thread T1 is exploring an interval [0000, 3210[. There is a second

thread T2 that is started with an empty interval. T1 explores its interval until T2 tries to

steal work from T1. By computing the average between its current position and the end of

the interval, position 2100 is determined to be the point where the interval will be divided

in two. Thread T1 now explores the interval [0000, 2100[ while thread T2 explores the

interval [2100, 3210[.

Figure 4.5 shows what the tree looks like after T2 steals work from T1. In this figure,

T1 is represented in green and T2 is represented in blue. The blue arrows show the

nodes that are going to be explored by thread T2 at the start of its interval, the green

arrows show the nodes that are going to be explored by thread T1 at the end of its interval.

T1 and T2 are going to explore the same nodes alongside the branch 2100 of the tree,

which means that for these nodes the bounds are going to be computed twice. This is a

waste of computation time and should be avoided in order to achieve the best possible

performance, especially as the number of jobs and therefore the cost of the bound increase.

The red boxes in Figure 4.5 correspond to the lines of the matrix in the IVM data

structure. As can be seen in this figure, they will be the same for both T1 and T2, however

they will not be the same at the same time. When T1 reaches the point where it explores

the branch 2100, it is very likely that T2 will have moved on to another branch of the tree.

This means that the top line is the only one that can be shared between T1 and T2. In fact,

this top line will always be the same for all threads and for any branch of the tree. This is

due to the fact that the first line is a decomposition of the root node which is always the

same for a given problem. This means that once one thread has computed the first line, it

can then be copied to the IVM data structure of all other threads.

Another problem that arises from this is that the total number of explored nodes is

wrong because of the nodes on branch 2100 which are counted twice. Since we use that

number in the case where the B&B algorithm is initialized with the optimal solution to

verify that the exploration did not skip any nodes, this means we can not be sure anymore

whether the exploration was correct or not.

Fortunately, it is possible to fix that problem by making sure that T2 does not start

counting the nodes until it has left the branch 2100. However, this still leaves us with the

problem of the inefficient exploration of the branch where the tree was cut.
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It is possible to avoid this problem by choosing the position where the tree will be cut

in two in such a way that T1 ends its exploration just before the position where T2 starts

its own exploration without any redundant node.

Figure 4.5: Representation of an interval division at an arbitrary point.

Dividing the interval between two subtrees:

Figure 4.6 shows that the ideal position to cut the tree is at the separation between two

subtrees. The thread T1 explores the tree until it reaches the branch 1210 as shown by the

green arrows, the thread T2 starts its exploration at branch 2000 as shown by the blue

arrows and continues until the end of the tree. As can be seen on the figure, there is no

longer any redundancy between T1 and T2.

In this example T1 explores the interval [0000, 1210] and T2 explores the interval

[2000, 3210[. However since in factoradic 1210 plus one is equal to 2000, this means that

T1 explores the interval [0000, 2000[ and T2 explores the interval [2000, 3210[ which covers

the entirety of the interval [0000, 3210[.

Once again the red boxes correspond to the lines in the matrix of the IVM data

structure. As in the previous example, the first line is shared between the two threads,

the three other lines however are not since the two threads explore completely separate

subtrees. In this case T1 explores subtrees 0XXX and 1XXX while T2 explores subtrees

2XXX and 3XXX. With subtree 0XXX being defined as all the branches from 0000 to
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0210.

This only leaves the matter of choosing where to cut the tree to produce an efficient

division of the interval. Let’s suppose that before T2 stole work from T1, T1 was exploring

nodes inside subtree 0XXX. This means that subtrees 1XXX, 2XXX and 3XXX were

completely unexplored. When T2 tries to steal work from T1 it sees that three subtrees are

left unexplored, three divided by two equals one so T2 leaves one subtree to T1 and takes

the rest of the subtrees on the right hand side. T1 is left with subtrees 0XXX and 1XXX

and T2 starts exploring subtrees 2XXX and 3XXX. Now, T1 and T2 need to compute

their interval:

• T2 takes T1’s end position which is 3210.

• T2 starts its exploration at the first branch of subtree 2XXX whose position can

easily be computed by taking the position 2 and filling the rest with 0, the result is

2000.

• T1 keeps its starting position.

• T1 ends its exploration at the last branch of subtree 1XXX whose position can be

computed by taking the position 1 and completing it with a countdown to 0, the

result is 1210.

This gives us the two intervals [0000, 1210] for T1 and [2000, 3210[ for T2, which as

shown earlier, covers the entirety of the interval [0000, 3210[.

Figure 4.6: Representation of an interval division at a point chosen to avoid redundancy.
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Generalization of the division between subtrees:

In Figure 4.7, we show a problem of size 8. A thread T1 is exploring the subtree

7654XXXX, which means that its starting position is 76540000 and its end position is

76543210, its current position is somewhere in the subtree 76540XXX.

A thread T2 tries to steal work from T1, it is not possible to do so at the first line

because for that line the current and end position are both equal to 7, which means

that there is no other subtree for T2 to steal at this depth. The same goes for all the

following lines until it reaches a depth where 4 subtrees exist, 76540XXX, 76541XXX,

76542XXX and 76543XXX. Subtree 76540XXX is being explored by T1, which leaves

three subtrees available for a division 76541XXX, 76542XXX and 76543XXX.

Those three subtrees are not necessarily all candidates for further exploration, it is

possible that the branching operator marked one or more of them as having a cost superior

to the best known solution. In this example, let’s suppose that subtree 76543XXX was

marked as not requiring anymore exploration, this means that the only two candidates

left for T2 to steal are 76541XXX and 76542XXX. Two divided by two equals one,

so T2 will leave one subtree and take the rest. In order to not create more than two

new intervals, T2 will leave the subtree on the left and take the subtrees on the right.

In this case this means that T1 keeps subtrees 76540XXX and 76541XXX, while T2

takes subtrees 76542XXX and 76543XXX. The reason T2 takes subtree 76543XXX

is to make sure that the two new intervals cover the entirety of the interval that was

divided. In this case T1’s new interval is [76540000, 76541210] which is equivalent to

[76540000, 76542000[ and T2’s new interval is [76542000, 76543210[.

The red boxes in Figure 4.7 correspond to the lines of the matrix of the IVM data

structure. In this example, the first five lines are common to T1 and T2, this means that T2

does not have any branching to do and can simply copy the first five lines of T1’s matrix

into its own. This avoids a lot of unnecessary computation for T2. The lines in the matrix

are counted from top to bottom starting from 0, so if T2 finds a position where it can

divide the interval at line L then it can simply copy the first L+ 1 lines of T1’s matrix.

4.3.4 Victim selection and granularity policies

Figure 4.8 illustrates LL-B&B and IVM-B&B parallel algorithms using the same work steal-

ing strategy. A strategy can be defined by its victim selection policy and its granularity

policy. The victim selection policy indicates the thread victim R′ that a thread R can steal,
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Figure 4.7: Representation of a generalization of an interval division between subtrees.

and the granularity policy determines the amount of work of thread R′ stolen by the

thread R. Algorithm 11 shows the ways a thread R can choose its thread victim R′. An

ideal strategy is the one which (1) chooses the thread victim R′ with the largest amount of

work, (2) and makes this choice as rapidly as possible. In this thesis, we define four victim

selection policies, explained in Subsection 4.3.4, and two granularity policies described

in Subsection 4.3.4. Our IVM-B&B parallel algorithm is compared to the LL-B&B parallel

algorithm using work stealing strategies defined by these victim selection policies and

granularity policies.

Victim selection policies:

In this section, four victim selection policies are described: Two of them with a small

computational complexity, namely the ring and the random policies, and the two others

with a greater computational complexity, namely the largest and the honest policies.

• Ring victim selection policy: In this policy, threads are connected to each other with

a unidirectional ring. A thread R always steals from its precedent thread R′. If the

thread R is different from the thread 1, then the thread R′ is equal to the thread

R− 1. Otherwise, the thread R′ is equal to the thread T , where T is the number of
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Algorithm 11 Pseudocode of the victim selection policies.
1: function C H O O S E -T H R E A D ( R , S T R AT E G Y )

2: switch STRATEGY do

3: case RING:

4: return choose-ring(R)

5: case RANDOM:

6: return choose-random()

7: case LARGEST:

8: return choose-largest(R)

9: case HONEST:

10: return choose-honest(R)

11: end function

12: function C H O O S E - R I N G ( R )

13: if (R=1) then

14: return T

15: else

16: return (R− 1)

17: end if

18: end function

19: function C H O O S E - R A N D O M ( R )

20: while true do

21: R’←random(1,T)

22: if (has-work(R’) AND (R’6=R)) then

23: return R’

24: end if

25: end while

26: end function

27: function C H O O S E - L A R G E S T ( R )

28: max-size←0

29: for all R" ∈ {1, 2, ..., T} AND (R" 6=R) do

30: if (size(R")> max-size) then

31: R’←R"

32: max-size←size(R")

33: end if

34: end for

35: return R’

36: end function

37: function C H O O S E - H O N E S T ( R )

38: remove(rank-threads, R)

39: while not-empty(rank-threads) do

40: R’←pop-front(rank-threads)

41: if (has-work(R’) then

42: push-back(rank-threads, R)

43: return R’

44: end if

45: end while

46: end function
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(a) LL-B&B parallel algorithm. (b) IVM-B&B parallel algorithm.

