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Abstract

Previous papers have proposed to add memory registers to the dynamics of discrete-
time linear systems in order to accelerate their convergence. In particular, it has been
proved that adding one memory slot per agent allows faster convergence towards average
consensus. We here prove that this situation cannot be improved by adding more memory
slots, when the knowledge about the self-adjoint linear map to be accelerated reduces to
bounds on its extreme eigenvalues.

1 Main result & related work

1.1 Motivating question: consensus

A consensus algorithm in discrete time [1] writes, for a column vector x = [x1; x2; ...;xN ] ∈
RN :

x(t+ 1) = x(t)− αLx(t) . (1)

Here xk ∈ R is the state of agent k, α > 0 is a gain, and L is the Laplacian matrix character-
izing interactions among agents: component j of Lx equals

∑N
k=1 wj,k (xj −xk) with weights

wj,k ≥ 0. Usually L contains many zeros, as each agent interacts with few fellows. For the
algorithm to preserve the average of the initial values xk(0), we assume wj,k = wk,j for all
j, k. The Laplacian L is then symmetric nonnegative definite, and if the interactions form a
connected graph it has a single eigenvalue λ1 = 0 with eigenvector v1 = [1; 1; ...1]; we call v1

a consensus situation. When (IN −αL) has nonnegative entries, with IN the N ×N identity
matrix, it can equivalently be viewed as the transition matrix of a Markov chain; symmetric
L implies that the limiting distribution is uniform.

For time-invariant L, the convergence of (1) is dictated by the largest eigenvalue, in modu-
lus, of (IN−αL) — excluding the trivial eigenvalue 1 associated to λ1 = 0 and eigenvector v1,
which spans the target subspace. In the orthonormal basis corresponding to the eigenvectors
of L (so-called “modes”), the system decouples into

x̃k(t+ 1) = (1− αλk)x̃k(t) , k = 1, 2, ..., N, (2)
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with x̃k the coefficient of mode k and λk the associated eigenvalue. If we only know that the
eigenvalues λk of L belong to an interval [λ, λ̄] ⊂ R>0 for k = 2, 3, ..., N , then the convergence
speed — in terms of bounds on eigenvalues of (2) guaranteed over all λk ∈ [λ, λ̄] — is optimal
when α is selected to satisfy (1−αλ) = −(1−αλ̄). This gives α = 2

λ̄+λ
and worst eigenvalue

µ = λ̄−λ
λ̄+λ

.

In practice, the time step of discrete-time consensus is mostly limited by communication
speed, much more rarely by local computation power. Hence [2] and later [3, 4, 5] propose to
improve convergence speed by adding local dynamics to each agent, namely a memory slot
with associated gain β1 ∈ R:

xk(t+1) = xk(t)− α
∑N

j=1wk,j (xk(t)− xj(t))− β1(xk(t)− xk(t-1)) . (3)

The papers analyze in detail only this case of one memory slot and prove that with β1 < 0 it
allows faster convergence. This spurs the natural question:
How much can be gained by adding more memory slots?
The answer is strictly nothing , as we prove next in a more general setting.

1.2 Formal result

Consider a general linear iteration

x(t+ 1) = x(t) + α(b−Ax(t)) (4)

where x = [x1; x2; ...;xN ] ∈ RN is a dynamic variable, α ∈ R is a constant gain to be chosen,
b ∈ RN is a given constant bias and A is a given constant, self-adjoint positive semidefinite
linear map on RN . We are interested in applications where (4) is applied iteratively in order
to converge towards the set of fixed points S = {s ∈ RN : As = b}. For consensus, with
A = L and b = 0, we have S = {λv1 : λ ∈ R}; in other computational applications S might
reduce to a single point; we always assume S to be nonempty.

Motivated by the consensus setting, we consider a “memory-accelerated” version of (4):

x(t+ 1) = x(t) + α(b−Ax(t)) +
M−1∑
m=0

βm x(t-m) ,

with chosen gains βm ∈ R for m = 0, 1, 2, ...,M − 1. This yields stationary solutions x

satisfying α(b−Ax) +
(∑M−1

m=0 βm

)
x = 0. Hence we require

∑M−1
m=0 βm = 0 to ensure that S

remains a set of stationary solutions under the “memory-accelerated” dynamics. The latter
can then be rewritten as:

x(t+ 1) = x(t) + α(b−Ax(t)) +

M−1∑
m=1

βm (x(t-m)− x(t)) , (5)

with freely chosen gains βm ∈ R. For analysis, we can rewrite (5) in the basis of eigenvectors
of A and this just leads to a set of N independent scalar equations

x̃k(t+ 1) = (1− αλk)x̃k(t) + αb̃k +
M−1∑
m=1

βm (x̃k(t-m)− x̃k(t)) (6)
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where λk are the associated eigenvalues of A, for k = 1, 2, ..., N . Hence it is clear that
convergence of (5) is governed by the separate convergence of each modal component x̃k
associated to its eigenvalue λk in (6). Note that for S to be nonempty, we must have b̃k = 0
for every k for which λk = 0. Then the modes with λk = 0 of both (4) and (5) (initialized with
x̃k(t) = x̃k(0) for t < 0) become trivial, such that convergence towards S is governed by the
nonzero eigenvalues of A only. We consider the setting where the choice of α, β1, ..., βM−1 is
allowed to exploit the following knowledge. Let |z| and ∠(z) respectively denote the modulus
and the phase of z ∈ C.

