
HAL Id: hal-01249090
https://hal.inria.fr/hal-01249090

Submitted on 31 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Strong LP formulations for scheduling splittable jobs on
unrelated machines

José Correa, Alberto Marchetti-Spaccamela, Jannik Matuschke, Leen Stougie,
Ola Svensson, Víctor Verdugo, José Verschae

To cite this version:
José Correa, Alberto Marchetti-Spaccamela, Jannik Matuschke, Leen Stougie, Ola Svensson, et al..
Strong LP formulations for scheduling splittable jobs on unrelated machines. Mathematical Program-
ming, Springer Verlag, 2015, 154 (1-2), pp.305-328. �10.1007/s10107-014-0831-8�. �hal-01249090�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49441098?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01249090
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Strong LP formulations for scheduling splittable jobs on
unrelated machines

José R. Correa ·
Alberto Marchetti-Spaccamela ·
Jannik Matuschke · Leen Stougie ·
Ola Svensson · Vı́ctor Verdugo ·
José Verschae

the date of receipt and acceptance should be inserted later

Abstract A natural extension of the makespan minimization problem on un-
related machines is to allow jobs to be partially processed by different machines
while incurring an arbitrary setup time. In this paper we present increasingly
stronger LP-relaxations for this problem and their implications on the approx-
imability of the problem. First we show that the straightforward LP, extending
the approach for the original problem, has an integrality gap of 3 and yields
an approximation algorithm of the same factor. By applying a lift-and-project
procedure, we are able to improve both the integrality gap and the implied
approximation factor to 1 + φ, where φ is the golden ratio. Since this bound
remains tight for the seemingly stronger machine configuration LP, we propose
a new, infinite, job configuration LP, that we prove has a finite representation
and can be solved in polynomial time up to any accuracy. Interestingly, we
show that our problem cannot be approximated within a factor better than
e
e−1 ≈ 1.582 (unless P = NP), which is larger than the inapproximability
bound of 1.5 for the original problem.

J. Correa, V. Verdugo, J. Verschae
Departamento de Ingenieŕıa Industrial, Universidad de Chile
E-mail: correa@uchile.cl, vicverdu@gmail.com, jverschae@ing.uchile.cl

A. Marchetti-Spaccamela
Department of Computer and System Sciences, Sapienza University of Rome
E-mail: alberto@dis.uniroma1.it

J. Matuschke
Institut für Mathematik, TU Berlin
E-mail: matuschke@math.tu-berlin.de

L. Stougie
Department of Econometrics and Operations Research, VU Amsterdam & CWI
E-mail: l.stougie@vu.nl

O. Svensson
School of Computer and Communication Sciences, EPFL
E-mail: ola.svensson@epfl.ch

2 José R. Correa et al.

1 Introduction

The unrelated machine scheduling problem, R||Cmax in the three-field notation
of [9], has attracted significant attention within the scientific community. The
problem is to find a schedule of jobs with machine-dependent processing times
that minimizes the makespan, i.e., the maximum machine load. Lenstra et al.
[14] designed a polynomial time linear programming based rounding algorithm
and showed that the algorithm has a worst-case approximation ratio of 2, and
that the existence of a polynomial time algorithm with ratio smaller than 3/2
would prove that P = NP.

A natural generalization of this problem is to allow jobs to be split and pro-
cessed on multiple machines simultaneously, where in addition a setup has to
be performed on every machine processing the job. This generalized scheduling
problem finds applications in production planning, e.g., in textile and semi-
conductor industries [13,22], and disaster relief operations [26]. Formally, we
are given a set of m machines M and a set of n jobs J with processing times
pij ∈ Z+ and setup times sij ∈ Z+ for every i ∈ M and j ∈ J . A schedule
corresponds to a vector x ∈ [0, 1]M×J , where xij denotes the fraction of job
j that is assigned to machine i, satisfying

∑
i∈M xij = 1 for all j ∈ J . If job

j is processed (partially) on machine i then a setup of length sij has to be
performed on the machine. During the setup of a job the machine is occupied
and thus no other job can be processed nor be set up. This results in the
definition of load of machine i ∈M as

∑
j:xij>0(xijpij + sij). The objective is

to minimize the makespan, the maximum load of the schedule. We denote this
problem by R|split,setup|Cmax. Note that by setting pij = 0 and interpreting
the setup times sij as processing requirements we obtain the classical problem
without job splitting, R||Cmax.

Related Work. Reducing the approximability gap for R||Cmax is a prominent
open question [28]. Since the seminal work by Lenstra et al. [14] there has
been a considerable amount of effort leading to partial solutions to this ques-
tion. In the restricted assignment problem, the processing times are of the
form pij ∈ {pj ,∞} for all i, j ∈ J . A special case of this setting, in which
each job can only be assigned to two machines, was considered by Ebenlendr
et al. [6]. They note that while the lower bound of 3/2 still holds, a 7/4-
approximation can be obtained. For the general restricted assignment problem
Svensson [24] broke the barrier of 2, by showing it is approximable within a
factor of 33/17 + ε ≈ 1.9412 + ε by an algorithm based on a machine configu-
ration linear programming relaxation where each variable indicates the subset
of jobs assigned to a given machine. On the other hand, this relaxation has
an integrality gap of 2 for general unrelated machines [27], as was the case for
the linear programming relaxation in [14]. Configuration LPs have also been
studied extensively for the max-min version of the problem [2,3,8,11,17,27],
which has become known as the Santa Claus problem.

The literature on scheduling problems with splittable jobs is significantly
less abundant. To the best of our knowledge such a problem has been presented

Strong LP formulations for scheduling splittable jobs on unrelated machines 3

for the first time in a production problem in the textile industry [22]. It was
modeled as a restricted assignment version, in which each job is associated to
a specific subset of compatible machines on which it can be processed and can
be split arbitrarily and processed independently on these machines. However
no setup times are considered. The jobs are released over time and the goal is
minimizing the maximum (weighted) tardiness. It turns out that this problem
is solvable in polynomial time if machines are identical or uniform; the pa-
per considers also the case of unrelated machines providing pseudopolynomial
time algorithms. Another application of splittable jobs appears in production
scheduling for semiconductor wafers [13], again with the objective of minimiz-
ing the total weighted tardiness. The authors provide different variants of a
local search heuristic to solve the problem in practice.

Theoretical results on the subject are not only scarce, but also restricted
to the special case of identical machines. In particular, Xing and Zhang [29]
describe a (1.75−1/m)-approximation for makespan minimization, which was
later improved to 5/3 by Chen et al. [4]. The problem with splittable jobs, setup
times, and the objective of minimizing the sum of completion times, having
arisen in modeling a problem on disaster relief operations [26], is studied by
Schalekamp et al. [19]. They give a polynomial time algorithm in the case
of 2 machines and job- and machine-independent setup times, and a 2.781-
approximation algorithm for arbitrary m. This was later improved to 2 + ε
in [5], even in the presence of weights, in which case the problem is NP-
hard [19].

Another setting that comes close to job splitting is preemptive scheduling
with setup times [15,18,21], which does not allow simultaneous processing of
parts of the same job. We also refer to the survey [1] and references therein
for results on other scheduling problems with setup costs.

Our Contribution. Due to the novelty of the considered problem, our aim is to
advance the understanding of its approximability, in particular in comparison
to R||Cmax. We first study the integrality gap of a natural generalization of
the LP relaxation by Lenstra et al. [14] to our setting and notice that their
rounding technique does not work in our case. This is because it might assign
a job with very large processing time to a single machine, while the optimal
solution splits this job. On the other hand, assigning jobs by only following
the fractional solution given by the LP might incur a large number of setups
(belonging to different jobs) to a single machine. We get around these two
extreme cases by adapting the technique from [14] so as to only round vari-
ables exceeding a certain threshold while guaranteeing that only one additional
setup time is required per machine. This yields a 3-approximation algorithm
presented in Section 2. Additionally, we show that the integrality gap of this
LP is exactly 3, and therefore our algorithm is best possible for this LP.