Figure 4.8: Illustration of the LL-B&B and a IVM-B&B parallel algorithms using the same

work stealing strategy.

threads. In this policy, the work stealing operation of a thread R is a blocking event

when the thread R′ has no work. In this case, the work stealing operation will be

satisfied when the thread R′ will receive work. As shown in function choose-ring, this

policy has a smaller computational complexity than the three other victim selection

policies.

• Random victim selection policy: In this policy, a thread victim R′ is randomly se-

lected when a thread R sends a work stealing operation. Unlike the ring policy, this

work stealing operation is not a blocking event. In other words, the thread R con-

tinues to choose other threads randomly as long as it does not find a thread with a

non-empty interval or linked list. As shown in function choose-ring, this policy has a

higher computational complexity than the ring policy but a smaller computational

complexity than the two other victim selection policies.

• Largest victim selection policy: In a B&B algorithm, it is often impossible to deter-

mine how a work unit is hard to solve. This policy is based on a simple heuristic

to choose the thread with the most difficult work unit to finish. Indeed, the largest

policy assumes that probably the larger the size of a work unit is, the more difficult

this work will be. Therefore, this policy computes the amount of work of each thread,

chooses the thread with the biggest size, and returns the rank R′ of this thread. In

the LL-based approach, the size of LL is equal to the number of its nodes, and in the

interval-based approach, the size of an interval [A,B[ is equal to B−A. As shown in
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function choose-largest, this policy has a higher computational complexity than the

three other victim selection policies.

• Honest victim selection policy: This strategy is based on another heuristic to deter-

mine the thread with the most difficult work to finish. The heuristic assumes that

if a thread R1 has stolen work less recently than a thread R2, then the thread R1

probably has a work unit which is more difficult than the work unit of the thread

R2. Therefore, the thread R steals the work from the thread victim R′ which did

the least recent work stealing operation. As shown in function choose-honest, this

policy has a higher computational complexity than the ring and random policies but

a smaller computational complexity than the largest policy.

Granularity policies:

When a thread R′ is contacted by a thread R, the thread R must determine the amount of

work of its thread victim R′ to steal. In this thesis, two granularity policies are used and

described in the following:

• Steal half policy: This policy indicates that the thread R steals the second half of

the work of the thread R′ and leaves the other half for the thread R′. In the LL-based

approach, the work of a thread R′ is constituted by a set of N nodes. The thread R

steals the last N/2 nodes and leaves the other nodes for the thread R. While in the

interval-based approach, the work of a thread R′ is constituted by an interval [A,B[.

The thread R′ steals the interval [(A+B)/2, B[ and leaves the interval [A, (A+B)/2[

for the thread R. Leaving the first half of the interval [A,B[ avoids the thread R′ to

initialize its matrix and vectors.

• Steal Tth policy: Theoretically, steal half policy may not be appropriate for certain

victim selection policies. Assuming that four threads where thread 1 has a certain

amount of work W , and threads 2, 3 and 4 complete their work. The amount of work

W may be the number of nodes or the size of the interval. In a ring selection, the

threads 2, 3 and 4 steal work from the threads 1, 2 and 3, respectively. Using the

steal half policy and the ring selection allocate the amount of works W/2, W/4, W/8

and W/8 to the threads 1, 2, 3 and 4, respectively. Steal T th policy indicates that the

thread R leaves W/T of the work to its thread victim R′, where T is the number of

threads, and steals (T −1)W/T of the work. In the previous example, using steal T th

policy and the ring selection allocate the amount of works W/4, 3W/16, 9W/64 and

27W/64 to the threads 1, 2, 3 and 4, respectively. For this example, steal Tth policy

gives a better granularity policy than the steal half policy. In our experiments, steal
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Tth policy is tested only for the ring selection. Indeed, steal half policy seems to be

theoretically appropriate for the other victim selection policies.

4.4 Experimentation

This section compares the multi-core LL and IVM-based B&B approaches using differ-

ent work stealing strategies and granularity policies in terms of speedup, sharing events,

memory space, and CPU usage.

4.4.1 Experimental settings

When an instance is solved twice using a multi-threaded B&B, the number of explored

subproblems is often different between the two resolutions. To compare the Linked List

based and the IVM-based strategies, the number of explored subproblems should be exactly

the same between the different tests. Therefore, we chose to always initialize our B&B

by the optimal solution of the instance to be solved. Such initialization makes sure that

the number of explored subproblems is the same in both approaches, leading to a fair

comparison. Therefore, the objective of the resolution is to prove the optimality of the

initial solution. Obviously, to provide the optimal solution the same algorithm is used. One

has just to intitialize the best solution found so far to infinity for a minimization problem.

In our experiments, we used only the 10 instances where the number of machines and

the number of jobs are equal to 20. Instances where the number of machines is equal

to 5 or 10 are easy to solve. For these instances, the used bounding operator gives such

good lower bounds that it is possible to solve them in few seconds using a multi-core

B&B. Instances where the number of jobs is equal to 50, 100, 200, or 500, and the number

of machines is equal to 20 are very hard to solve. Table 4.1 (resp. Table 4.2) gives the

number of explored subproblems for 20x20 (resp. 50x10) instances when initialized with

the optimal solution.
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Instance #Subproblems

(in millions)

ta021 41.4

ta022 22.0

ta023 140.8

ta024 40.0

ta025 41.4

ta026 71.4

ta027 57.1

ta028 8.0

ta029 6.8

ta030 1.6

Average 43.1

Table 4.1: Number of explored subproblems for 20x20 instances when initialized with the

optimal solution

Instance #Subproblems

(in millions)

ta041 0.4

ta042 159.0

ta043 40.6

ta044 0.3

ta045 0.8

ta046 2.1

ta047 9.1

ta048 3.8

ta049 0.4

ta050 73.7

Average 29.0

Table 4.2: Number of explored subproblems for 50x10 instances when initialized with the

optimal solution
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Hardware and software testbed:

The multi-core versions of LL-B&B and IVM-B&B have been implemented using C++ and

the pthread Posix threads library. Their compilation has been done using GCC 4.6 and

−O3 optmization option. All the experiments were run on the computer Poincaré which

belongs to Maison de la Simulation. Each of Poincaré’s 92 CPU nodes is composed of 2

8-core Intel Xeon Sandy Bridge E5-2670 processors running at 2.60 GHz and has 32 Gb of

memory. Each of the 16 physical cores has 32 KB of L1 instruction cache, 32 KB of L1 data

cache and 256 KB of L2 cache. Each of the 2 processors has 20 MB of L3 cache. The 32 GB

of memory are spread across 2 NUMA nodes, one for each processor. For each Flow-Shop

instance the computational time spent in managing the pool of subproblems is measured

using the clock_gettime function with a nanosecond precision.

Experimentation Results Database:

Results

PK_results integer

FK_init integer

FK_strategy integer

FK_algorithm integer

nb_threads integer

instance integer

division integer

bound_time real

unfold_time real

synch_time real

user_time real

system_time real

elapsed_time real

cpu_usage integer

maximum_memory integer

major_page_faults integer

minor_page_faults integer

voluntary_context_switches integer

involuntary_context_switches integer

max_pool_size integer

Init

PK_init integer

name text

1

n

Strategy

PK_strategy integer

name text

1

n

Algorithm

PK_algorithm integer

name text

1

n

Threads

PK_threads integer

FK_results integer

thread_id integer

bounded_nodes integer

bounded_leaves integer

demandes integer

reponses integer

max_pool_size integer

avg_pool_size integer

1

n

Figure 4.9: Entity-relationship model of the database containing the results of the experi-

ments.

Figure 4.9 is a representation of the relational database which has been used to store the

results of the experiments. Each line of the Results table corresponds to one B&B process,

it contains all process-level data that is relevant to the experimentation. Each line of the
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Threads table corresponds to one thread inside a B&B process, it contains all thread-level

data that is relevant to the experimentation. The three remaining tables, Init, Strategy,

and Algorithm contain text data that should not be duplicated in the Results table.

• Init contains the two possible initialization types, optimal and infinite.

• Strategy contains the five different combinations of victim selection and granularity

policies, Largest1/2, Honest1/2, Random1/2, Ring1/2, and Ring1/T .

• Algorithm contains the two tested algorithms: IVM-B&B and LL-B&B.

4.4.2 Strategy and granularity policies evaluation

Tables 4.3 reports the experimental results for two metrics for both IVM-B&B and LL-B&B

and for the 5 evaluated strategies Largest1/2, Honest1/2, Random1/2, Ring1/2, and

Ring1/T :

• The speedup which compares the wallclock time measured for a serial single-core

execution of the B&B algorithm to a multi-core execution using 16 threads.

• The number of sharing events during an execution using 16 threads, i.e. the number

of times an interval has been divided in order to be shared with another thread.