Assumption 1: It is known a priori that the nonzero eigenvalues λk of A take values in the
interval [λ, λ̄] ⊂ (0,+∞).

Definition 2: Denote γm(λ), m = 1, 2, ...,M the roots of the characteristic polynomial of the
linear difference equation (6) with λk = λ. Then we define the convergence speed guarantee
ν of (5) for fixed α, β1, ..., βM−1 by

ν := max
λ∈[λ,λ̄]

max
m∈{1,2,...,M}

|γm(λ)| ,

i.e. ν denotes the worst possible eigenvalue of (6) over all λk satisfying Assumption 1.

We then prove the following result.

Theorem 3: Consider dynamics (5) with A self-adjoint and satisfying Assumption 1. Then
the convergence speed guarantee is optimized, i.e. ν ∈ (0, 1) is minimized over all α, β1, β2, ...βM−1 ∈
R, when using just a single memory slot optimally tuned as in [2], i.e. taking:

βm = 0 for all m > 1 ,

β1 = β1∗ := −
(

1

µ
−
√

1

µ2
− 1

)2

,

α = α∗ :=
2(1− β1∗)

λ̄+ λ
,

where µ = λ̄−λ
λ̄+λ

. The corresponding convergence speed guarantee is

ν∗ =
1

µ
−
√

1

µ2
− 1 =

√
−β1∗ .

This ν∗ increases with µ, which was the optimal convergence speed guarantee for M = 1
i.e. no added memory slot. For µ = 1-ε, with ε frequently called the spectral gap, we have
ν∗ < 1-

√
ε and the bound gets tight as ε→ 1.

Remark 4: [2] and related work mention that β1 < 0 is necessary to get acceleration over
the memoryless case. As an auxiliary result, it is not difficult to show for (5) that if we are
restricted to βm ≥ 0 for all m then no acceleration with respect to the memoryless case can
be achieved.

1.3 Related acceleration approaches

Before proving Theorem 3 on the basis of complex polynomial analysis, we mention a few
related acceleration schemes in the literature. We hope that in the future these viewpoints
might lead to a more elegant explanation and intuitive understanding of the limitation to one
memory slot.
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Optimization techniques The scheme studied here is not unlike techniques proposed
earlier by the optimization community, where acceleration methods are a major focus point.
For instance the Nesterov method [6] accelerates the gradient descent optimization of a convex
function f , i.e. it accelerates

x(t+ 1) = x(t)− α∇xf(x(t))

by applying, in its most basic version:

m(t) = x(t)− α∇xf(x(t))

x(t+ 1) = m(t) + g(t) (m(t)−m(t− 1)) .

For f = 1
2x

TAx − bTx, this corresponds exactly to the acceleration (5) of (4) with M = 2,
except that the Nesterov method involves a time-varying step size g(t), whose details go
beyond the scope of the present paper. Our result seems to suggest that just adding more
memory slots would not further accelerate the Nesterov method.

Robust control The problem setting (6) with b̃k = 0 can be viewed as an ensemble of
closed-loop systems resulting from proportional feedback with different gains λk, i.e.:

y(z) = H(z)u(z) , u(z) = −λky(z) with

H(z) =
α

z − 1 +
∑M−1

m=1 βm (1− z−m)

where y(z) and u(z) are the output and input respectively and H(z) is the plant transfer
function. We then want to design the plant α, β1, ..., βM−1 to get the fastest possible worst-
case performance over the ensemble of feedback gains λk ∈ [λ, λ̄]. In view of Theorem 3, a
plant with M = 2 would be best in terms of convergence speed. As a major caveat though,
the present paper proves optimality over all H(z) with no zeros and with at least one pole at
z = 1; the possible practical relevance of this setting in control applications would have to be
checked.

Various reformulations of where the uncertainty sits can of course be envisioned, e.g. the
uncertain plant could be modeled by A whereas α, β1, ..., βM−1 would characterize the con-
troller. From that perspective, (6) can be viewed as an optimal control problem for a so-called
(non-symmetric) interval matrix or linear parametric uncertainty system, along the lines of
Kharitonov’s theorem. Unfortunately the latter does not generalize easily to discrete-time
systems [7, 8]. An interesting result when there is a single uncertain parameter is proposed
in [9]. Nevertheless, the author found no simple way to use this towards proving Theorem 3.