In Section 3 we improve the approximation ratio by tightening our LP
relaxation with a lift-and-project approach. We refine our previous analysis
by balancing the rounding threshold, resulting in a (1 + φ+ ε)-approximation
for any ε > 0, where φ ≈ 1.618 is the golden ratio. Surprisingly, we can show

4 José R. Correa et al.

that this number is best possible for this LP; even for the seemingly stronger
machine configuration LP mentioned above. This suggests that considerably
different techniques are necessary to match the 2-approximation algorithm for
R||Cmax. Indeed, we also show in Section 5 that it is NP-hard to approximate
within a factor e

e−1 ≈ 1.582, a larger lower bound than the 3/2 hardness
result known for R||Cmax. For the restricted assignment case, where sij ∈
{sj ,∞} and pij ∈ {pj ,∞}, we obtain a (2 + ε)-approximation algorithm, for
any ε > 0, matching the 2-approximation of [14] in Section 4. We remark that
the solutions produced by all our algorithms have the property that at most
one split job is processed on each machine. This property may be desirable in
practice since in manufacturing systems setups require labor causing additional
expenses.

As the integrality gaps of all mentioned relaxations are no better than 1+φ,
we propose a novel job based configuration LP relaxation in Section 6.2 that
has the potential to lead to better guarantees. Instead of considering machine
configurations that assign jobs to machines, we introduce job configurations,
describing the assignment of a particular job to the machines. The resulting
LP cuts away worst-case solutions of the other LPs considered in this paper,
rendering it a promising candidate for obtaining better approximation ratios.
While the job configuration LP has an infinite set of variables, we show that
we can restrict a priori to a finite subset. Applying discretization techniques
we can approximately solve the LP within a factor of (1 + ε) by separation
over the dual constraints. Finally, we study the projection of this polytope to
the assignment space and derive an explicit set of inequalities that defines this
polytope. An interesting open problem is to determine the integrality gap of
the job configuration LP.

2 A 3-approximation algorithm

Our 3-approximation algorithm is based on a generalization of the LP by
Lenstra, Shmoys, and Tardos [14]. Let C∗ be a guess on the optimal makespan.
Consider the following feasibility LP, whose variable xij denotes the fraction
of job j assigned to machine i.

[LST] :
∑
i∈M

xij = 1 for all j ∈ J, (1)∑
j∈J

xij(pij + sij) ≤ C∗ for all i ∈M, (2)

xij = 0 for all i ∈M, j ∈ J : sij > C∗, (3)

xij ≥ 0 for all i ∈M, j ∈ J.

Notice that the smallest value of C∗ such that [LST] is feasible can be com-
puted in polynomial time. Indeed, there are at most n ·m different thresholds
for C∗ that changes the subset of equalities considered in (3). We solve one

Strong LP formulations for scheduling splittable jobs on unrelated machines 5

linear program for each of them, where C∗ is treated as a variable and the ob-
jective function is to minimize C∗. Among all these linear programs we select
the one of the smallest C∗ and such that it is consistent with the correspond-
ing threshold for the sij ’s. The computed C∗ value satisfies that C∗ ≤ OPT,
where OPT is the optimal solution of the original problem R|split,setup|Cmax.

Let x be a feasible extreme point of [LST]. We define the bipartite graph
G(x) = (J ∪M,E(x)), where E(x) = {ij : 0 < xij}. Using the same argu-
ments as in [14], not repeated here, we can show the following property.

Lemma 1 For every extreme point x of [LST], each connected component of
G(x) is a pseudotree; a tree plus at most one edge that creates a single cycle.

We devise a procedure for rounding the extreme point x. To this end, we define

E+ = {ij ∈ E(x) : xij > 1/2}

and
J+ = {j ∈ J : there exists i ∈M with ij ∈ E+},

i.e., those jobs that the fractional solution x assigns to some machine by a
factor of more than 1/2. In our rounding procedure each job j ∈ J+ is com-
pletely assigned to the machine i ∈M for which xij > 1/2. We now show how
to assign the remaining jobs.

Let us call G′(x) the subgraph of G(x) induced by (J∪M)\J+. Notice that
every edge ij in G′(x) satisfies 0 < xij ≤ 1/2. Also, since G′(x) is a subgraph
of G(x) every connected component of G′(x) is a pseudotree.

Definition 1 Given A ⊆ E(G′(x)), we say that a machine i ∈ M is A-
balanced, if there exists at most one job j ∈ J \ J+ such that ij ∈ A. We say
that a job j ∈ J \ J+ is A-processed if there is at most one machine i ∈ M
such that ij /∈ A and xij > 0.

In what follows we seek to find a subset A ⊆ E(G′(x)) such that each
job j ∈ J \ J+ is A-processed and each machine is A-balanced. We will show
that this is enough for a 3-approximation, by assigning each job j ∈ J \ J+ to
machine i by a fraction of at most 2xij for each ij ∈ A, and not assigning it
anywhere else. Since every job j ∈ J \ J+ is A-processed and xij ≤ 1/2 for all
i ∈ M (including the only machine i with ij /∈ A, if it exists), job j will be
completely assigned. Also, since each machine is A-balanced, the load of each
machine i will be affected by at most the setup-time of one job j. This setup
time sij is at most C∗ by restriction (3). This and the fact that the processing
time of a job on each machine is at most doubled are the basic ingredients to
show the approximation factor of 3.

Construction of the set A. In the following, we denote by (T, r) a rooted tree
T with root r. Consider a connected component T of G′(x). Since G′(x) is
a subgraph of G(x), Lemma 1 implies that T is a pseudotree. We denote by
C = j1i1j2i2 · · · j`i`j1 the only cycle of T (if it exists), which must be of even
length. If such a cycle does not exist we choose any path in T from j1 to

6 José R. Correa et al.

Fig. 1 Construction of set A. Double lines represent edges in KC , single lines edges in A,
and dotted lines are edges deleted in the construction.

some i`. The jobs in the cycle are J(C) = {j1, . . . , j`} and the machines are
M(C) = {i1, . . . , i`}. In the cycle, we define the matching KC = {(jk, ik) : k ∈
{1, . . . , `}}. In the forest T \ KC , we denote by (Tu, u) the tree rooted in u,
for every u ∈ J(C). Notice that by deleting the matching, no two vertices of
J(C) will be in the same component of T \KC .

For every u ∈ J(C), by directing the edges of (Tu, u) away from the root, we
obtain a directed tree, each level of which consists either entirely of machine-
nodes or entirely of job-nodes. We delete all edges going out of machine nodes,
i.e., all edges entering job-nodes. The remaining edges we denote by Au. We
define A :=

⋃
u∈J(C)Au; see Figure 1 for a depiction of the situation. The fol-

lowing two lemmas show that the set A is indeed A-processed and A-balanced.

Lemma 2 Every job j ∈ J \ J+ is A-processed.

Proof Consider first a job jk ∈ J(C). Since jk is the root of the tree Tjk ,
the set A contains all its incident edges apart from the edge (ik, jk), which
was removed as part of the matching KC . Therefore jk is A-processed for all
k ∈ {1, . . . , `}. Now consider a job j /∈ J(C). This job j is part of a directed
tree Tu and has exactly 1 incoming edge in that tree. By construction of Au,
this edge is the only edge incident to the job-node that is deleted, hence it is
A-processed. ut

Lemma 3 Every machine i ∈M is A-balanced.

Proof Any machine i ∈ M is a node of some tree Tu. By construction, the
single incoming edge into i of Tu is the only edge incident to i that survives
in A, hence i is A-balanced. ut

Given set A, we apply the following rounding algorithm that constructs
a new assignment x̃. The algorithm also outputs a binary vector ỹij ∈ {0, 1}
which indicates whether job j is (partially) assigned to machine i or not.

Strong LP formulations for scheduling splittable jobs on unrelated machines 7

Algorithm 1 Rounding(x)

1: Construct the graphs G(x), G′(x), and the set A as above.
2: For all ij ∈ E+, x̃ij ← 1 and ỹij ← 1;

3: For all ij ∈ A, x̃ij ←
xij∑

k:kj∈A xkj
and ỹij ← 1;

4: For all ij ∈ E \ (E+ ∪A), x̃ij ← 0 and ỹij ← 0.