A ratio comparing IVM-B&B to LL-B&B is reported. The ratios are computed as LL divided

by IVM, which means that in the case of the speedup, a ratio inferior to 1 means that IVM

does better than LL, whereas for the number of sharing events, a ratio superior to 1 means

that IVM does better than LL.

Table 4.3 shows the results for 20 jobs on 20 machines. For the Largest1/2 strategy,

IVM-B&B has an average speedup of 14.41, and the threads steal an average of 1140.6

intervals. LL-B&B has an average speedup of 13.30, and the threads steal on average

78357.7 intervals. On average, the LL speedup is 0.92 times the speedup of IVM, while the

number of sharing events for LL is 68.70 times the sharing events of IVM.

Table 4.3 shows that IVM performs better than LL for all 5 evaluated strategies. Within

those strategies, Ring1/2 gives the worst speedup for both IVM and LL. For IVM the

Largest1/2 strategy provides the best speedup, while the Random1/2 strategy provides

the lowest amount of sharing events. For LL the Honest1/2 and Ring1/T strategies pro-

vide the best speedup, while the Ring1/T strategy provides the lowest amount of sharing

events.
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IVM LL Ratio

Strategy Speedup Sharing Events Speedup Sharing Events Speedup Sharing Events

(LL/IVM) (LL/IVM)

Largest 1/2 14.41 1140.60 13.30 78357.70 0.92 68.70

Honest 1/2 14.23 4851.80 13.31 24252.70 0.94 5.00

Random 1/2 14.07 715.90 13.27 177749.10 0.94 248.29

Ring 1/2 11.06 3394303.40 5.07 31707844.60 0.46 9.34

Ring 1/T 14.30 4596.10 13.31 21100.00 0.93 4.59

Table 4.3: Comparison of IVM-B&B and LL-B&B with 16 threads for 20 jobs on 20 machines

with an initialization to optimum in terms of speedup and sharing events.

The evaluation of the Largest1/2, Honest1/2, Random1/2, Ring1/2, and Ring1/T

strategies shows a clear advantage in favor of IVM for all strategies. Figures 4.10 shows a

visual representation of the comparison of the speedup and sharing events for all evalu-

ated instances.

The experiments clearly show that in the Ring1/2 strategy produces a much higher num-

ber of sharing events than the other 4 strategies. The 3 remaining strategies Honest1/2,

Random1/2, and Ring1/T give speedups that are very close to each other within their

own version of the B&B algorithm.
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Figure 4.10: Comparison of speedup and sharing events for 20 jobs on 20 machines for

IVM and LL.

In order to simplify the memory evaluation in Subsection 4.4.3 and the CPU time

evaluation in Subsection 4.4.4, only the Random1/2 strategy will be taken into account.
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4.4.3 Memory evaluation

Tables 4.4 reports the results for IVM-B&B using the Random1/2 strategy with 16 threads.

The columns give :

• The size of the IVM data structure in bytes.

• The maximum number of subproblems stored in the pool of subproblems.

• The maximum size of the LL data structure in bytes.

• A ratio comparing IVM-B&B to LL-B&B. The ratios are computed as LL divided by

IVM, which means that for both the total memory and the data structure size, a ratio

superior to 1 means that LL uses more memory than IVM, whereas a ratio inferior

to 1 means that LL uses less memory than IVM.

Table 4.4 reports the results for FSP instances defined by 20 jobs on Ta020 machines.

For instance 21, IVM-B&B uses a maximum of 14106624 bytes of memory (i.e. 13.5 MB),

and the IVM data structure 4320 bytes of memory (i.e. 4.2 KB). LL-B&B uses a maximum

of 18481152 bytes of memory (i.e. 17.6 MB), the pool of subproblems stores a maximum of

1799 subproblems, and the LL data structure used a maximum of 35980 bytes of memory

(i.e. 35.1 KB). The total memory footprint of LL is 1.31 times the total memory footprint

of IVM, while the size of the LL data structure is 8.33 times the size of the IVM data

structure.

Table 4.4 shows that IVM has a smaller memory requirement than LL for all 10 in-

stances. The memory requirements for both LL and IVM do not seem to vary much de-

pending on the instance.
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Instance IVM Data LL Maximum LL Data Data

Structure size Pool size Structure size Structure ratio

(Bytes) (#subproblems) (Bytes) (LL/IVM)

ta021

4336

1799 35980 8.33

ta022 1552 31040 7.19

ta023 1898 37960 8.79

ta024 1686 33720 7.81

ta025 1650 33000 7.64

ta026 1881 37620 8.71

ta027 1698 33960 7.86

ta028 1629 32580 7.54

ta029 1457 29140 6.75

ta030 1466 29320 6.79

Average 4336 1672 33432 7.74

Table 4.4: Comparison of IVM-B&B and LL-B&B with 16 threads for 20 jobs on 20 machines

in terms of memory usage.

The experiments show a clear advantage for IVM which can be explained by the fact

that the space complexity of the IVM data structure isO(N2), whereas the space complexity

of the LL data structure is O(N3), as shown in the previous chapter. Another advantage of

IVM is that its memory footprint does not vary much for problems of a given size, whereas

the memory footprint of LL-B&B can vary a lot for larger problems. This predictability

makes IVM a good candidate for architectures where the performance is very dependent

on memory, such as GPUs for example.

4.4.4 CPU time evaluation

Table 4.5 reports the results for four metrics for both IVM-B&B and LL-B&B using the

Random1/2 strategy with 16 threads:

• The total time, also known as the wallclock time or the elapsed time, is the time

between the start of the program running the B&B algorithm and its end.

• The user time and system time is the sum of the time spent in user space and in

kernel space by the program.

• The bound time is the time spent on the bounding operator.
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• The pool management time is the user time and system time minus the bound time.

Table 4.5 shows a ratio comparing IVM-B&B to LL-B&B. The ratios are computed as LL

divided by IVM, which means that for both the total time and the pool management time,

a ratio superior to 1 means that LL uses more CPU time than IVM, whereas a ratio inferior

to 1 means that LL uses less CPU time than IVM.

Table 4.5 shows the results for 20 jobs on 20 machines. For instance 21, IVM-B&B

needs 1354 seconds to complete its execution, it spends 21585 seconds in user time and

system time. The bound computation lasts 21411 seconds which leaves the remaining 174

seconds for pool management. LL-B&B needs 1517 seconds to complete its execution, it

spends 24037 seconds in user time and system time. The bound computation lasts 22834

seconds which leaves the remaining 1203 seconds for pool management. LL-B&B needs

1.12 more time to complete its execution and spends 6.92 more time managing the pool

than IVM-B&B.

On average, LL-B&B uses 7.16 more time to manage its pool of subproblems, but uses

only 1.10 more time than IVM-B&B to complete its execution. This is due to the fact that

the vast majority of the time is spent computing the bound, and very little time is spent

on actual pool management. IVM-B&B is faster but not by a significant margin.

IVM LL

Inst. Total User Bound Pool Total User Bound Pool Total Pool

Time + Sys Time Mgmt Time + Sys Time Mgmt Time Mgmt

Time Time Time Time Ratio Ratio

(Sec.) (Sec.) (Sec.) (Sec.) (Sec.) (Sec.) (Sec.) (Sec.) (LL/IVM) (LL/IVM)

ta021 1354 21585 21411 174 1517 24037 22834 1203 1.12 6.92

ta022 667 10441 10351 90 742 11708 11055 653 1.11 7.27

ta023 4419 70521 69929 592 4981 79033 74774 4259 1.13 7.20

ta024 1143 17655 17496 159 1263 19990 18823 1167 1.11 7.33

ta025 1508 22024 21857 167 1537 24385 23303 1082 1.02 6.48

ta026 1928 30761 30482 279 2186 34684 32704 1980 1.13 7.09

ta027 1595 25445 25209 236 1822 28866 27077 1789 1.14 7.57

ta028 266 4033 3999 34 286 4501 4259 242 1.08 7.12

ta029 223 3262 3233 28 235 3673 3470 204 1.05 7.21

ta030 51 799 792 7 58 900 848 52 1.14 7.42

Avg. 1315 20653 20476 177 1463 23178 21915 1263 1.10 7.16

Table 4.5: Comparison of IVM-B&B and LL-B&B with 16 threads for 20 jobs on 20 machines

in terms of CPU Time.
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Despite IVM-B&B being consistently faster than LL-B&B for both the management of

the pool of subproblems and the total time, the overall difference in performance is not

very significant. This is due to the fact that pool management uses far less CPU time than

the computation of the bound. The difference in performance would probably be more

clear when using a less expensive bound than the one used in these experiments for the

Flow-Shop problem.

4.5 Conclusion

The work stealing approaches described in this chapter are based on factorial number

system which is presented in Chapter 2, and the use of an Integer-Vector-Matrix (IVM) data

structure introduced in the previous chapter. A work stealing (WS) strategy can be defined

by its victim selection policy and its granularity policy. The selection policy indicates

the thread victim that a thread thief can steal, and the granularity policy determines

the amount of stolen work. The four victim selection policies presented in this chapter

are ring, random, largest, and honest. In addition, the chapter describes two granularity

policies which are the Steal Half and Steal Tth policies. Combining these selection and

granularity policies, five IVM-based work stealing strategies are defined and compared

to their conventional LL-based counterparts on the Flow-Shop scheduling permutation

problem. This evaluation is performed in terms of strategy, granularity, CPU time usage

and memory.