Accelerated consensus As mentioned in the introduction, our initial motivation was the
study of consensus algorithms accelerated through “local” memories; see [2, 3, 4, 5] which
propose the scheme (similar to) (5) and analyze the case M = 2. Very recently [10] has
proposed a scheme with “extrapolating” step, similar to the case M = 2 (and to the Nesterov
method, see above) but where the limited information known about the network is a bound
on the total number of nodes, instead of on the extremal eigenvalues of L.

Researchers have also considered accelerations based on different resources than local
memory, for instance allowing periodically time-varying gain α in (4). Optimal tuning rules
for α(t) can then build on polynomial-based filtering [12, 13]. The optimal acceleration strategy
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of [11] can also be viewed as an instance of this framework, provided one limits the algorithm
to a finite number of Chebyshev polynomials which are then applied periodically. In this
latter context, when λk can take all values in [λ, λ̄], it is easy to check that the memory-
based strategy (6) is faster than the optimal periodically time-varying one. However if more
is known about the λk, then polynomial-based filtering is straightforward to adapt towards
better speed-up. In the extreme case where L has M different eigenvalues whose values are
exactly known, it is possible to construct a polynomial of order M that achieves deadbeat
convergence in M steps. Similar “finite-time consensus” strategies have been proposed and
studied in e.g. [14, 15], with an interpretation of the resulting algorithms as gathering initial
state information at a central node, computing its average and redistributing the average
through the network.

It seems not straightforward to compare the resources “local memory” and “time-varying
gain” outside an applicational context. In particular a standard time-varying implementation
requires a stronger type of synchronization among all the nodes, namely they must not only
agree on the frequency of updates but also on which gain to apply at each step. This may
or may not be restrictive. The Nesterov method combines both memory and time-dependent
step lengths. These approaches, along with accelerated Markov chains (see next paragraph),
offer alternatives towards further acceleration but apparently only when more is known than
λk ∈ [λ, λ̄].

Accelerated Markov chains The optimal acceleration of the dual of consensus, namely
Markov chains, has also been extensively studied in the literature, see e.g. the “lifting” method
of [16] and an even faster “pseudo-lifting” in [17]. Those approaches exploit knowledge of the
particular network, hence they apply to the case where more is known than only λk ∈ [λ, λ̄]
(see previous paragraph). In fact [17] proposes an accelerated consensus version which directly
connects with the “gather-and-distribute” strategy of [14, 15], although with a priori more
complex communication requirements: it requires each node to communicate a vector of
several values at each time step.

Yet lifted Markov chains cannot be viewed straightforwardly as the dual of accelerated
consensus.1 Whether the result of [2] and/or Theorem 3 can be used to investigate Markov
chain acceleration, possibly without requiring detailed network knowledge, remains to be
studied. The lifted Markov chain [16] using detailed network knowledge is limited to quadratic
speed-up.

Information theory Consider the consensus application from the viewpoint of an individ-
ual node k. The messages received by node k when symmetrically exchanging data with a
network, reflect in part the other nodes’ initial values {xj(0) : j 6= k} and in part the influence
of xk(0) on the other nodes in the network. It seems not unreasonable to suspect that local
memory can help disentangle these influences. Yet Theorem 3 says that if the network is
poorly characterized, in the precise sense λ ∈ [λ, λ̄], then having more than one additional
memory is not helpful. This somehow seems to say: taking into account the direct feedback
loop from k through its neighbors j and directly back to k does allow improved convergence;
but speculating about longer feedback loops does not pay off.

1In fact, although this is a minor point, even in the unaccelerated case, Markov chains unlike consensus are
restricted to systems with positive coefficients in the matrix I − αL.
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Finally, let us emphasize that Theorem 3 starts with a positive semidefinite self-adjoint
matrix A, which can be viewed as a diffusive operator, or in consensus as an undirected com-
munication matrix. In contrast, the state matrix characterizing the accelerated system (5)
is not symmetric. Hence it seems to introduce transport, or hidden directed communication
(effects), which is known to improve convergence speed in several contexts [16, 18]. This
also implies that the acceleration of [2], exactly like Markov chain liftings, cannot be applied
iteratively. I.e. the new state matrix, characterizing the system that results from an accelera-
tion according to [2], is not symmetric which precludes applying the technique of [2] once more.

In the following we first prove Theorem 3, before discussing an example in Section 4.

2 Proof, first part: reformulation

We consider the dynamics with memory slots in the form (6). The convergence speed for each
mode is governed by the roots of

P (z;λk) = zM − (1− αλk)zM−1 +
∑M−2

m=0 βM−m−1 (zM−1 − zm) , (7)

viewed as a function of z parameterized by λk. In accordance with Definition 2, for the sequel
we replace the set of λk by a generic λ which runs through [λ, λ̄].

2.1 Optimal solution with one memory slot

To make the paper self-contained, we outline a proof of optimal tuning for the case M = 2,
which is covered in [2].