Theorem 1 There exists a 3-approximation algorithm for R|split,setup|Cmax.

Proof Let x be an extreme point of [LST] and consider the output x̃, ỹ of
algorithm Rounding(x). Clearly x̃, ỹ can be computed in polynomial time. We
show that the schedule that assigns a fraction x̃ij of job j to machine i has a
makespan of at most 3C∗. This implies the theorem since, as discussed before,
C∗ ≤ OPT.

First we show that x̃ ≥ 0 defines a valid assignment, i.e.,
∑
i∈M x̃ij = 1 for

all j. Indeed, this follows directly by the algorithm Rounding(x): If j ∈ J+,
then there exists a unique machine i ∈ M with ij ∈ E+ and therefore j is
completely assigned to machine i. If j 6∈ J+, then∑

i∈M
x̃ij =

∑
i:ij∈A

xij∑
k:kj∈A xkj

= 1.

Now we show that the makespan of the solution is at most 3C∗. First notice
that for every ij ∈ E+ we have that 1 = x̃ij = ỹij ≤ 2xij , because ij ∈ E+

implies that xij > 1/2. On the other hand, for every j ∈ J \ J+ we have that∑
k:kj∈A xkj ≥ 1/2, because at most one machine that processes j fractionally

is not considered in A. We conclude that x̃ ≤ 2x. Then for every i ∈ M it
holds that∑

j∈J
(x̃ijpij + ỹijsij) =

∑
j:ij∈E+

(x̃ijpij + ỹijsij) +
∑
j:ij∈A

(x̃ijpij + ỹijsij)

≤
∑

j:ij∈E+

2xij(pij + sij) +
∑
j:ij∈A

(2xijpij + sij)

≤ 2C∗ +
∑
j:ij∈A

sij .

Recall that machine i is A-balanced, and therefore there is at most one job
j with ij ∈ A. Also, ij ∈ A implies that ij ∈ E(x) = {ij : xij > 0}, and
hence, by (3) in [LST], sij ≤ C∗. We conclude that

∑
j:ij∈A sij ≤ C∗, and the

theorem follows. ut

We finish this section by noting that our analysis is tight. Specifically, it
can be shown that the gap between the LP solution and the optimum can be
arbitrarily close to 3.

Theorem 2 For any ε > 0, there exists an instance such that (3 − ε)C∗ ≤
OPT, where C∗ is the smallest number such that [LST] is feasible.

8 José R. Correa et al.

j1

...

j`

...

j2k+1

...

...

...

...

M1

M`

M2k+1

J

M ′

k

k

k

k

pij = 2k
sij = 0

pij = 0
sij = 1

Fig. 2 Example showing that [LST] has a gap of 3.

Proof We give a family of instances {Ik}k∈N such that OPT/C∗ approaches 3
as k goes to infinity. This suffices for showing the theorem.

Instance Ik has a set J of 2k + 1 jobs. For each job j ∈ J we introduce its
own set of k identical machines Mj , i.e., Mj ∩Mj′ = ∅ if j 6= j′. We define
sij = 1 and pij = 2k for each j ∈ J and i ∈Mj , and sij = pij =∞ if i ∈Mj′

with j′ 6= j. Additionally, we introduce a new family of k machines M ′, where
for all j ∈ J and i ∈M ′ we have pij = 0 and sij = 1. See Fig. 2 for a depiction
of the construction.

We claim that the LP has a solution with C∗ = 1 + 1
2k while OPT = 3.

To see that OPT = 3, notice that there are two possible cases. If all jobs
in J are completely assigned to machines in M ′ then the makespan is clearly
3 since there are k machines in M ′ and 2k + 1 jobs, and each job has to use
a setup time of 1 on each machine. Otherwise, there exists one job j ∈ J that
is completely assigned to machines in Mj . It is easy to see that the solution
that minimizes the makespan on these machines assigns job j up to a fraction
of 1/k to each machine in Mj . Then the load on each machine i ∈ Mj is
1 + pij/k = 3. Therefore OPT = 3.

We now give a feasible solution to [LST] with C∗ := 1+ 1
2k . This is obtained

with the following fractional assignment,

xij :=

{
1
2k for each j ∈ J and i ∈Mj ∪M ′,
0 otherwise.

Strong LP formulations for scheduling splittable jobs on unrelated machines 9

Since |Mj ∪M ′| = 2k it is clear that every job is completely assigned. Then,
to see that in [LST] (2) is satisfied, notice that for i ∈M ′ we have that∑

j∈J
xij(pij + sij) =

∑
j∈J

xij =
2k + 1

2k
= 1 +

1

2k
= C∗,

and similarly, for i ∈Mj ,∑
j′∈J

xij′(pij′ + sij′) = xij(pij + sij) =
2k + 1

2k
= C∗.

We conclude that the gap for instance Ik is 3
1+ 1

2k

, which converges to 3 when

k goes to infinity. ut

3 An LP with integrality gap 1 + φ

In this section we refine the previous algorithm and improve the approximation
ratio. Since [LST] has a gap of 3, we strengthen it in order to obtain a stronger
LP. To this end notice that inequalities (2) in [LST] are the LP relaxation of the
following constraints of the mixed integer linear program with binary variables
yij for machine i and job j:∑

j∈J
(xijpij + yijsij) ≤ C∗ for all i ∈M, (4)

xij ≤ yij for all i ∈M and j ∈ J. (5)

A stronger relaxation is obtained by applying a lift and project step [16] to
the first inequality. For some fixed choice ij multiplying both sides of the i-th
inequality (4) by the corresponding variable yij implies (by leaving out terms)

yijxijpij + y2ijsij ≤ yijC∗.

In case C∗ − sij > 0, this inequality implies the valid linear inequality

xij
pij

C∗ − sij
≤ yij , (6)

since every feasible integer solution has yijxij = xij and y2ij = yij . Note that,
in optimal solutions of the LP relaxation, yij attains the smallest value that

satisfies (5) and (6). Therefore, we define αij = max
{

1,
pij

C∗−sij

}
if C∗ > sij ,

and αij = 1 otherwise, and substitute yij by αijxij to obtain the strengthened
LP relaxation

[LSTstrong] :
∑
i∈M

xij = 1 for all j ∈ J, (7)∑
j∈J

xij(pij + αijsij) ≤ C∗ for all i ∈M, (8)

xij = 0 for all i ∈M, j ∈ J : sij > C∗, (9)

xij ≥ 0 for all i ∈M, j ∈ J.

10 José R. Correa et al.

Notice that this LP is at least as strong as [LST] since αij ≥ 1. Since the
αij variables depend on C∗, we cannot use the approach of Section 3 to find
the smallest C∗ value such that [LSTstrong] is feasible. Instead, for any ε > 0,
we find a value of C∗ such that [LSTstrong] is feasible and C∗ ≤ (1 + ε)OPT.
This follows by a straightforward binary search procedure on integer powers
of 1 + ε. Note that the value of C∗ that we find here might be strictly larger
than the one used in the previous section.

Let x be an extreme point of this LP. We use a rounding approach similar
to the one in the previous section. Consider the graph G(x). As before, each
connected component of G(x) is a pseudotree, using the same arguments that
justified Lemma 1. Also, we define again a set of jobs J+ that the LP assigns
to one machine by a sufficiently large fraction. In the previous section this
fraction was 1/2. Now we parameterize it by β ∈ (1/2, 1), to be chosen later.
We define E+ = {j ∈ E(x) : xij > β} and J+ = {j ∈ J : there exists i ∈
M with ij ∈ E+}.

Consider the subgraph G′(x) of G(x) induced by the set of nodes (J ∪M)\
J+. Let A be a set constructed as in the previous section. Then, as in Section 2,
every machine is A-balanced and every job is A-processed. Now we apply the
algorithm Rounding(x) of the last section to obtain a new assignment x̃, ỹ. We
show that for β = φ − 1 this is a solution with makespan (1 + φ)C∗, where
φ = (1 +

√
5)/2 ≈ 1.618 is the golden ratio. The following technical lemma is

needed.