In terms of speedup and sharing events, the evaluation shows a clear advantage in favor

of IVM compared to LL for all strategies except Largest 1/2. In addition, the experiments

show that in all situations the Ring 1/2 strategy produces a much higher number of

sharing events than the other four strategies, and the Ring 1/2 strategy often gives the

worst speedup. In terms of CPU time, despite the fact that the IVM-based WS strategies are

faster than their LL-based counterpart for both the management of the pool of subproblems

and the total time, the overall difference in computation time is not very significant. The

difference in performance would probably be more clear when using a less expensive

bound than the one used in these experiments. In terms of memory, the experimentations

show a clear advantage for IVM compared to LL. Another advantage of IVM-B&B is that its

memory footprint does not vary much for problems of a given size, whereas the memory

footprint of LL-B&B can vary a lot for larger problems. This memory usage pattern is

a huge advantageous for many-core architectures, such as GPU and MIC accelerators,

where performance depends a lot on memory usage. The next chapter revisits this parallel

multi-core IVM-based B&B algorithm for many-core architectures.
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5.1 Introduction

As previously stated, the Johnson’s lower bound LB has been used in this work for solving

the Flow-Shop permutation problem. The time complexity of Johnson’s algorithm for two

machines is O(n log n), and therefore O(m2 n log n) for m machines. The computation of

LB is consequently time intensive especially for problem instances for which m is high.

In order to experimentally evaluate its CPU time, the lower bound has been implemented

in [Chakroun 2013c] and investigated using the Taillard’s instances [Taillard 1993] with

m = 10, 20. The results have shown that the time spent by the B&B evaluating the lower

bounds of the examined subproblems is on average between 98 % and 99 % of its total

execution time. This result demonstrates that the bounding operator needs massively

parallel computing.
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On the other hand, coprocessors or accelerators are increasingly becoming key

building blocks of High Performance Computing platforms. In addition to their energy

efficiency, they boost the performance of traditional processors through the combination

of a larger number of processing cores, vector-SIMD processing and multi-threading.

Actually, the most used accelerators (Top500 ranking of July 2015) are Nvidia GPUs and

Intel MIC coprocessors. The former are composed of a large number of slim cores while

the latter integrate a relatively smaller number of streamlined largish cores relying on

SIMD processing. Today, coprocessors allow to achieve peak performance of the order of

one TeraFlops. Nevertheless, it is often difficult for the programmers to extract a large

portion of the theoretically available performance. Indeed, the specific features of these

coprocessors raise several issues including the optimization of data transfer between

the processor and its coprocessor, vectorization, etc. More details on the these hardware

features and related challenging issues are given in the next sections.

The objective of this chapter is to revisit the parallel bounding model combined with

the parallel tree exploration model of B&B algorithms to allow highly efficient solving

of large instances of the Flow-Shop problem on GPU accelerators and Intel MIC Xeon

Phi coprocessors. In Section 5.2, we first present the general design of the coprocessor-

accelerated B&B. In Section 5.3 (respectively Section 5.4), we describe the implementation

of the GPU-accelerated (respectively Phi-accelerated) approach. In Section 5.5, we report

some experimental results comparing the two coprocessor-based many-core implemen-

tations and their multi-core implementation counterpart. Finally, some conclusions are

drawn in Section 5.6.

5.2 Coprocessor-accelerated B&B: the general design

As mentioned above, the coprocessors are many-core devices dedicated to massively

parallel computing. Therefore, to take maximum advantage of the computational

power provided by these coprocessors these latter should be fed by a large number of

computations. In our proposed parallel coprocessor-based approach, as illustrated in

Figure 5.1, several B&B trees are explored in order to generate multiple pools maximizing

the use of the coprocessor cores. Each pool is implemented using either the IVM data

structure or the linked-list. During the exploration of each pool, except the selection and

pruning operators which are performed on the processor the branching and bounding

operators are executed on the coprocessor. As shown in Figure 5.1, on the processor

side, at each iteration of the exploration process a set of tree nodes (whose size is a

user-parameter) is selected. The selected set of nodes is offloaded to the coprocessor to
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Figure 5.1: Coprocessor-based B&B

be processed.

On the coprocessor side, as illustrated in Algorithm 12, each parent node is processed

by a thread. After performing its mapping, the thread branches the parent node if it is not

a leaf. The resulting children are evaluated (bounded) and returned back to the CPU with

their associated lower bounds. Every child having a lower bound greater than the cost of

the best solution found so far is pruned on CPU. All the non-pruned children are inserted

into the pools. The process is iterated until the exploration is completed and the optimal

solution is found.

Algorithm 12 Kernel of the computation of the lower bounds on the coprocessor.
1: procedure K E R N E L E VA L U AT E O N C O P R O C E S S O R

2: (in: parent-subpbs, mapping out: lower bounds of children-subpbs)

3: thdId←blockIdx.x*blockDim.x + threadIdx.x

4: child-subpb←generateChild(thdId, mapping, parent-subpbs)

5: if isLeaf(child-subpb) then

6: LB←evaluateSolution(child-subpb)

7: else

8: LB←computeBound(child-subpb)

9: end if

10: poolOfBounds[thdId]←LB

11: end procedure
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5.3 GPU-based implementation of B&B

In this section, we first present the parallelization model on GPU. To do that we recall

the hardware view of GPU, its parallel programming model and its associated algorithmic

challenging issues. Then, we show how these issues are dealt with in the implementation

of the GPU-accelerated B&B.

5.3.1 Parallelization on GPU

For a long time, GPU computing has been used to speed up image and video processing.

Since 2006, with the introduction by Nvidia of its Cuda software toolkit the use of GPUs

has been extended to numerous other application domains including combinatorial

optimization. The popularity of Cuda is due to its simplicity as it is an extension of the

C language with data parallel features. The principle is easy: the programmer writes a

code for one thread (kernel) and can instantiate it on a large number of threads to allow

massive parallel computing on GPU. In addition, Cuda is portable between successive

generations allowing transparent scalability of Cuda applications.

Before the Cuda parallel model is presented, let us recall the hardware architecture

of a GPU device. As shown in Figure 5.2, a GPU is a coprocessor, coupled to a CPU

through a PCI Express bus. In the Cuda vocabulary, the processor is called “host" and

the GPU is called “device". The GPU is composed by a set of streaming multi-processors

(processors) including each a pool of 32-bit or 64-bit SIMD processors (processing cores).

For instance, a Kepler GPU device contains 13 processors of 192 Cuda cores for a total of

2496 Cuda cores. A GPU is also composed of several memories including global and local

off-chip memories, and a shared memory, registers and a cache memory. These memories

have different characteristics in terms of size and access latency. For instance, the global

memory is big and has a long latency while registers are small and fast memories.

From software programming point of view, as illustrated in Figure 5.3 a GPU

Cuda-based parallel program is composed of two parts: a “host" part and a “device" part.

The host part is a serial or weakly parallel code because the number of CPU cores is small

compared to the number of GPU cores. The device part is massively parallel because a

GPU contains from hundreds to thousands of processing cores. During the execution

of a parallel program the host part offloads streams of threads to the GPU device to be

executed according to a two-level parallelism: at the higher level the processors (or SMX)

execute the thread kernel according to the Single Program Multiple Data (or SPMD)
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Figure 5.2: Hardware view: GPU = coprocessor of CPU.

model. At the lower level (intra-SMX), the threads are executed according to the Single

Instruction Multiple Data (or SIMD) or Single Instruction Multiple Thread (or SIMT)

model. Indeed, inside each processor the instruction flow composing a thread kernel is

executed according to the SIMD model.

Figure 5.3: Software view: Parallel program = weakly parallel/serial host code + mas-

sively parallel device code.

The threads offloaded from CPU host to GPU device are organized by the programmer

in a hierarchical way into grids of blocks of threads. Grids are arrays 1D or 2D of blocks

and blocks are arrays 1D, 2D or 3D of threads. The thread organization corresponds to the

organization of application data which are often vectors, matrices or volumes. As shown

in Figure 5.4, the blocks are assigned to the SMXs by the Cuda runtime. Inside each SMX
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each block is split into warps i.e. pools of 32 threads. Warps are scheduling units i.e. the

threads are executed by pools of 32. This allows to overlap the memory access latency by

computation. Context switching is very fast as each thread has its own registers.

Figure 5.4: Software view: Parallel program = grid(s) of block(s) of threads executed as

warps of 32 threads.

To sum up, from algorithmic and software programming point of view at least three

issues should be addressed: (1) the optimization of the data transfer between CPU and

GPU; (2) the optimization of the data placement on the hierarchy of memories of the GPU

having different sizes and latencies; and (3) thread or branch divergence management

especially for irregular applications.

5.3.2 Parallelization of B&B for GPU

The implementation on GPU of the coprocessor-based B&B according to the general

design presented in Section 5.2 requires to address the challenging issues quoted above.