Proposition 5 [adapted from [2]]: For M = 2 the tuning β1 = β1∗, α = α∗, as proposed in
Theorem 3, minimizes the value of the convergence speed guarantee ν. Moreover, the roots of

P∗(z;λ) = z2 − (1− α∗λ)z + β1∗(z − 1)

take the values z±∗(λ) = ν e±iθλ where the map λ 7→ θλ is a continuous bijection from [λ, λ̄]
to [0, π].

Proof: First note that β1 ≥ 1 always leads to an unstable eigenvalue. Then the roots of
P (z;λ) are equal to the roots z±(λ̃) of

f(z; λ̃) = z2 − (1− β1)λ̃z − β1

with λ̃ = (1− αλ− β1)/(1− β1).
We first fix a value of β1 and study the roots of f(z; λ̃) as a function of λ̃, which translates

into an optimal value for α. Standard function analysis yields:
Property 5: The worst root max{|z+(λ̃)|, |z−(λ̃)|} of f(z; λ̃) is a monotonically (non-strictly)

increasing function of |λ̃|.
Hence for given β1 the choice of α should strive to minimize maxλ∈[λ,λ̄](|λ̃|). This is obtained

by choosing α such that (1−αλ− β1) = −(1−αλ̄− β1), since |λ̃| takes its extremal value(s)

when λ is at the boundary of the interval [λ, λ̄]. We hence get the condition α = 2(1−β1)

λ̄+λ
.

Moreover, this implies that λ̃ runs through the interval [−µ, µ] when λ spans [λ, λ̄], with

µ = λ̄−λ
λ̄+λ

independent of β1.
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It remains to optimize β1, assuming that it is associated to its respective optimal α; by
Property 5 and the previous sentence, this reduces to:

min
β1∈R

max
λ̃∈±µ

max
(
|z±(λ̃)| : f(z±(λ̃); λ̃) = 0

)
.

A standard function analysis shows that it is optimal to take β1 such that z+(µ) = z−(µ) =
−z+(−µ) = −z−(−µ). This yields the expressions of α∗, β1∗ and ν given in Theorem 3.

The just mentioned optimality condition requires that the discriminant ∆∗ = (1−β1∗)
2λ̃2+

4β1∗ of f(z; λ̃) = 0 takes its zeros for λ̃ = ±µ. Then for all λ̃ ∈ [−µ, µ], i.e. all λ ∈ [λ, λ̄], we
have ∆∗ ≤ 0. Therefore 4|z±∗(λ)|2 = (1− β1∗)

2λ̃2 −∆∗ (sum of squared real and imaginary
parts) = −4β1 independently of λ ∈ [λ, λ̄]. Continuity of the roots of f(z) between λ̃ = µ
and λ̃ = −µ yields the last part of the Proposition. �

2.2 General polynomial property

We now reformulate P (z;λ) using Proposition 5.

Claim 6 [to be proved]: For any ν ∈ (0, 1) and P̃M−1 =
∑M−1

k=0 aky
k with a1, a2, ..., aM−1 ∈ R

and aM−1 6= −1, there exists θ ∈ [0, π] for which

P̃ (y; θ) = (y − eiθ)(y − e−iθ) yM−2 + (y − 1
ν ) P̃M−1(y) (8)

has a root of modulus ≥ 1.

Proposition 7: Theorem 3 is true if Claim 6 holds.

Proof [of Proposition 7]: Let

P̂ (z; θ) = (z − νeiθ)(z − νe−iθ)zM−2 + (z − 1)
∑M−1

m=0 β̃m z
m .

Using z2− (1−α∗λ)z+β1∗(z− 1) = (z− νeiθλ)(z− νe−iθλ) from Proposition 5, it is straight-
forward to check that P̂ (z; θλ) = α∗

α P (z;λ) provided

β̃k = α∗
α

∑k
m=0 βM−m−1 for k ≤M -3,

β̃M -2 = α∗
α (
∑M−2

m=0 βM−m−1) − β1∗ ,

β̃M -1 = α∗
α − 1 .

Thus by taking appropriate β̃0, β̃1, ...β̃M−1 ∈ R, the roots of P̂ (z; θλ) can be made equal to
the roots of P (z;λ) from Theorem 3 for any α, β1, ..., βM−1 ∈ R, except for α = 0. The latter
case is trivially uninteresting since for α = 0 any x ∈ RN would be a stationary point of (5),
hence no convergence can be obtained. Moreover, the case β̃M−1 = −1 will never appear since
this would require infinite α. The tuning proposed in Theorem 3, with roots ν e±iθλ and 0,
corresponds to β̃0 = β̃1 = ... = β̃M−1 = 0. The parameter λ ∈ [λ, λ̄] in P (z;λ) is transferred
to θλ ∈ [0, π] in P̂ (z; θλ), according to Proposition 5.