Lemma 4 Let β be a real number such that 1/2 < β < 1. Then

max
0≤µ≤1

{
µ+ max

{
1

β
,

1− µ
1− β

}}
= max

{
1

1− β
, 1 +

1

β

}
.

Proof Let f(µ) = µ+ max
{

1
β ,

1−µ
1−β

}
. Clearly f is a piece-wise linear function

with at most two different slopes. Therefore, it is maximized when µ ∈ {0, 1}
or when µ is the breakpoint of the function, i. e., when µ solves the equation
µ+1/β = µ+(1−µ)/(1−β). Let µ0 be the solution of this equation. A simple
computation shows that f(µ0) = 2, which implies that max0≤µ≤1 f(µ) =
max{f(0), f(µ0), f(1)} = max{1/(1 − β), 2, 1 + 1/β}. Since 1/2 < β < 1, we
have 1/(1− β) > 2 and 1 + 1/β > 2, which implies the lemma. ut

Theorem 3 For any ε > 0, there exists a (1+φ+ε)-approximation algorithm
for the problem R|split,setup|Cmax.

Proof By binary search we find C∗ such that [LSTstrong] is feasible, and such
that C∗ ≤ (1 + ε′)OPT. Let x be an extreme point of [LSTstrong] with this
value of C∗, and let x̃, ỹ be the output of algorithm Rounding(x) described
in Section 2. The fact that x̃, ỹ correspond to a feasible assignment follows
from the same argument as in the proof of Theorem 1. We now show that the
makespan of this solution is at most (1+φ)C∗, which implies the approximation
factor.

Strong LP formulations for scheduling splittable jobs on unrelated machines 11

For any edge ij ∈ E+, we have xij > β and hence 1 = x̃ij = ỹij ≤ 1/β ·xij .
Additionally, for every j ∈ J \ J+, we have again, by the choice of A, that it
is A-processed. Hence,

∑
k:kj /∈A xkj ≤ β, because at most one machine that

processes j fractionally is not considered in A. Thus,
∑
k:kj∈A xkj ≥ 1 − β,

which implies that x̃ij ≤ xij/(1− β). Hence, for machine i,∑
j∈J

(x̃ijpij + ỹijsij) =
∑

j:ij∈E+

(x̃ijpij + ỹijsij) +
∑
j:ij∈A

(x̃ijpij + ỹijsij)

≤ 1

β

∑
j:ij∈E+

xij(pij + sij) +
1

1− β
∑
j:ij∈A

xijpij +
∑
j:ij∈A

sij .

Since machine i is A-balanced, there exists at most one job j with ij ∈ A (if
there is no such job then i has load at most C∗/β). Let j(i) be that job, and
define µi = sij(i)/C

∗. Then notice that

xij(i)(pij(i) + αij(i)sij(i)) ≥ xij(i)pij(i)
(

1 +
sij(i)

C∗ − sij(i)

)
= xij(i)pij(i)

(
1 +

µi
1− µi

)
= xij(i)pij(i)

1

1− µi
.

Combining the last two inequalities we obtain that

∑
j∈J

(x̃ijpij + ỹijsij) ≤
1

β

∑
j:ij∈E+

xij(pij + sij) +
1

1− β
xij(i)pij(i) + sij(i)

≤ 1

β

∑
j:ij∈E+

xij(pij + sij) +
1− µi
1− β

xij(i)(pij(i) + αij(i)sij(i)) + µiC
∗

≤ max

{
1

β
,

1− µi
1− β

}∑
j∈J

xij(pij + αijsij) + µiC
∗

≤ C∗
(
µi + max

{
1

β
,

1− µi
1− β

})
.

Therefore, by the previous lemma we have that the load of each machine is
at most C∗ · max{1/(1 − β), 1 + 1/β}. The latter factor is minimized when
1/(1 − β) = 1 + 1/β, hence β = (−1 +

√
5)/2 = (1 +

√
5)/2 − 1 = φ −

1. Together with the fact that C∗ ≤ (1 + ε′)OPT, the approximation ratio
becomes (1 + 1/(φ − 1))(1 + ε′) = (1 + φ)(1 + ε′) and choosing ε = (1 + φ)ε′

completes the proof. ut

We close this section by showing that 1+φ is the best approximation ratio
achievable by [LSTstrong].

Theorem 4 For any ε > 0, there exists an instance such that C∗(1+φ−ε) ≤
OPT, where C∗ is the smallest number such that [LSTstrong] is feasible.

12 José R. Correa et al.

jt

j1 j′1 jk j′k

i1p ikp

ic(j1) ic(j′1) ic(jk) ic(j′k)

· · ·

pij = 0
sij = 1

pij = 0

sij =
1

2(φ− 1)

pij =
1

2− φ
sij = 0

Fig. 3 Example showing that [LSTstrong] has a gap of 1 + φ.

Proof Consider the instance depicted in Fig. 3. It consists of two disjoint sets
of jobs J and J ′. Each job j` ∈ J forms a pair with its corresponding job
j′` ∈ J ′. Each such pair is associated with a parent machine ip(j`) = ip(j

′
`) =

i`p such that both j` and j′` can be processed on this machine with setup
time si`pj` = si`pj′` = φ/2 and pi`pj` = pi`pj′` = 0. Each job j of each pair is

furthermore associated with a child machine ic(j) such that sic(j)j = 0 and
pic(j)j = φ + 1 = 1/(2 − φ). In addition, there is a single top job jt that can
be processed on any of the parent machines with setup time 1 and processing
time 0. All other setup and processing times are infinite.

We will show that the makespan of any feasible solution is at least 1 + φ
while the LP relaxation has a value of 1 + 1/k. First, it is easy to check that
the following fractional assignment is a feasible solution to [LSTstrong] with
C∗ = 1 + 1/k.

xij =

φ− 1 for j ∈ J ∪ J ′, i = ip(j),

2− φ for j ∈ J ∪ J ′, i = ic(j),
1
k for j = jt, i = i`p for all ` = 1, . . . , k,

0 otherwise.

To see that the optimal makespan of the instance is 1 +φ, let ip(j`) be the
machine that receives the top job jt in an optimal solution (note that pjti = 0
for all i, and hence this job is never split). Similarly, jobs j` and j′` are not
split in an optimal solution. If either of these jobs is completely assigned to
its child machine, then the makespan of the schedule is 1/(2 − φ) = 1 + φ.
Otherwise, j` and j′` are both assigned to ip(j`) = ip(j

′
`), which then has a

load of 1 + 1/(φ− 1) = 1 +φ. The theorem follows by choosing k large enough
for the given ε. ut

Strong LP formulations for scheduling splittable jobs on unrelated machines 13

4 A (2 + ε)-approximation algorithm for restricted assignment

In this section we consider the restricted assignment setting, i.e., for every job
j there exists a set of machines Mj such that pij = pj , sij = sj if i ∈Mj and
pij = sij =∞ if i /∈Mj . We use the same relaxation as in the previous section
to show that this version admits a 2-approximation algorithm,

[LSTstrong] :
∑
i∈Mj

xij = 1 for all j ∈ J, (10)

∑
j∈J:i∈Mj

xij(pj + αjsj) ≤ C∗ for all i ∈M, (11)

xij = 0 for all i ∈M, j ∈ J : sij > C∗, (12)

xij ≥ 0 for all j ∈ J and i ∈Mj ,

where αj = max {1, pj/(C∗ − sj)}.
Let x be an extreme point of this LP. As the basis for the rounding pro-

cedure we consider in this case the graph G′(x) = (J ′(x) ∪ M,E′(x)) de-
fined by the set of edges E′(x) = {ij : 0 < xij < 1} and the set of job-nodes
J ′(x) = {j ∈ J : j is incident to some e ∈ E′(x)}; i.e., we fix all variables xij
that have value 0 or 1. As before, each connected component of G′(x) is a
pseudotree. Let A be the set constructed as in Section 2, now based on the
graph G′(x).