First, to deal with the CPU-GPU data transfer optimization the branching operator, which

generates tree nodes or subproblems, is moved to GPU. The execution of the branching

operator on the GPU device allows one to avoid the transfer of the branched parent nodes

from CPU to GPU which is costly. However, this raises other issues related to thread

granularity and mapping. Indeed, if a parent node is processed entirely (branching and

bounding) by a single thread there will be a load imbalance leading to thread/branch

divergence. In fact, the parent nodes may have different numbers of children as they are

located at different levels in the B&B tree. To deal with this problem the processing of

each thread is limited to a single node, meaning that each thread generates and evaluates

only one child of the parent node.
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Second, to tackle the problem related to data placement optimization on GPU we have

followed the recommendation proposed in [Melab 2014]. Indeed, as illustrated in Algo-

rithm 13, the implementation of the lower bound algorithm includes 6 data structures:

the matrix PTM of the processing times of the jobs, the matrix of lags LM , the John-

son’s matrix JM , the matrix RM of the earliest starting times of jobs, the matrix QM of

their lowest latency times and the matrix MM containing the couples of machines. The

algorithm needs as input a subproblem defined as a permutation with some jobs already

scheduled at its beginning and/or its end.

Algorithm 13 Computation of lower bound (un-vectorized)

input: subproblem = permutation, nLeft (#jobs fixed left), nRight (#jobs fixed right)

constant data (MM, JM, PTM, LM)

output: lower bound (LB) of subproblem

1: procedure C O M P U T E L B

2: RM, QM, SM← InitTabs(permutation, nLeft, nRight)

3: LB← 0

4: for (k = 0→ J(J−1)
2 ) do

5: tmp0, tmp1, ma0, ma1← InitFun(k, nLeft, MM, RM)

6: for (j = 0→ J) do

7: job←JM[k][j]

8: if (SM[job]==0) then

9: tmp0 += PTM[ma0][job]

10: tmp1 = max(tmp1, tmp0 + LM[k][job]) + PTM[ma1][job]

11: end if

12: end for

13: tmp1←EndFun(tmp0, tmp1, k, nRight, QM)

14: LB = max(tmp1, LB)

15: end for

16: return LB

17: end procedure

The semantics of these data structures is not the focus of this thesis. For more details

on these ones and on the lower bound please refer to the Ph.D thesis of I. Chakroun

[Chakroun 2013c]. The focus is rather put here on the optimization of the placement of

these data structures on the different memories of the GPU device. Due to the limited size

of the shared memory, the matrices do not fit in all together, especially for large problem

instances. Based on the complexity analysis of these data structures and an experimental

study conducted in [Chakroun 2013c], it is suggested to put in the shared memory the

Johnson’s and/or processing time matrices (JM and PTM). The other data structures
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are mapped either to the global memory or to the constant memory. Such data placement

allows one to achieve accelerations of more than ×100 compared to a single-CPU core

serial execution of B&B. In our implementation, MM , JM , PTM and LM are put on

the constant memory. A part of PTM is then moved to the shared memory. The other

matrices are stored on the global memory.

Third, the parallelization of irregular applications such as B&B applied to permutation

problems due to the thread or branch divergence issue [Chakroun 2013b]. In our

implementation, the irregularity is due to two factors: as the tree nodes have different

levels they require different amounts of work (number of children) ; on the other

hand, the lower bound function, as it can be seen in Algorithm 13, includes several

conditional instructions and loops. To deal with the first factor, each thread handles only

one child as mentioned above. Therefore, all the threads perform the same amount of

work. To tackle the second problem, we have reused the refactoring approach proposed

in [Chakroun 2013b] even if the achieved performance improvement is not significant as

the size of the factorized branches is small.

Finally, the mechanisms used on GPU are not experimented individually here

because their efficiency has been demonstrated in [Chakroun 2013b, Melab 2014,

Chakroun 2013c]. These three citations can be used for further details on the mecha-

nisms. However, the performance of the whole GPU-accelerated B&B is evaluated and

compared to the performance of the Xeon Phi-based B&B in Section 5.5.

5.4 MIC-based implementation of B&B

In this section, we first present the parallelization model on MIC architecture. To do that

we recall the hardware view of Intel Xeon Phi, its parallel programming model and its

associated algorithmic challenging issues. Then, we show how these issues are dealt with

in the implementation of the Intel Xeon Phi-accelerated B&B.

5.4.1 Parallelization on Intel Xeon Phi

The market of accelerators has been dominated by Nvidia during several years. Since

recently, they are faced to the competition of Intel with its Many Integrated Cores (MIC)-

based Xeon Phi. This latter is a coprocessor coupled to the processor through a PCI Express

bus. As illustrated in Figure 5.5, a typical platform consists of one to two Intel Xeon

processor(s) (CPUs) and one to eight (two in this figure) Intel Xeon Phi coprocessors per
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host. Multiple such platforms may be interconnected to form a cluster or supercomputer.

Figure 5.5: Hardware view: Intel Xeon Phi = coprocessor of CPU.

From the hardware point of view, the Xeon Phi board has one Knights Corner (KNC)

processor, the first production chip based on the MIC architecture, and 8 GB of GDDR5

RAM. As illustrated in Figure 5.6, KNC integrates up to 61 CPU-cores interconnected by a

high-speed bi-directional ring, and runs at over 1 GHz. It connects to its private external

memory with a peak bandwidth of over 320 Gbps. The cores are based on the Intel Pentium

architecture. Each core has 32 KB of L1 data and instruction cache, 512 KB of L2 data cache,

and a 512-bit vector Floating Point Unit (FPU). This latter performs fused-multiply-add

(FMA) operations. Therefore, the peak performance is about 32 (resp. 16) GFlops in single

(resp. double) precision. Consequently, the KNC delivers a peak performance of about 2

(resp. 1) TFlops in single (resp. double) precision.

From a programming standpoint, the key is to treat the Intel Xeon Phi coprocessor as

an x86-based SMP-on-a-chip with over 50 cores, with multiple threads per core and 512-

bit SIMD instructions. From programming language point of view, Intel Xeon Phi is more

accessible than Nvidia GPU because it can be programmed using standard programming

environments such as OpenMP, MPI, Cilk Plus and Posix Threads. However, to achieve

higher performance one should consider two fundamental features: scaling through local-

ity and Simultaneous Multi-Threading (SMT) and vectorization. On the other hand, as an
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Figure 5.6: Hardware view: Knights Corner core.

Intel Xeon Phi coprocessor runs an operating system (Linux) and has its own IP address,

there are two ways to involve it in a parallel program:

• A processor-centric “offload" mode where the program is viewed, like for GPUs, as

running on processors and offloading work to coprocessors. Another issue which

arises with the offload mode is, like for GPU, the optimization of the data transfer

between the processor and the coprocessor.

• A “native" mode where the program runs natively on only coprocessors or on co-

processors and processors together. In the latter case, the two devices may com-

municate with each other by various methods. At least two other issues arise in

this case: the optimization of the data/task partitioning and the communication

between the processor and the coprocessor. The challenge for data/task partitioning

is the load balancing between the “big cores" of the processor and the “little" cores

of the coprocessor. Regarding the communication, the challenge is to overlap the

communications by the computation, to manage data locality, etc.



5.4. MIC-based implementation of B&B 91

5.4.2 Parallelization of B&B for Intel Xeon Phi

In this chapter, we investigate the offload and native modes for the parallelization of B&B

algorithms on Intel Xeon Phi coprocessors. In the native-based parallelization approach,

the random work stealing strategy proposed for multi-core processors presented in the

previous chapter has been reused for Phi coprocessor independently (without processor).

The objective is to study the performance of the two data structures IVM and LL and the

scalability of the associated work stealing strategy. Indeed, the number of processing cores

is higher in Xeon Phi coprocessor than in Xeon processor. This allows to study the behavior

of the scalability beyond 16 threads. In the offload-based parallelization approach, the

processor-coprocessor data transfer optimization approach is the same as for GPU. Indeed,

the branching operator is performed on Phi, this allows one to reduce the cost of data

transfer between the two devices. On the other hand, all the data structures which are

not modified between offloading operations are offloaded once.

One of the major mechanisms allowing performance improvement on Intel Xeon Phi

is vectorization. Different levels are provided ranging from compiler-based automatic

easy-to-use vectorization to manual and programmer control vectorization. In our work,

as quoted previously, the most consuming part of the B&B algorithm is computation of

the lower bound function (Algorithm 13). In this chapter, we propose a vectorization

method of the lower bound function focusing on its most compute-intensive portion

and the main data-dependencies. This portion of code is the inner for-loop (line 6-12)

which consumes about 70% of the bounding time. The body of this inner loop is executed

J2 × (J − 1)/2 times. Regarding data dependencies, the statement in line 10, including a

dependency of current tmp1 on tmp1 from previous iteration) prevents vectorization (icc

do not auto-vectorize it). In addition, except for line 14 the iterations of the outer loop

are independent (private variables: tmp0, tmp1, ind0, ind1, current). However, only the

inner loop of a loop nest may be vectorized 1.