Hence a sufficient condition to prove Theorem 3 is to show that for any β̃0, β̃1, ...β̃M−1 ∈
R, with β̃M−1 6= −1, there exists some θ ∈ [0, π] such that P̂ (z; θ) has at least one root
with modulus ≥ ν. The statement of the Proposition is obtained by defining y = z/ν and
am = β̃mν

m−M+1 for m = 1, 2, ...,M − 1. �
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Claim 6 looks like a discrete-time robust (in)stability property. Surprisingly, we know no
standard result that would straightforwardly establish it. Examples can be constructed where
the relevant roots are never real, or appear only for intermediate values of θ (see Section 4),
which seems to rule out simple variants of polynomial roots properties. Hence the remainder
of this paper explicitly analyzes P̃ (y; θ) in the complex plane. Note that for any polynomial
P (z), the modulus |P (z)| is continuous for all z ∈ C, while ei∠(P (z)) is continuous for all
z ∈ C \ {z : P (z) = 0}.

3 Proof, second part: analyzing P̃ (y; θ)

We split up P̃ (y; θ) into

P1(y; θ) := (y − eiθ)(y − e−iθ) yM−2 ,

P2(y) := −(y − 1
ν ) P̃M−1(y) .

Any y at which P1(y; θ) = P2(y) is a root of P̃ (y; θ). We first dispose of two special cases.

Proposition 8:
(a) If P̃M−1 in Claim 6 has a root on the unit circle, then P̃ (y; θ) has a root y1 with |y1| ≥ 1
for some θ ∈ [0, π].
(b) If aM−1 < −1 in Claim 6, then P̃ (y; θ) has a root y1 with |y1| ≥ 1 for all θ ∈ [0, π].

Proof: (a) Let y∗ the root of P̃M−1 on the unit circle and take eiθ∗ = y∗ if Imaginary(y∗) ≥ 0,
else e−iθ∗ = y∗. Then P̃ (y∗, θ∗) = 0 with |y∗| ≥ 1.

(b) We separately analyze (i) the sign and (ii) the magnitude of both P1 and P2 for y
belonging to the real positive axis.
(i) Let y∗ ≥ 1/ν > 1 the largest real root of P2(y). Both P2(y) and P1(y; θ) are positive for
y ∈ (y∗,+∞), for any θ.
(ii) |P2(y)| < |P1(y; θ)| for y close to y∗, while for very large |y| we have |P2(y)| ' |aM−1| |y|M >
|P1(y; θ)| ' |y|M .
Hence for any θ, there exists some y1 ∈ (y∗,+∞) where |P1(y1; θ)| = |P2(y1)|, which with (i)
implies P1(y1; θ) = P2(y1). This y1 is a root of P̃ (y; θ) with |y1| > 1. �

From Prop. 8(a), we can reduce our investigation to the case where the roots of P2 are
disjoint from the roots of P1. Indeed, we have excluded roots of P2 on the unit circle, whereas
a situation with P2 and P1 having the common root y = 0 can be reduced to an equivalent
algorithm with a lower value of M .

The analysis of P̃ (y; θ) towards Claim 6 for the remaining cases is essentially a general-
ization of the proof of Prop. 8(b), from the real line towards the complex plane.

3.1 Partitioning the complex plane with P1 and P2

For given P1(·; θ) and P2(·), we can partition the complex plane into a collection of open
connected sets where |P1| > |P2| (we call these type 1 sets), a collection of open connected
sets where |P2| > |P1| (we call these type 2 sets), separated by sets where |P2| = |P1|. Note
that, as the roots of P1 and P2 can be assumed disjoint (see Prop.8(a)), any root of P2

unambiguously belongs to a type 1 set and any root of P1 belongs to a type 2 set.
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Figure 1: Illustrating the definition of the type 1 sets (shaded), type 2 sets (plain white) and
ΓR(y∗) (darker shading). Small blue crosses represent roots of P2, small blue circles the roots
of P1. The boundary ∂ΓR(y∗) (thick plain and dotted curves) and its subset ∂ΓR̄(y∗) (thick
plain curves) are also represented. The complete picture is meant to be symmetric around
the real axis. The sets drawn here are purely schematic, they are not meant to correspond
to any actual polynomials P1, P2 and may possibly be more general than what polynomial
properties would allow.

For any root y∗ of P2 with |y∗| > 1, let Γ(y∗) the type 1 set containing y∗. Then for any
R > |y∗|, let

Γ̃R(y∗) := Γ(y∗) ∩ {y ∈ C : 1 < |y| < R}

and define ΓR(y∗) to be the connected component of Γ̃R(y∗) such that y∗ ∈ ΓR(y∗) (see Figure
1). There is at least one such set corresponding to y∗ = 1/ν. We denote the boundary of
ΓR(y∗) by ∂ΓR(y∗). Note that for any y ∈ ∂ΓR(y∗) we have either |P2(y)| = |P1(y; θ)|, or
|P2(y)| < |P1(y; θ)|; the latter case involves points where either |y| = 1, or |y| = R. We finally
define ∂ΓR̄(y∗) = ∂ΓR(y∗) ∩ {y : |y| < R} and reduce the proof of Claim 6 to the following.