As in Section 2, consider a component of G′(x) and choose a perfect match-
ing KC on its cycle C (if it exists). For every job-node u ∈ J(C), let Tu denote
the out-tree rooted at u in the forrest obtained by removing KC from C.
Given a job j, let u(j) be the unique node in the cycle such that j is a node of
Tu(j), and let ch(j) denote the children of job j in that tree. Note that ch(j)
corresponds to a set of machines.

We will prove that an additional time of C∗ units on each machine in
ch(j) are enough for processing j completely. Then, distributing each job on
the set ch(j) processes each job completely and each machine of ch(j) will be
overloaded by at most C∗. We start by noticing a simple lower bound on the
degree of any job-node in G′(x). In what follows we denote by δ(v) the set of
edges incident to node v in G′(x).

Lemma 5 Let δ(j) denote the set of edges incident to j ∈ J ′(x) in G′(x).
Then |δ(j)| ≥ max{2, dαje}.

Proof By construction, it is clear that |δ(j)| ≥ 2 since for every edge ij of
G′(x) we have that xij < 1. Define the variable yij as yij = 1 if 0 < xij < 1
and 0 otherwise. Noticing that (11) implies αjxij ≤ 1

|δ(j)| =
∑
i∈Mj

yij ≥
∑
i∈Mj

αjxij = αj .

The lemma follows by the integrality of |δ(j)|. ut

14 José R. Correa et al.

Let i be any machine in ch(j). Note that in [LSTstrong] already a load of
xij(pj + αjsj) units of time on i are reserved for job j. Let Lij := xij(pj +
αjsj) + C∗ − sj be the amount of time available just for processing job j on
machine i if we increase the load of the machine by C∗. The following lemma
shows that the total amount of available space over all machines in ch(j), i.e.∑
i∈ch(j) Lij , suffices to process job j fully.

Lemma 6 For any job j it holds that∑
i∈ch(j)

Lij ≥ pj .

Proof For any job-node j ∈ J ′(x), there is at most one machine adjacent to j
in G′(x) that is not in ch(j). Let us call this machine i∗j . Then, by the previous
lemma we have that

∑
i∈ch(j)

Lij = |ch(j)|(C∗ − sj) +
∑

i∈ch(j)

xij(pj + αjsj)

≥ (|δ(j)| − 1)(C∗ − sj) + (1− xi∗j j)(pj + αjsj)

≥ max{1, dαje − 1}(C∗ − sj) + (1− xi∗j j)(pj + αjsj).

In the case that αj = 1, we can bound this expression by C∗ − sj , which is
greater than or equal to pj , as pj/(C

∗− sj) ≤ 1 in this case. Therefore we can
assume that αj > 1 and hence αj = pj/(C

∗− sj). Again use that (11) implies
αjxij ≤ 1, whence xij ≤ 1/αj , for any i, j, to obtain∑

i∈ch(j)

Lij ≥ (dαje − 1)(C∗ − sj) + (1− xi∗j j)(pj + αjsj)

≥ (dαje − 1)(C∗ − sj) +

(
1− 1

αj

)
(pj + αjsj)

= (dαje − 1)(C∗ − sj) + (αj − 1)(
pj
αj

+ sj)

= (dαje − 1)(C∗ − sj) + (αj − 1)C∗

≥ (dαje+ αj − 2)(C∗ − sj).

Since αj > 1 implies dαje ≥ 2, the last expression is at least αj(C
∗− sj) = pj ,

which proves the lemma. ut

Theorem 5 For any ε > 0, there exists a (2+ε)-approximation algorithm for
scheduling splittable jobs on unrelated machines under restricted assignment.

Proof By binary search we find C∗ such that [LSTstrong] is feasible, and such
that C∗ ≤ (1 + ε′)OPT. The previous lemma shows that we can process each
fractional job j in ch(j) if we allow a makespan of 2C∗. With the choice
ε = 2ε′, this yields the claimed approximation guarantee by noting that by
construction ch(j) ∩ ch(k) = ∅ for any pair of fractional jobs j, k. ut

Strong LP formulations for scheduling splittable jobs on unrelated machines 15

Finally, we remark that setting all pj = 0, which implies αj = 1, yields
the LP relaxation of the restricted assignment version of R||Cmax, implying
an integrality gap of 2; see [14].

5 Hardness of approximation

By reducing from Max k-Cover, we derive an inapproximability bound of
e/(e − 1) ≈ 1.582 for R|split,setup|Cmax, indicating that the problem might
indeed be harder from an approximation point of view compared to the classic
R||Cmax, for which 3/2 is the best known lower bound [14].

Theorem 6 For any ε > 0, there is no
(

e
e−1 − ε

)
-approximation algorithm

for R|split,setup|Cmax unless P = NP.

Proof We prove the hardness of R|split,setup|Cmax by providing a reduction
from the Max k-Cover problem defined as follows: given a universe of ele-
ments e1, . . . , em and a family of subsets of this universe S1, . . . , Sn, find k sets
that maximizes the number of covered elements, i.e., the number of elements
contained in the union of the selected sets. In a seminal paper [7], Feige showed
that it is NP-hard to distinguish between instances in which all elements can
be covered with k disjoint sets and instances where no k sets can cover more
than a (1 − 1

e) + ε′ fraction of the elements for any ε′ > 0. In addition, this
hardness holds for instances where all sets have the same cardinality, namely
m/k.

Given a Max k-Cover instance where each set has cardinality m/k we
construct an instance of our problem in polynomial time as follows. We define
n jobs, one for each set Sj . We define a set of n− k generic machines with the
property that on each one of them each job j has setup time 1 and processing
time 0. Next, we create an element-machine mi for each element ei, on which
each job j with ei ∈ Sj requires setup time smij = 0 and processing time
pmij = m/k = |Sj |, and each job j with ei /∈ Sj has setup time sei,j = 2 and
pmij = m/k = |Sj |.

We observe that any solution to this instance of R|split,setup|Cmax with
a makespan strictly less than 2 schedules n− k jobs on the generic machines.
The remaining k jobs correspond to k sets from the Max k-Cover instance
and the makespan depends on the number of elements these sets cover. To
see this, first note that we can only assign a remaining job to an element-
machine that corresponds to an element of its set; otherwise, the makespan
would immediately be 2. Thus, we may assume that the processing of the
k jobs that do not go to the generic machines, will be completely done on
element-machines.

Now, on the one hand, if the k remaining jobs correspond to k disjoint sets,
each of cardinality m/k, that cover all elements, then the total processing time
m/k of each of these jobs can be split into equal fractions k/m of length 1 each,
on each of its m/k element-machines. Since, setup times for these job-parts

16 José R. Correa et al.

are 0, each element-machine gets a load of 1. This together with the fact that
each generic-machine is assigned only one job yields a solution of makespan 1.

On the other hand, if the remaining k jobs correspond to k sets that cover
at most (1 − 1/e + ε′)m elements, then we have to divide a total processing
time of m over (1 − 1

e + ε′)m element-machines. In the best case this yields
a makespan of m

(1− 1
e+ε

′)m
= e

e−1 − ε. This proves that it is NP-hard to dis-

tinguish between instances that have optimal makespan 1 and instances that
have optimal makespan e

e−1 − ε for any ε > 0. ut

Notice that the construction used in this lower bound makes it non-valid
for the restricted assignment version of the problem. For that version the best
known lower bound is still 3/2, resulting from the basic makespan problem
without splits [14].

6 Configuration LP relaxations

A basic tool of combinatorial optimization is to design stronger linear programs
based on certain configurations. These LPs often provide improved integrality
gaps and thus lead to better approximation algorithms as long as they can be
solved efficiently and be rounded appropriately. We consider two configuration
LPs in this section: a machine configuration LP, which we show to exhibit, sur-
prisingly, the same integrality gap of 1 +φ as already observed for [LSTstrong],
and a job configuration LP, which we show to be much more promising.

6.1 A machine configuration LP

In machine scheduling the most widely used configuration LP uses as variables
the possible configurations of jobs on a given machine. These machine config-
uration LPs have been successfully studied for the unrelated machine setting
since the pioneering work of Bansal and Sviridenko [3]. Recent progress in the
area includes [6,24,25,27].