In order to allow more vectorization than provided by the compiler, the order of the

nested loops must be inverted as illustrated in the vectorized lower bound function (Algo-

rithm 14).

1http://d3f8ykwhia686p.cloudfront.net/1live/intel/CompilerAutovectorizationGuide.pdf
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Algorithm 14 Computation of lower bound (vectorized)
input: subproblem = permutation, nLeft (#jobs fixed left), nRight (#jobs fixed right)
constant data (MM, JM, PTM, LM)
output: lower bound (LB) of subproblem

1: procedure C O M P U T E L B
2: RM, QM, SM← InitTabs(permutation, nLeft, nRight)
3: LB← 0
4: for (k = 0→ J(J−1)

2
) do

5: Tmp0[k], Tmp1[k], Ma0[k], Ma1[k]← InitFun(k, nLeft, MM, RM)
6: end for
7: for (j = 0→ J) do . permute loop-order
8: #pragma ivdep
9: for (k = 0→ J(J−1)

2
) do . inner loop vectorizable

10: job←JM[j][k] . transpose JM
11: if (SM[job]==0) then
12: Tmp0[k] += PTM[Ma0[k]][job]
13: Tmp1[k]← max(Tmp1[k], Tmp0[k] + LM[k][job]) + PTM[Ma1[k]][job]
14: end if
15: end for
16: end for
17: for (k = 0→ J(J−1)

2
) do

18: Tmp1[k]←EndFun(Tmp0[k], Tmp1[k], k, nRight, QM)
19: end for
20: LB←max-reduce(Tmp1[])
21: return LB
22: end procedure

For auto-vectorization by the compiler it is preferable to write small separate loops,

rather than merging into a single loop. The outer loop is thus split into 3 separate serial

loops and a max-reduce operation (line 20) in order to isolate the k-dependent instructions

from the inner-loop. The cost to pay for this is to declare the scalars tmp0, tmp1,ma0,ma1

as arrays (resp. Tmp0, Tmp1, Ma0, Ma1) of size K. The same strategy on GPU severely

breaks down performance due to the memory problem (these intermediate variables are

no longer stored into registers). Even with the highest optimization level activated (−O3)

the Intel compiler (icc) still needs the hint “#pragma ivdep to vectorize the inner loop

(line 9) successfully. The two other for-loop are auto-vectorized.

5.5 Experimentation

In this section, we present an experimental study of the proposed many-core approaches

using GPU and Intel Xeon Phi and compare them to their multi-core counterpart. We first

present the hardware and software testbeds and some parameter setting used for our

experiments. Then we report and discuss some experimental results.
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5.5.1 Hardware and software testbed and parameter setting

For the multi-core implementation, we have used OpenMP Version 4.0. All the experi-

ments are run on hardware described in Table 5.1. The compiler used for the CPU and

MIC implementations is Intel icc version 15.0 for Intel devices. For the GPU-accelerated

implementation, the NVIDIA CUDA Toolkit release 5.0.35 is used together with the gcc ver-

sion 4.4.7. For all experiments the compilation level 3 (-O3) is used. On the other hand, the

UNIX time command is used to measure the elapsed execution time for each Flow-Shop

instance. Finally, the GFLOPS(DP) row is obtained using the following computations:

• MIC: 16(flops/Ghz) ∗ 60(cores) ∗ 1.053(GHz/core) = 1010.88GF/s

• CPU: 8(flops/Ghz) ∗ 8(cores) ∗ 2.6(GHz/core) = 166GF/s

• K20x: 14(SM) ∗ 64(cores/SM) ∗ 0.732(GHz/core) ∗ 2(flops/Ghz)(FMA) =

1311GF/s

Intel Xeon E5-2670 NVIDIA Tesla K20x Intel Xeon-Phi 5110P

#Physical cores 8 14 60

#Logical cores 16 2688 240

clock(Ghz) 2.6 0.732 1.053

GFLOPS(DP) 166 1311 1011

SIMD 256-bit N/A 512-bit

Cache(MB) 20 1.5 30

Mem BW(GB/s) 51.2 250 320

Watt 115 235 225

Table 5.1: Hardware execution platform

The last raw indicates that the three hardware configurations (considering a two-socket

multi-core processor) are equivalent in terms of energy consumption.

As quoted in Section 5.2, the coprocessors are many-core devices dedicated to mas-

sively parallel computing. Therefore, they need to be fed by a large number of compu-

tations. To do that, many B&B trees are explored in order to generate multiple (IVM-

based) pools maximizing the use of the coprocessor cores. Before the experiments are

performed, the number M of IVM-based pools to be created is calibrated through a series

of experiments on the problem instance Ta028. The experimental results are reported in
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Figure 5.7. Based on the figure, the number of IVMs is fixed to 1000 (resp. 1600) for the

GPU-accelerated (resp. Xeon Phi-based) approach.
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Figure 5.7: Elapsed time vs. Number of IVMs.

5.5.2 Experimental results

The performance analysis of the contributions of this chapter is done in two steps. The

first one consists in comparing the performance of the IVM-based parallel multi-core

approach and the two many-core approaches: the GPU-accelerated approach and the

MIC-accelerated approach. In order to get a fair comparison between the two many-core

approaches the offload mode is considered for the MIC-based approach. In the second

step of the performance analysis, we have considered the native mode of the MIC-based

approach. The objective is to compare the private IVM and private linked-list-based ap-

proaches in terms of efficiency (execution time) and scalability according to the number

of Intel Xeon Phi threads.
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Performance comparison between multi and many-core approaches

As quoted above, the objective is to compare the many-core GPU and Phi-accelerated

approaches between them and to their multi-core counterpart. The multi-core approach

is exactly the same than the coprocessor master-worker approach except that the

bounding and branching operators are performed on the processing cores of the CPU. The

implementation is vectorized using the same method as for the MIC-based approach. In

our experiments, hyper-threading (2 threads per physical core) is used for the multi-core

approach and simultaneous multi-threading (SMT with 2 threads per core) is considered

for the MIC-based approach. The different approaches have been experimented using the

10 instances (Ta021− Ta030) of the Taillard’s problem 20 jobs on 20 machines. The best

solution found so far is initialized to the optimal solution to guarantee that the amount

of work (explored nodes) is the same for each of the experimented approaches. This

allows to prevent from the well-known speed up anomalies investigated for instance

in [Mans 1996]. The obtained experimental results are reported in table 5.2.

Nodes GPU Xeon Phi Multi-core

Inst. (×106) - No-Vect Vect No-Vect Vect

21 41.4 549 1486 917 2065 1362

22 22.1 293 819 468 1015 670

23 140.8 1698 5143 2956 6926 4678

24 40.1 434 1276 744 1667 1173

25 41.4 491 1678 964 2121 1338

26 71.4 774 2273 1334 2930 2019

27 57.1 610 1732 998 2357 1720

28 8.1 100 319 187 394 258

29 6.8 83 256 154 394 258

30 1.6 26 75 42 77 53

AVG 43.1 506 1506 876 1987 1349

Table 5.2: Exploration time (in seconds) for solving Flow-Shop instances Ta021-Ta030

initialized at optimal solution

The first two columns of the table contain respectively the numbers of the 10 solved

problem instances and their associated search space sizes in millions of nodes. The fol-

lowing columns designate the exploration time in seconds obtained using respectively the
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GPU-accelerated approach, the vectorized and non-vectorized MIC-based approaches using

120 threads, and the vectorized multi-core approach using 16 threads. From the last row

of the table, three major observations can be made. First, the GPU-accelerated approach

outperforms the MIC-based approach even in its vectorized version. Second, vectorization

allows one to speed up the MIC-based approach with a factor of two. Finally, the many-

core approaches are faster than the multi-core approach. Indeed, the GPU-accelerated

(resp. MIC-based) approach is 5 (resp. 3) times faster than its multi-core counterpart.

Performance analysis using the native MIC-based approach

The performance analysis using the native MIC-based approach is done in two steps. The

first one consists in comparing the private IVM and private linked-list-based approaches

in terms of scalability according to the number of Phi hardware threads. In this experi-

mentation step we have considered only the smallest Flow-Shop problem instance with 20

jobs (Ta030). This instance generates 1.6 million of subproblems at execution. Figure 5.8

reports the evolution of the elapsed CPU time according to the number of Xeon Phi hard-

ware threads for the two approaches. The figure shows that the IVM-based approach is

faster and scales better than its linked-list counterpart. The IVM-based approach scales

nicely up to 120 hardware threads and remains constant above. The linked-list approach

scales well up to 60 hardware threads meaning that it does not support hyper-threading.

In the second step of the performance analysis, we have compared the CPU elapsed

time obtained on the 10 problem instances for the two approaches. The experimental

results are reported in Table 5.3. The table shows that in average the IVM-based approach

is about 10 times faster than the linked-list approach.

The number of page faults is one of the main explanations of the good performance

of IVM compared to the linked-list data structure. Indeed, the IVM version has a smaller

memory footprint, which means fewer page faults than the linked-list version. As shown

in Figure 5.9, for example when using 240 threads, the linked-list version generated 8, 632

page faults which is about 1.34 times more than the IVM-based version where 11, 588 page

faults were generated.