Claim 9 [to be proved]: For any P2 — excluding the cases already handled by Proposition

8 — there exists θ̃ ∈ [0, π] and y∗ a root of P2 such that ei∠(P2(ỹ)) = ei∠(P1(ỹ;θ̃)) for some
ỹ ∈ ∂ΓR̄(y∗).

Proposition 10: Claim 6 is true if Claim 9 holds.

Proof: We must show that for any situation satisfying Claim 9, we can find y1 ∈ C with
|y1| ≥ 1 and θ ∈ [0, π], such that P1(y1; θ) = P2(y1). For given P2, excluding the cases
covered by Proposition 8, take ỹ, θ̃ according to Claim 9.

If ỹ belongs to the part of ∂ΓR̄(y∗) where |P2(y)| = |P1(y; θ̃)|, we have P1(ỹ; θ̃) = P2(ỹ)
with |ỹ| ≥ 1 by construction. Hence the case is closed with y1 = ỹ, θ = θ̃.

If |P2(ỹ)| 6= |P1(ỹ; θ̃)|, then necessarily |P2(ỹ)| < |P1(ỹ; θ̃)| and |ỹ| = 1. Let ỹ = eiφ and
assume φ ∈ [0, π]; the case φ ∈ [−π, 0] is the same modulo a few notation changes. As for
Prop. 8(b), we separately investigate (i) the phase and (ii) the modulus of P1, P2.
(i) By computing

(ỹ − eiθ)(ỹ − e−iθ)ỹM−2 e−i(M−1)φ = 2 (cos(φ)− cos(θ)) .

we see that ei∠(P1(ỹ;θ)) = ei∠(P1(ỹ;θ̃)) = ei∠(P2(ỹ)) for all θ for which (cos(φ)− cos(θ)) takes the
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same sign as
(

cos(φ)− cos(θ̃)
)

, i.e. for all θ ∈ [θ̃, φ) =: I1 or all θ ∈ (φ, θ̃] =: I1, depending

on the ordering of θ̃ and φ.
(ii) f(θ) := |P2(ỹ)| − |P1(ỹ; θ)| is a continuous function of θ, with f(θ̃) < 0 and f(φ) > 0 by
construction. Hence there exists θ1 ∈ I1 such that f(θ1) = 0.
Combining (i) and (ii), we have P1(y1; θ) = P2(y1) with y1 = ỹ and θ = θ1. �

3.2 Proving Claim 9

It remains to prove that Claim 9 is true, which in fact is a consequence of Cauchy’s argument
principle in complex analysis. Adapted to the current case, the argument principle states the
following fact.

Property 11 [Cauchy’s Argument Principle]: Let D ⊂ C a bounded, simply connected open
set whose boundary ∂D is the image of a closed simple curve γ : [0, 1] → C. Assume that D
contains n roots of P2(y) and p roots of P1(y; θ) for some fixed θ, while ∂D contains no roots.
Then there exists a continuous function f(t) : [0, 1]→ R such that

exp

(
i

(
∠(P1(γ(t); θ))− ∠(P2(γ(t)))

))
= exp(if(t)) ,

and any such f(t) satisfies |f(1)− f(0)| = 2π|p− n|.

We will apply this principle with ∂D defined by elements of ∂ΓR(y∗). Note that the
boundary of any ΓR(y∗) is indeed sufficiently regular since the locus in the complex plane
where |P1|2−|P2|2 = 0 is by definition a planar algebraic curve. We will also use the following
related property.

Property 12: Consider the setting of Property 11 with |p− n| =: m > 0. Then there are at
least m points y = γ(t) on ∂D where ei∠(P2(y)) = ei∠(P1(y;θ)).

Proof: The interval (f(0), f(0) + 2πm] ⊂ R contains m different multiples of 2π and the func-
tion f(t) must take each of these values at least once as it continuously evolves from f(0) to
f(1) = f(0)+2πm. The γ(t) associated to these values of f(t) satisfy ei∠(P2(y)) = ei∠(P1(y;θ)).�

The remainder of the proof relies on the following observations (see Fig. 2). For some fixed
θ, let DR(y∗) the smallest simply connected set containing ΓR(y∗), where the latter contains
m ≥ 1 roots of P2. Note that ∂DR(y∗) ⊆ ∂ΓR(y∗).

Case A: If DR(y∗) does not contain the open unit disc (see Fig. 2 left), then it contains at
least m roots of P2 but no root of P1. Hence applying Properties 11 and 12 with C = DR(y∗),
there must be m points on ∂DR(y∗) ⊆ ∂ΓR(y∗) where ei∠(P2(y)) = ei∠(P1(y;θ)).
Case B: If DR(y∗) contains the open unit disc, then ∂ΓR̄(y∗) contains a closed curve γ0 that
separates ΓR(y∗) from the open unit disc and we can define D0(y∗) ⊂ (DR(y∗) \ ΓR(y∗)) the
simply connected set whose boundary is γ0 (see Fig. 2 right). This set contains the M roots
of P1 but at most M −m roots of P2. Hence by Properties 11 and 12 there must be m points
on γ0 ⊂ ∂ΓR̄(y∗) where ei∠(P2(y)) = ei∠(P1(y;θ)).