The standard way to formulate a machine configuration LP relaxation for
allocation problems is to have a variable for each machine i and each subset
(configuration or bundle) B of jobs that can be feasibly assigned to i with
respect to a guessed makespan C∗. In the context of R|split,setup|Cmax the
natural extension of a configuration B for machine i is associated with a vector
xB ∈ [0, 1]J that specifies what fraction of job j is scheduled on machine
i in the configuration. Let Bi denote this set of feasible configurations for
machine i and guessed makespan C∗. Thus, we have that B ∈ Bi if and only if∑
j:xB

j >0(xBj pij +sij) ≤ C∗. The machine configuration LP is now a feasibility

LP with a variable ρB for each B ∈
⋃
i∈M Bi indicating whether or not the

configuration B is assigned to a machine i and it has the following constraints:

Strong LP formulations for scheduling splittable jobs on unrelated machines 17

[MCLP]:
∑
B∈Bi

ρB ≤ 1 for all i ∈M,

∑
i∈M

∑
B∈Bi

xBj ρB ≥ 1 for all j ∈ J,

ρB ≥ 0 for all B ∈
⋃
i∈M
Bi.

The first set of constraints says that we should (fractionally) assign at most
one configuration to each machine and the second set of constraints says that
each job should be (fractionally) assigned (at least) once. It is easy to see that
[MCLP] is a relaxation of our problem and that the minimum C∗ such that
[MCLP] is feasible provides a lower bound on the optimal makespan OPT.
Rather surprisingly, we show that this seemingly stronger relaxation has the
same integrality gap as the strengthened assignment LP [LSTstrong].

Theorem 7 For any ε > 0, there exists an instance such that C∗(1+φ−ε) ≤
OPT, where C∗ is the smallest number such that [MCLP] is feasible.

Proof The construction is similar to that in the proof of Theorem 4.
We first select the parameters of the construction. Let β = φ−1 and select

k,G, d to be large integers (dependent on ε) so that(
1− 1

k

)
d

G
≥ β and

G

d
≥ 1

β
− ε. (13)

Based on these parameters we construct the integrality gap instance as follows.
There are k disjoint groups of jobs J1, . . . , Jk, each containing G jobs, i.e.,

J1 = {j(1)1 , . . . , j
(G)
1 }, . . . , Jk = {j(1)k , . . . , j

(G)
k }. For each job j ∈

⋃k
`=1 J` there

is a child machine ic(j) and for each group ` = 1, . . . , k there is a parent

machine ip(j
(1)
`) = ip(j

(2)
`) = · · · = ip(j

(G)
`) that can process all the jobs in J`.

Finally, there is a top job jt (see Fig. 4 and notice the tree structure with jt

being the root).
The processing times and setup times are as follows,

pij =

0 for j ∈

⋃k
`=1 J`, i = ip(j),

1
1−β for j ∈

⋃k
`=1 J`, i = ic(j),

0 for j = jt, i = ip(j) for any j ∈
⋃k
`=1 J`,

∞ otherwise.

sij =

1
d for j ∈

⋃k
`=1 J`, i = ip(j),

0 for j ∈
⋃k
`=1 J`, i = ic(j),

1 for j = jt, i = ip(j) for any j ∈
⋃k
`=1 J`,

∞ otherwise.

18 José R. Correa et al.

jt

j
(1)
1 j

(G)
1 j

(1)
k j

(G)
k

i1p ikp

ic(j
(1)
1) ic(j

(G)
1) ic(j

(1)
k) ic(j

(G)
k)

· · ·· · · · · ·

pij = 0

sij = 1

pij = 0

sij = 1/d

pij = 1/(1− β)

sij = 0

Fig. 4 Example showing that [MCLP] has a gap of 1 + φ.

First we prove that an optimal solution has makespan at least 1 + φ − ε.
To see this, let ip(j

(i)
`) be the machine that receives the top job jt in an

optimal solution (since pjti = 0 for all i, this job is never split). Similarly,

jobs j
(1)
` , . . . , j

(G)
` are not split in an optimal solution. If either of these jobs is

completely assigned to its child machine, then the makespan of the schedule is

1/(1− β) = 1 + φ. Otherwise, j
(1)
` , . . . j

(G)
` are all assigned to ip(j

(1)
`) = · · · =

ip(j
(G)
`), which will have a load of 1 +G/d ≥ 1 + 1

β − ε = 1 +φ− ε, using that

G/d ≥ 1/β − ε by (13).

Having proved that an optimal solution has makespan at least 1 + φ − ε,
we complete the proof by showing that [MCLP] is feasible for C∗ = 1. Since jt
has setup time 1 and processing time 0 on all parent machines, we have that a
configuration Bit that schedules jt completely on machine i and no other job
is feasible for these machines. We choose ρBi

t
= 1/k for each parent machine,

i.e., for each machine i = ip(j) for some j ∈
⋃k
`=1 J`. Note that this will assign

job jt fractionally and also leaves a (1− 1/k) fraction of space on each parent
machine for other configurations.

It remains to assign the jobs in
⋃k
`=1 J`. For any such a job j, define the

configuration Bcj , that assigns a (1−β) fraction of it to its child machine ic(j)

and nothing else; i.e., x
Bc

j

j = 1 − β and x
Bc

j

j′ = 0 for any other job j′ 6= j.
Bcj is a feasible configuration for machine ic(j), because job j has processing
time 1/(1 − β) and setup time 0 on that machine. We choose ρBc

j
= 1 for

each j ∈
⋃k
`=1 J`. Thus, so far we have assigned a fraction 1 − β of each job

j ∈
⋃k
`=1 J`, i.e., a β fraction of these jobs remains to be assigned. We will

assign this remaining fraction to the parent machine for each job. To construct
the configurations necessary for this, we consider each group ` = 1, 2, . . . , k
separately. As the jobs in J` have processing time 0 and setup time 1/d on i`p, a

Strong LP formulations for scheduling splittable jobs on unrelated machines 19

feasible configuration for i`p is to completely schedule any d jobs in J`. There are(
G
d

)
different ways of forming such a configuration, i.e., by selecting d jobs out

of the G jobs in J`. Recall that i`p has a (1−1/k) fraction of remaining space for
processing such configurations. We use this space completely, by assigning an
equal fraction to each of the

(
G
d

)
configurations containing exactly d jobs, i.e.,

we choose ρB = (1− 1/k)/
(
G
d

)
for each configuration B ∈ Bi`p that completely

schedules d of the jobs in J` on machine i`p. This will schedule the remaining β

fraction of a job in J` because it is part of exactly
(
G−1
d−1
)

such configurations
and (

1− 1

k

) (G−1
d−1
)(

G
d

) =

(
1− 1

k

)
d

G
≥ β,

where the last inequality follows from (13). Since this holds for every group
`, each job is completely assigned and each machine receives (fractionally) a
configuration of makespan 1. We have thus proved that [MCLP] is feasible for
C∗ = 1 and the statement follows. ut

6.2 A job configuration LP

As the machine configuration LP does not provide any improvement over the
assignment LP [LSTstrong], we introduce a new family of configuration LPs,
which we call job configuration LPs. A configuration f for a given job j specifies
the fraction of j that is scheduled on each machine. The configuration consists
of two vectors xf ∈ [0, 1]M and yf ∈ {0, 1}M such that

∑
i∈M xfi = 1 and

yfi = 1 if and only if xfi > 0. On machine i ∈ M configuration f requires

time tfi := pijx
f
i + sijy

f
i . Let Fj be the set of configurations for job j with

tfi ≤ C∗ for all i ∈M . Then every feasible solution to R|split,setup|Cmax with
makespan C∗ corresponds to an integer solution of

[CLP] :
∑
f∈Fj

λf = 1 for all j ∈ J,

∑
j∈J

∑
f∈Fj

λf t
f
i ≤ C

∗ for all i ∈M,

λf ≥ 0 for all f ∈
⋃
j∈J
Fj .