5.6 Conclusion

According to the recent Top500 ranking (July 2015), it is confirmed that hybrid HPC

platforms including coprocessors is the trend towards the exascale era. On the other

hand, it appears that the market of hybrid HPC is dominated by Nvidia followed by Intel

with its Xeon Phi. In this chapter, we have revisited the parallelization of B&B algorithms
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Figure 5.8: Comparison between the linked-list and IVM-based B&B in terms of elapsed

CPU time when solving instance 30 using different number of hardware threads.

for many-core coprocessors, in particular Nvidia GPU and Intel Xeon Phi. From the

design point of view, we have combined two hierarchical parallel models: the parallel

tree exploration model and the parallel bounding. The bounding operator is performed

on the coprocessor because, on the one hand, it is the most time-consuming part of the

B&B algorithm. On the other hand, it is massively data parallel and thus well-suited for

coprocessors. In addition, the branching operator, which generates tree nodes during the

exploration process, is also performed on the coprocessor to minimize the cost of their

offloading from the processor to the coprocessor.

Such coprocessor-based design of B&B algorithms gives rise to other issues: thread

mapping, thread/branch divergence and data placement optimization on GPU, and

vectorization on Intel Xeon Phi. From the GPU side, we have reused some recommenda-

tions proposed in [Chakroun 2013c]. For the MIC-based approach, we have proposed

a vectorization method for the lower bound function. The different implementations

have been experimented on the 10 instances of the 20 jobs-on-20 machines problem
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# Instance Linked-list (Minutes) IVM (Minutes) Ratio (LL/IVM)

ta021 171 19 9.0

ta022 88 10 8.8

ta023 608 64 9.5

ta024 154 16 9.6

ta025 162 20 8.1

ta026 273 28 9.7

ta027 235 22 10.7

ta028 33 4 8.2

ta029 28 3 9.3

ta030 7 1 7.0

Average 171.9 18.7 9.4

Table 5.3: Comparison between the linked-list and the IVM-based B&B in terms of elapsed

CPU time when solving instances with 240 threads

using equivalent hardware configurations in terms of energy consumption. The reported

results show that the GPU-accelerated approach outperforms the MIC offload-based one

even in its vectorized version. Moreover, vectorization improves the efficiency of the

MIC offload-based approach with a factor of two. Finally, the many-core approaches are

faster (5 times for NVIDIA Tesla K20x and 3 times for Intel Xeon Phi 5110P) than their

multi-core counterpart (using Intel Xeon E5-2670).

Finally, we have proposed a MIC-based using a native mode. The same multi-core

approach proposed in the previous chapter has been deployed on the Intel Xeon Phi copro-

cessor using the work stealing strategy. The approach has been extensively experimented

on an Intel Xeon Phi 5110P. The reported results show that the IVM-based work stealing

approach is about 10 times faster than the linked-list traditionally used for parallel B&B.
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C H A P T E R 6

Conclusions and perspectives

According to the Top500 international ranking 1 the future of High Performance Com-

puting technologies is hybrid combining multi-core and many-core devices. Indeed, in

the last ranking (June 2015) 97% of the systems use processors with 6 or more cores

and 87.8% use 8 or more cores. In addition, a total of 90 systems on the list are using

accelerator/co-processor technology. Fifty-two of these use Nvidia chips, 35 systems

include Intel MIC technology (Xeon Phi), and 4 systems use a combination of Nvidia

and Intel Xeon Phi accelerators/coprocessors. In this thesis, the focus is put on parallel

tree-based exact combinatorial optimization. Indeed, we have revisited the design and

implementation of B&B algorithms for multi-core processors and coprocessors. We have

considered Nvidia GPU and Intel MIC Xeon Phi as accelerators/coprocessors in our

study. Without loss of generality, FSP has been considered as a case study to validate our

approaches.

Solving large permutation COPs using B&B algorithms results in the generation of

a very large pool of subproblems. Defining an efficient data structure is highly required

to store and manage efficiently that pool [Roucairol 1996, Shavit 2011]. In this thesis,

we have first proposed an original data structure called IVM for permutation COPs

and consequently redefined the operators of the B&B algorithm acting on it. At any

moment of execution, IVM indicates the subproblems of the pool associated to the

COP being solved that are being examined and those that remain to be visited. To

evaluate the performance of IVM it has been experimented using a serial B&B applied

to FSP and compared to the LL data structure in terms of memory consumption and

execution time. The reported results show that IVM-based B&B outperforms LL-based

B&B in terms of memory as well as computation time. Indeed, compared to LL, on

average the IVM data structure requires 9 (resp. 35) times less memory space for

the instances defined with 20 (resp. 50) jobs. Moreover, the IVM-based approach is

2.5 (resp. 3) times faster than its LL-based counterpart for instances with 20 (resp. 50) jobs.

1Top500 gives the tendency of the evolution of High Performance Computing technologies.
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As a second contribution, we have revisited the Work Stealing (WS) mechanism on

multi-core processors. Most of existing works related to multi-core B&B use concurrent

data structures mainly a stack for depth-first exploration [Chakroun 2013c]. In addition,

work units are defined as subsets of nodes making their communication costly. In such

works, at each stealing operation each thread picks a subproblem from the shared pool

and the generated subproblems are returned back to be inserted in the shared pool. In

this thesis, work units are coded in a coalesced thus optimized way, using factoradic-based

intervals. Furthermore, as recommended in [Acar 2013], private IVMs are used to store

and explore locally subsets of subproblems. The basic principle of this approach is that

each thread explores locally a set of subproblems using its private IVM. When the set is

empty it steals a work unit from another thread according to the victim selection and

granularity policies. Choosing the adequate WS strategy is a great challenging issue

and has a great impact on performance. This is why we have investigated different

WS strategies combining two granularity policies (half and T th, T being the number

of involved threads) and 4 victim selection policies: ring, random, largest and honest.

The IVM-based approach has been experimented and compared to the private LL-based

approach considering these different WS strategies. To do that, we have implemented

this later which is itself a new contribution. The reported experimental results show

that our approach is more efficient in terms of memory usage and management time.

Indeed, according to the reported results except for largest steal-half WS strategy IVM

gives better speed-up than LL. In particular, IVM allows a faster pool management than

LL. Moreover, the results confirm that the random steal-half strategy, often used in the

literature, outperforms the other WS strategies for large FSP instances. On the other

hand, the experimental results confirm that IVM offers a predictable and lower memory

footprint than LL.

Finally, we have revisited the parallelization of B&B algorithms for many-core

coprocessors, in particular Nvidia GPU and Intel Xeon Phi. Two parallel models have

been combined: the parallel tree exploration model and the parallel bounding. The

bounding operator is performed on the coprocessor as it is costly and massively data

parallel and thus well-suited for coprocessors. Furthermore, the branching operator is

also performed on the coprocessor to minimize the cost of their offloading from the

processor to the coprocessor. Such design raises some issues mainly thread mapping,

thread/branch divergence and data placement optimization on GPU, and vectorization

on Intel Xeon Phi. From the GPU side, we have reused some recommendations proposed

in [Chakroun 2013c]. For the MIC-based approach, we have proposed a vectorization

method for the lower bound function. The many-core implementations have been
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experimented on the 10 instances of the 20 jobs-on-20 machines problem using equivalent

multi-core and many-core hardware configurations in terms of energy consumption.

The reported results show that the GPU-accelerated approach outperforms the MIC

offload-based one even in its vectorized version. Moreover, vectorization improves the

efficiency of the MIC offload-based approach with a factor of two. Finally, the many-core

approaches are faster (5 times for NVIDIA Tesla K20x and 3 times for Intel Xeon Phi

5110P) than their multi-core counterpart (using Intel Xeon E5-2670).

Finally, we have proposed a MIC-based B&B using a native mode. The same multi-core

approach proposed in the previous chapter has been deployed on the Intel Xeon

Phi coprocessor using the work stealing strategy. The approach has been extensively

experimented on an Intel Xeon Phi 5110P. The reported results show that the IVM-based

work stealing approach is about 10 times faster than its LL-based counterpart.

As future research directions for this work, we have identified some challenging per-

spectives summarized in the following:

• As a short-term future work, we will validate our approaches on other single

permutation COPs such as TSP, Job-Shop and QAP, and COPs with more than

one permutation like Q3AP [Mehdi 2011]. This work will be conducted within

the framework of a collaboration with Tiago Carneiro Passoa from University

of Ceará-Brazil. This later is invited for one year in the Dolphin team since

September 2015. We will also revisit the GPU-accelerated approach so that the

whole IVM-based B&B algorithm is executed on GPU. This is an ongoing work re-

alized within the framework of the Ph.D thesis of Jan Gmys started in February 2015.

• As a medium-term future work, we will extend our contributions by combining

the multi-core, GPU-accelerated and MIC-based approaches in a single hybrid one.