Claim 9 is readily true for Case B. For Case A, we need to ensure that at least one of the m
points in ∂ΓR(y∗) also belongs to ∂ΓR̄(y∗). Towards this, we investigate ei∠(P1(y;θ))−i∠(P2(y))

when |y| = R with R very large.
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Ry*1

γ0

Figure 2: Schematic illustration of Case A (left) and Case B (right) to which we apply
Properties 11 and 12. The sets and roots are represented similarly to Fig. 1. For Case A the
set in red is DR(y∗). For Case B, the striped set is DR(y∗), the thick curve is γ0 and the set
enclosed by γ0 is D0(y∗).

Lemma 13: If in P2 the coefficient aM−1 > 0 then there exists R1 > 0 such that
ei∠(P1(y;θ))−i∠(P2(y)) 6= 1 for all y with |y| > R1 and for all θ ∈ [0, π].

Proof: Note that ei∠(P1(y;θ))−i∠(P2(y)) = exp(i∠
(
P1(y;θ)
P2(y)

)
). Let us evaluate the phase of the

ratio of two general polynomials Pg(y) =
∑M

k=0 gky
k and Ph(y) =

∑M
k=0 hky

k with real coef-
ficients gk, hk and assuming gMhM < 0. Applying the formula a+bi

c+di = 1
c2+d2

((ac+ bd) + (bc−
ad)i), with a, b, c, d real and i the imaginary unit, we get with y = Reiφ:

Pg(Re
iφ)

Ph(Reiφ)
=

∑M
k=0

gM−k
Rk

(cos(kφ)− i sin(kφ))∑M
k=0

hM−k
Rk

(cos(kφ)− i sin(kφ))
= η (gMhM +O(1/R) + iO(1/R))

for some η > 0. Thus there exists R1 > 0 such that

Real
(
Pg(Reiφ)
Ph(Reiφ)

)
= gMhM +O(1/R) < 0

for all R > R1. The Lemma follows by applying the above result with Pg(y) = P1(y; θ) and
Ph(y) = P2(y). �

We are now ready to prove Claim 9 in a few steps.

Proof of Claim 9 for aM−1 ≤ 0: From Prop.8(c) we only need to consider the case aM−1 ∈
(−1, 0]. Then there exists R1 > 1 such that |y|M ' |P1(y; θ)| > |P2(y)| ' |aM−1| |y|M for all y
for which |y| > R1. Take any root y∗ of P2 with |y∗| > 1. Then for R > R1, the points y with
R1 < |y| < R cannot belong to ∂ΓR(y∗), since this would require |P1(y; θ)| = |P2(y)|. This im-
plies that ∂ΓR(y∗) contains either all points or no point of the circle CR := {y ∈ C : |y| = R}.
In case ∂ΓR(y∗)∩CR = ∅, we have ∂ΓR(y∗) = ∂ΓR̄(y∗) and the observations after Proposition
12 allow to directly conclude. In case ∂ΓR(y∗) = CR, we are necessarily in Case B of the
observations after Proposition 12 hence the conclusion is also immediate. �
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Proof of Claim 9 for aM−1 > 0: Take R > R1 to satisfy Lemma 13. The set ∂ΓR(y∗)\∂ΓR̄(y∗)

is a subset of {y ∈ C : |y| = R}, and Lemma 13 implies ei∠(P2(y)) 6= ei∠(P1(y;θ)) for all y for
which |y| = R. Hence all the points identified in the observations after Proposition 12, where
ei∠(P2(y)) = ei∠(P1(y;θ)) on ΓR(y∗), must belong to ΓR̄(y∗). �

With this we have covered all situations and hence concluded the proof of Claim 9, which
proves Theorem 3.

4 Example

Consider a linear map A with nonzero eigenvalues λk ∈ [0.0122, 0.9878]. The optimal ac-
celeration without added memory slot i.e. with M = 1 yields µ = 0.9756 and a spectral
gap 1 − µ = 0.0244. With M − 1 = 1 added memory slot, an improved convergence speed
guarantee ν = 0.8000 is obtained, with 1 − ν = 0.2 <

√
0.0244 = 0.1562, using the optimal

parameters α∗ = 3.2800 and β1∗ = −0.6400.

If more is known about the eigenvalues of A then additional memory does help accelerate.
For instance consider A with nonzero eigenvalues λk ∈ Λ = [0.0122, 0.0182]∪{0.9878} i.e. the
largest eigenvalue is in fact isolated far away from the others. This does not allow to improve
convergence speed with M = 2, because for M = 2 the bound ν ≥ 0.8000 holds as soon as A
features both eigenvalues 0.0122 and 0.9878 (see the proof of Prop. 5).