Note that this formulation has infinitely many variables. However, by investi-
gating the separation problem of the convex dual of [CLP], we will show that
we can restrict [CLP] without loss of generality to the finite subset of so-called
maximal configurations. A configuration f ∈ Fj is maximal, if there is at most

one machine i ∈M with 0 < xfi < xmax
ij , where xmax

ij := (C∗ − sij)/pij .

Theorem 8 [CLP] is feasible if and only if the restriction of [CLP] to maximal
configurations is feasible.

20 José R. Correa et al.

Proof Consider the convex dual of [CLP], which is described by

[D] : min
∑
i∈M

C∗ · δi +
∑
j∈J

µj ,

s.t. µj +
∑
i∈M

tfi δi ≥ 0 for all j ∈ J, f ∈ Fj ,

δi ∈ R+, µj ∈ R for all i ∈M, j ∈ J.

By convex duality (see e.g. [23, Theorem 2.2]), [CLP] is feasible if and only
if [D] has a bounded value. We prove that every inequality of [D] is implied by
an inequality corresponding to a maximal configuration, concluding that [D] is
polyhedral. To see this, let δ ∈ RM+ and µ ∈ RJ be an infeasible solution to [D].
Note that there is a separating inequality corresponding to a configuration
f ∈ Fj for some job j such that µj +

∑
i∈M tfi δi < 0. If f is not maximal,

then there are two distinct machines i and k such that 0 < xfi < xmax
ij and

0 < xfk < xmax
kj . Assume without loss of generality δipij ≤ δkpkj and consider

the configuration f ′ obtained by shifting as much of job j as possible from
machine k to machine i, i.e.,

xf
′

` :=

min{xmax

ij , xfi + xfk} if ` = i,

max{0, xfk + xfi − xmax
ij } if ` = k,

xf` otherwise.

Observe that µj +
∑
i∈M tf

′

i δi ≤ µj +
∑
i∈M tfi δi < 0. Iterating this argument

we obtain a configuration that is maximal and whose inequality is violated by
(µ, δ). This implies that [D] is completely described by the inequalities corre-
sponding to maximal configurations. Therefore, [CLP] has a feasible solution
if and only if the restriction of [CLP] to maximal configurations has a feasible
solution. ut

Note that while Theorem 8 enables us to restrict [CLP] to a finite number
of configurations, the number of variables is still exponential in the input size.
In order to approximately solve the LP in polynomial time, we will discretize
[CLP]. Given ε > 0, the discretization will violate the makespan C∗ by a
factor of 1 + ε: If [CLP] is feasible then the discretized LP, [CLP]d, will also
be feasible, while if [CLP]d is feasible then [CLP] is feasible for configurations
with makespan C∗(1 + ε).

For a given job j we define the set of discretized configurations Fdj as all

configurations such that all xfi take values that are multiples of ε/m, i.e., Fdj
contains configurations f with xfi = ki · ε/m for some ki ∈ {0, . . . , bm/εc},
and yfi = 1 if and only if xfi > 0. Moreover, we relax the requirement that the

fractions xfi add up to one, and only ask that
∑
i x

f
i ≥ 1− ε. The discretized

configuration LP [CLP]d is therefore described exactly as [CLP], only replacing
Fj by Fdj . We now prove [CLP]d indeed approximates [CLP] arbitrarily well.

Strong LP formulations for scheduling splittable jobs on unrelated machines 21

Lemma 7 If [CLP] is feasible for makespan C∗, then [CLP]d is feasible for
makespan C∗. Also, if [CLP]d is feasible for makespan C∗, then [CLP] is fea-
sible for makespan (1 + ε)C∗.

Proof Given a configuration f ∈ Fj we define a rounded configuration f̃ with

xf̃i :=

⌊
xfi ·m
ε

⌋
· ε
m

and yf̃i = yfi for all i ∈M.

Notice that xfi − ε/m ≤ xf̃i ≤ xfi and therefore
∑
i∈M xf̃i ≥ 1 − ε. Thus

f̃ ∈ Fdj . This implies that if [CLP] is feasible then also [CLP]d. Conversely,

given a solution of [CLP]d we can multiply the vector (xfi)i∈M for each f ∈ Fdj
by a factor of 1/(1− ε) = 1 +O(ε). This yields configurations that violate the
makespan C∗ by a factor of 1 +O(ε), and thus [CLP] is feasible for this type
of configurations. ut

Next we show that [CLP]d can be solved in polynomial time. Again, max-
imal configurations will play an important role in our proof. In the context of
the discretization, a configuration f ∈ Fdj is maximal if and only if there is at
most one machine i ∈M with

0 < xfi < xmax
ij :=

⌊
(C∗ − sij) ·m

pij · ε

⌋
ε

m
.

Lemma 8 The program [CLP]d can be solved in polynomial time. Moreover,
if the LP is feasible there always exists a solution in which all configurations
in the support are maximal.

Proof By Farkas’ Lemma (see e.g. [20]), [CLP]d is feasible if and only if the
following LP is infeasible,

0 >
∑
i∈M

C∗ · δi +
∑
j∈J

µj ,

0 ≤ µj +
∑
i∈M

tfi δi for all j ∈ J, f ∈ Fdj ,

δi ∈ R+, µj ∈ R for all i ∈M, j ∈ J.

To determine the feasibility of this dual program we use the equivalence of
separation and optimization [10]. Given a solution µ, δ the separation problem
can be solved by fixing j ∈ J and solving the minimization problem

[Pj] : min

{∑
i∈M

tfi δi : f ∈ Fdj

}
.

By the same argument as given in the proof of Theorem 8, notice that the
optimal solution of [Pj] is a maximal configuration. With this observation
at hand, we solve [Pj] efficiently. First, we guess the machine i∗ ∈ M with

22 José R. Correa et al.

0 < xfi∗ < xmax
i∗j together with the fraction xfi∗ . Recall that xfi∗ must be one of

only bm/εc+1 different values, thus this guessing takes only polynomial time.

For a given i∗ and xfi∗ , problem [Pj] reduces to finding a set S ⊆M \{i∗} such

that
∑
i∈S x

max
ij ≥ 1−ε−xfi∗ while minimizing

∑
i∈S δi(x

max
ij pij+sij). Observe

that this is a Knapsack Cover problem, which can be solved in pseudo-
polynomial by adapting the dynamic program for the standard Knapsack
problem [12]. This yields a polynomial algorithm in our case since the values
xmax
ij are of the form ki ·m/ε for some ki ∈ {0, . . . , bm/εc}. ut

Projection of the job configuration LP. Observe that any convex combina-
tion of job configurations λ can be translated into a pair of vectors xλ, yλ ∈
[0, 1]M×J in the assignment space by setting

xλij :=
∑
f∈Fj

λfx
f
i and yλij :=

∑
f∈Fj

λfy
f
i .

We show that applying this projection to [CLP] leads to assignment vectors
described by the following set of inequalities:

[CLPproj] :
∑
j∈J

(pijxij + sijyij) ≤ C∗ for all i ∈M, (14)

∑
i∈M

(βixij + γiyij) ≥ K(j, β, γ) for all j ∈ J, β, γ ∈ RM ,

(15)

with K(j, β, γ) := min
{∑

i∈M (βix
f
i + γiy

f
i) : f ∈ Fj

}
.

Theorem 9 If λ ∈ [CLP] then (xλ, yλ) ∈ [CLPproj]. Conversely, if (x, y) ∈
[CLPproj] then there exists λ ∈ [CLP] such that x = xλ and y = yλ.

Proof Let λ be a feasible solution to [CLP] and let β, γ ∈ RM+ . By definition
of K(j, β, γ) for any j ∈ J we have that∑

i∈M
βixij + γiyij =

∑
i∈M

∑
f∈Fj

λf
(
βix

f
i + γiy

f
i

)
≥ K(j, β, γ).

Furthermore by feasibility of λ we obtain the following inequality, proving that
(xλ, yλ) is a feasible solution to [CLPproj].∑
j∈J

(
pijx

λ
ij + sijy

λ
ij

)
=
∑
j∈J

∑
f∈Fj

(
pijλ

fxfi + sijλ
fyfi

)
=
∑
j∈J

∑
f∈Fj

λf tfi ≤ C
∗.