Work partitioning among the three chips will be particularly a challenging issue

to be addressed. Then, we will extend this hybrid approach with a cluster-level

parallelism. The processor and coprocessor-level work stealing strategies will be

investigated at the cluster level. In addition, the B&B@Grid approach proposed

in [Mezmaz 2007b] will be reused. The CPU-level checkpointing mechanism

proposed in B&B@Grid will be used to deal with failures even if the CPU is coupled

with a coprocessor device. The mechanism should be revisited to take into account

coprocessor-level failures. This will allow us to solve to optimality unsolved problem
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instances 2 using large hybrid clusters. This a also a part of the Ph.D thesis of Jan

Gmys.

• We believe that the conclusions drawn from the experiments are the same whatever

is the shape of (how irregular is) the tree and thus for any tree-based application.

Therefore, in the long term, we will try to generalize the approach to other tree-based

exploration algorithms such as B&X (X=cut, price, ...).

2as we did it in 2007 using grid computing [Mezmaz 2007b].
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A P P E N D I X A

Other experimental results

IVM LL

Instance Data Maximum Data Data

Structure Pool Structure Structure

Size Size Size Ratio

(Bytes) (Bytes) (LL/IVM)

Ta041

1426

741 37050 26.00

Ta042 774 38700 27.16

Ta043 714 35700 25.05

Ta045 483 24150 16.95

Ta050 652 32600 22.88

Average 1425 673 33640 23.61

Table A.1: Comparison of serial IVM-B&B and LL-B&B when the solution is initialized to

optimum in terms of memory.

IVM LL

Instance Data Maximum Data Data

Structure Pool Structure Structure

Size Size Size Ratio

(Bytes) (Bytes) (LL/IVM)

Ta113
126751

14018 7009000 55.30

Ta115 8326 4163000 32.84

Average 126751 11172 5586000 44.07

Table A.2: Comparison of serial IVM-B&B and LL-B&B when the solution is initialized to

optimum in terms of memory.
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IVM LL

Instance Pool Pool Pool

Mgmt Mgmt Mgmt

Time Time Ratio

(Sec.) (Sec.) (LL/IVM)

Ta021 129.59 439.90 3.39

Ta022 67.72 229.59 3.39

Ta023 448.11 1508.90 3.37

Ta024 119.37 398.92 3.34

Ta025 124.70 429.60 3.45

Ta026 210.19 693.52 3.30

Ta027 176.62 604.74 3.42

Ta028 25.23 88.12 3.49

Ta029 21.04 71.88 3.42

Ta030 5.15 17.45 3.39

Average 132.77 448.26 3.38

Table A.3: Comparison of serial IVM-B&B and LL-B&B when the solution is initialized to

optimum in terms of CPU Time.

IVM LL

Instance Pool Pool Pool

Mgmt Mgmt Mgmt

Time Time Ratio

(Sec.) (Sec.) (LL/IVM)

Ta041 0.16 0.71 4.47

Ta042 79.42 351.96 4.43

Ta043 5.59 24.36 4.35

Ta045 0.06 0.30 4.85

Ta050 13.30 58.83 4.42

Average 19.71 87.23 4.51

Table A.4: Comparison of serial IVM-B&B and LL-B&B when the solution is initialized to

optimum in terms of CPU Time.
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IVM LL

Instance Pool Pool Pool

Mgmt Mgmt Mgmt

Time Time Ratio

(Sec.) (Sec.) (LL/IVM)

Ta071 378.65 1457.96 3.85

Ta073 1053.24 2956.72 2.81

Average 715.94 2207.34 3.33

Table A.5: Comparison of serial IVM-B&B and LL-B&B when the solution is initialized to

infinity in terms of CPU Time.

IVM LL

Instance Pool Pool Pool

Mgmt Mgmt Mgmt

Time Time Ratio

(Sec.) (Sec.) (LL/IVM)

Ta113 31.12 308.72 9.92

Ta115 0.96 7.79 8.13

Average 16.04 158.26 9.02

Table A.6: Comparison of serial IVM-B&B and LL-B&B when the solution is initialized to

optimum in terms of CPU Time.
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A P P E N D I X B

Inversion table

Permutation to factorial number using inversion table

It is also possible to encode a permutation as a factorial number using the inversion table

method. Table B.1 explains with an example the used procedure for obtaining the code

T = (T0T1...T8)! from a permutation π = 527038614. In the figures of this table, position,

code and element are represented with the same colors than Table 2.3.

The procedure for obtaining the code T0 is illustrated using the figure of the first cell

the table. This code T0 is equal to the number of inversions where 0 (0, not T0) appears at

the right side of a pair. Since the number of inversions of this type is equal to 3, then T0 is

equal to 3. In the same way, T1 is equal to 6 since there are 6 inversions where 1 appears

at the right side of pair. Therefore, Ti is equal to the number of inversions where i appears

at right side of a pair (see Equation (B.1)).

Ti = |Inversions(π, i)| (B.1)

The resulting number is a factorial number which has a size n. Indeed, Ti is always

smaller than 8− i since the number of inversions where i can appear at the right side of a

pair is always smaller than 8− i. For example, T0 is always smaller than 8− 0 (i.e. 8) since

the number of inversions where 0 can appears at the right side of a pair can not exceed

8− 0. This the case of a permutation where π8 is equal to 0. T8 is always less than 8− 8

(i.e. 0) since the number of inversions where 8 appears at the right side of a pair is always

equal to 0 (i.e. 8−8). Indeed, no digit can be higher than 8 in a permutation of 9 elements.

So there is no pair where 8 appears on the right side.
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Table B.1: Coding of a permutation using the inversion table code.

Algorithm 15 allows to find the code for an inversion table. The algorithm receives

as input a permutation π, and returns as output a code T of this permutation obtained

with the inversion table. Like Algorithm 15, the role of the first step is to initialize to 0 all

the components Ti of the vector T . This algorithm is described with two loops which test

all possible inversions. For each found inversion (πi, πj), the value of Tk is incremented

where k is equal to πj . The algorithm has a complexity of O(n log(n)).
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Algorithm 15 PERMUTATION-TO-TABLE-INVERSION(π)

1: Vector-initialize-zero(T);

2: for i← 0 to (N-1) do

3: for j← (i+1) to (N-1) do

4: if πi>πj then

5: k ← πj

6: Tk ← Tk + 1;

7: end if

8: end for

9: end for

10: return T

Factorial number to permutation using inversion table

From a code T = (361240200)! obtained with the inversion table, the figures of Table B.2

explain, using an example, the method used to decode the permutation π of this code T .

Unlike a Lehmer code that assigns elements at positions, the code of an inversion table

allows to rather assign positions to elements. In other words, decoding T consists, not

to distribute elements on positions, but rather to distribute positions on elements. At the

beginning, all the positions, represented by blue triangles, are not assigned, and all the

elements, represented by black circles, are also free.

From the first cell of the table, decoding T0 gives the position associated to the element

0. As T0 is equal to 3, then the (3 + 1)th free position must be associated to the element

0. As all the positions are not associated at the beginning, then the (3 + 1)th unaffected

position is the position 3. Therefore, the position 3 is associated to the element 0. From

the second cell of the table, decoding T1 gives the position associated to the element 1.

As T1 is equal to 6, then the (6 + 1)th free position must be associated to the element 1.

Since the position 3 is already occupied, the (6 + 1)th unaffected position is the position 7.

Therefore, the position 7 is associated to the element 1.

Decoding Ti gives always the position associated to the element iwhich is the (Ti + 1)th

free position. At the end of decoding operation of T = (361240200)!, the obtained permu-

tation is π such as π = {(3,0), (7,1), (1,2), (4,3), (8,4), (0,5), (6,6), (2,7), (5,8)}. Using

the representation of Equation (2.18), π is then equal to 527038614. The obtained permu-

tation π = 527038614, using the inversion table code T = (361240200)!, is therefore the

same than the obtained permutation with the Lehmer code L = (525013200)!, even if L

and T are different factorial numbers.
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9th code = 3 8th code = 6 7th code = 1

6th code = 2 5th code = 4 4th code = 0

3rd code = 2 2nd code = 0 1st code = 0

Table B.2: Decoding a permutation represented by a code obtained with the inversion

table.

Algorithm 16 summarizes the decoding method of a code obtained with the inversion

table. The algorithm receives as input a factorial number corresponding to a code obtained

with the inversion table, and returns as output a permutation which corresponds to this

code. The algorithm begins by initializing a position vector called Places containing all the

sorted positions. This initialization is done using the function VECTOR-INITIALIZE explained in

Subsection 2.4.1. At each iteration ITEM , the algorithm computes the position PLACE

of element ITEM . Once ITEM and PLACE are known at the end of an iteration, the

algorithm assigns ITEM to the element πPLACE .

To compute the position PLACE associated to an iteration, the algorithm reads the

place located at the position TITEM of the vector of the positions Places. The reading

operation is done using the function VECTOR-SELECT. After reading the position PLACE, the

function VECTOR-SELECT also shifts with one position to the left all the positions located at

the right of PLACE. This algorithm has therefore a complexity equal to O(n log(n)).



121

Algorithm 16 TABLE-INVERSION-TO-PERMUTATION(T)

1: Vector-initialize(Places)

2: for ITEM← 0 to (N-1) do

3: i← TITEM

4: PLACE← Vector-select(Places,i)

5: πPLACE ← ITEM

6: end for

7: return π
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