In contrast, M = 4 and parameter values α = 3.6908, β1 = −0.9083, β2 = 0.006662,
β3 = 0.06785 do yield an improved convergence speed guarantee ν̃ = 0.7560 over all λk ∈ Λ
(with ν̃ defined by straightforward extension of Def. 2). Note that these parameters have been
obtained numerically by local search around α = α∗, β1 = β1∗ and βk = 0 for k > 1; we do
not exclude the existence of better parameter values. Figure 3 shows |z∗| the corresponding
largest root in modulus of (7) as a function of λk. It highlights how the improved |z∗| for
λk ∈ Λ comes to the detriment of (much) worse |z∗| for λk ∈ [0.0291, 0.9788].

Finally, let us illustrate the proof of Claim 9 and Prop.10 with those values, i.e. M = 4
and α = 3.6908, β1 = −0.9083, β2 = 0.006662, β3 = 0.06785 for [λ, λ̄] = [0.0122, 0.9878] and
hence ν = 0.8000. For three values of θ ∈ {π/40, π/10, π/4 }, Figure 4 shows in white the
set in C where |P1(y; θ)| < |P2(y)| and in grey the set where |P1(y; θ)| > |P2(y)|. Small circles
are the roots of P1 and small crosses the roots of P2. In the middle is the unit circle and
the colored lines denote the locus where ei∠(P1) = ei∠(P2). For all values of θ, we are in Case
B of Section 3.2. Correspondingly, we have highlighted in black the curve γ0 delimiting the
simply connected set D0(y∗). For all θ, there are two points along γ0 where ei∠(P1) = ei∠(P2).
For θ = π/40 the crossing occurs at some y1 on the unit circle (red dot on Fig. 4), in a region
where |P1| > |P2|. For eiθ closer to y1, e.g. θ = π/10, we still have ei∠(P1(y1;θ)) = ei∠(P2(y1))

but y1 now belongs to a region where |P2| > |P1|. Hence somewhere in between there must
be some θ̃ for which |P1(y1; θ̃)| = |P2(y1)|. This precisely corresponds to the point where
the plot on Fig. 3 crosses |z∗| = ν = 0.8000, and suffices to prove Theorem 3. We pursue
this example towards further insight on bad or good θ. Moving eiθ beyond y1 finally changes
∠(P1(y1; θ)) by π and the points along the unit circle where ei∠(P1) = ei∠(P2) start moving;
for a large interval of θ values, the points on γ0 where ei∠(P1) = ei∠(P2) also satisfy |P2| = |P1|,
as on the third graph, hence the polynomial is worse than the optimal one with M = 2. As
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Figure 3: Largest root in modulus |z∗| of (7) with M = 4, α = 3.6908, β1 = −0.9083,
β2 = 0.006662, β3 = 0.06785, as a function of λk ∈ [0.0122, 0.9878]. Reducing the relevant
eigenvalue set to λk ∈ [0.0122, 0.0182] ∪ {0.9878} (vertical lines) yields an improved conver-
gence speed guarantee ν̃ = 0.7560 (horizontal full line) with respect to the optimal situation
ν = 0.8000 with M = 2 (horizontal dashed line). However this happens to the detriment of
|z∗| > 0.8000 for all λk ∈ [0.0291, 0.9788].

θ approaches π a behavior symmetric to the neighborhood of θ = 0 takes place (not shown).

5 Conclusion

We have proved that the maximal achievable acceleration of a linear iterative map by adding
M − 1 memory slots to each state vector component, is already achieved with M − 1 = 1.
More precisely, this holds for the performance guarantee of a constant map about which we
only know bounds [λ, λ̄] ⊂ (0,+∞) on the nonzero eigenvalues of the self-adjoint state update
matrix A. The fact that the nonzero eigenvalues of A can take any values in [λ, λ̄] is important
for the property to hold. Better accelerations can be devised if more is known about A, see
e.g. Section 4.

A direct extension of our result would allow each subsystem to follow general linear dy-

Figure 4: Characteristics of P1(y; θ) and P2(y) for three values of θ ∈ {π/40, π/10, π/4 },
illustrating the proof of Claim 9 and Prop.10 on our example polynomial. See main text for
details.
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namics; thinking of the consensus application with rational input-output transfer function at
each node, this would mean characteristic polynomials of the form

(z − 1)P (z) + αλkQ(z)

with P (z) and Q(z) two polynomials. The memory slot setting (5) is restricted to Q(z) =
zM−1, i.e. the consensus algorithm uses only the latest information coming from the network.
It is not clear if convergence can speed up with other Q(z).

The basic consensus algorithm (1) has a proven robustness to network incidents2. For
the case (5) with optimally tuned memory slot, one can construct examples where packet
drops lead to instability. Thus the benefit of more memory slots might have to be reevaluated
towards robustness.
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