To prove the converse consider (x, y) a feasible solution to [CLPproj]. Clearly,
there exists λ ∈ [CLP] with x = xλ, y = yλ if and only if the following LP has

Strong LP formulations for scheduling splittable jobs on unrelated machines 23

a feasible solution.∑
f∈Fj

xfi λf = xij for all i ∈M, j ∈ J,

∑
f∈Fj

yfi λf = yij for all i ∈M, j ∈ J,

∑
f∈Fj

λf = 1 for all j ∈ J,

∑
j∈J

∑
f∈Fj

tfi λf ≤ C
∗ for all i ∈M,

λf ≥ 0 for all f ∈
⋃
j∈J
Fj .

By duality, the latter holds if and only if the following LP is bounded.

min
∑
i∈M

∑
j∈J

(xijβij + yijγij) +
∑
j∈J

µj +
∑
i∈M

C∗δi

s.t.
∑
i∈M

(
xfi βij + yfi γij

)
+ µj +

∑
i∈M

tfi δi ≥ 0 for all j ∈ J, f ∈ Fj ,

δi ≥ 0 for all i ∈M.

Applying inequality (14) to the term C∗ in the objective function of this dual,
we obtain the lower bound∑

i∈M

∑
j∈J

(
xij(βij + pijδi) + yij(γij + sijδi)

)
+
∑
j∈J

µj .

This, in turn, can be lower bounded using inequalities (15) by∑
j∈J

K
(
j, (βij + pijδi)i∈M , (γij + sijδi)i∈M

)
+ µj .

To conclude observe that the constraints of the dual guarantee that each of
the summands is non-negative, implying that the dual is bounded. ut

The following lemma shows that all inequalities of [LSTstrong] are special cases
of the inequalities of [CLPproj] and therefore the latter linear program is at
least as strong as the former.

Lemma 9 Let x, y be a feasible solution to [CLPproj] for some value of C∗.
Then x is a feasible solution to [LSTstrong] for the same value of C∗.

Proof Let x, y be a feasible solution to [CLPproj] for the given value of C∗.

For any j ∈ J and any f ∈ Fj , observe that
∑
i∈M xfi = 1 and also xfi ≥ 0

for all i ∈ M . Therefore (15) implies
∑
i∈M xij = 1 and xij ≥ 0 for all

i ∈ M . Now assume sij > C∗ for some i ∈ M and j ∈ J . Then xfi = 0 in
all configurations f ∈ Fj and therefore (15) implies xij = 0 for any such pair

24 José R. Correa et al.

of job and machine. Finally, observe that xfi ≤ xmax
ij in all configurations and

therefore −αijxfi + yfi ≥ 0 for all f ∈ Fj with αij as defined in Section 3.
Therefore, inequalities (15) imply αijxij ≤ yij for all i ∈ M and j ∈ J and
thus inequalities (14) imply

∑
j∈J xij(pij+αijsij) ≤ C∗ for all i ∈M . Hence x

is a feasible solution for [LSTstrong] with makespan C∗. ut

In particular, Lemma 9 implies that the integrality gap of [CLP] is at most
that of [LSTstrong]. We conclude this section by showing that already a very
special class of inequalities (15) from [CLPproj] is sufficient to eliminate the
gap in the worst-case instances of [LSTstrong]. For a set of machines S ⊆M let

L(j, S) :=
∑
i∈M\S max

{C∗−sij
pij

, 0
}

be the maximum fraction of job j that

can be processed within time C∗ by the machines in M \ S. The following
inequalities are satisfied by the vector x, y induced by any feasible solution to
R|split,setup|C∗max with makespan at most C∗.∑

i∈S′ xij

1− L(j, S ∪ S′)
+
∑
i∈S

yij ≥ 1 for all j ∈ J and S, S′ ⊆M with L(j, S∪S′) < 1.

One way to validate these inequalities is to observe that they are a special
case of inequalities (15), obtained by setting βi = 1

1−L(j,S∪S′) for j ∈ S′ and 0

everywhere else, and γi = 1 for i ∈ S and 0 everywhere else. The corresponding
value K(j, β, γ) can be verified to be at least 1. However, for an alternative
and more direct argument for the validity of the inequalities, observe that any
feasible solution must process a total fraction of at least 1 − L(j, S ∪ S′) on
the machines in S ∪ S′. Therefore, either

∑
i∈S′ xij ≥ 1 − L(j, S ∪ S′) or at

least one machine in S is used to process job j. In either case, the left hand
side of the corresponding inequality is at least 1.

Now consider the example instance given in the proof of Theorem 4 and
depicted in Fig. 3. If C∗ < 1 + φ, then L(j, {ip(j)}) = C∗/pic(j)j < 1 and
therefore yip(j)j = 1 for all j ∈ J ∪ J ′ in any feasible solution to [CLPproj].
This immediately implies infeasibility of [CLPproj] for any C∗ < 1 + φ. We
also note that the exact same argument applies to the worst-case instance of
the machine configuration LP.

It will be interesting to find out if this job configuration LP will indeed
have a better integrality gap and accompanying approximation algorithm.

Acknowledgements This work was partially supported by Nucleo Milenio Información
y Coordinación en Redes ICM/FIC P10-024F, by EU-IRSES grant EUSACOU, by the
DFG Priority Programme “Algorithm Engineering” (SPP 1307), by the Berlin Mathematical
School, by ERC Starting Grant 335288-OptApprox, and by FONDECYT project 3130407.

References

1. Allahverdi, A., Ng, C., Cheng, T., Kovalyov, M.: A survey of scheduling problems with
setup times or costs. Eur. J. Oper. Res. 187, 985–1032 (2008)

2. Asadpour, A., Feige, U., Saberi, A.: Santa claus meets hypergraph matchings. ACM
Trans. Algorithms 8, 24:1–24:9 (2012)

Strong LP formulations for scheduling splittable jobs on unrelated machines 25

3. Bansal, N., Sviridenko, M.: The Santa Claus problem. In: STOC, pp. 31–40 (2006)
4. Chen, B., Ye, Y., Zhang, J.: Lot-sizing scheduling with batch setup times. J. Sched. 9,

299–310 (2006)
5. Correa, J.R., Verdugo, V., Verschae, J.: Approximation algorithms for scheduling split-

ting jobs with setup times (2013). Talk in MAPSP
6. Ebenlendr, T., Krčál, M., Sgall, J.: Graph balancing: A special case of scheduling un-

related parallel machines. Algorithmica (10.1007/s00453-012-9668-9, 2012)
7. Feige, U.: A threshold of log(n) for approximating set cover. J. ACM 45, 634–652 (1998)
8. Feige, U.: On allocations that maximize fairness. In: SODA, pp. 287–293 (2008)
9. Graham, R., Lawler, E., Lenstra, J., Kan, A.: Optimization and approximation in de-

terministic sequencing and scheduling: a survey. Ann. Discrete Math. 5, 287–326 (1979)
10. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Op-

timization. Springer, Berlin (1988)
11. Haeupler, B., Saha, B., Srinivasan, A.: New constructive aspects of the Lovász Local

Lemma. J. ACM 58, 28:1–28 (2011)
12. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the Knapsack and Sum of

Subset problems. J. ACM 22, 463–468 (1975)
13. Kim, D.W., Na, D.G., Frank Chen, F.: Unrelated parallel machine scheduling with setup

times and a total weighted tardiness objective. Robot. Com.-Int. Manuf. 19, 173–181
(2003)

14. Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling un-
related parallel machines. Math. Program. 46, 259–271 (1990)

15. Liu, Z., Cheng, T.C.E.: Minimizing total completion time subject to job release dates
and preemption penalties. J. Sched. 7, 313–327 (2004)

16. Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0-1 optimization.
SIAM J. Optimiz. 1, 166–190 (1991)

17. Polacek, L., Svensson, O.: Quasi-polynomial local search for restricted max-min fair
allocation. In: ICALP, pp. 726–737 (2012)

18. Potts, C.N., Wassenhove, L.N.V.: Integrating scheduling with batching and lot-sizing:
A review of algorithms and complexity. J. Oper. Res. Soc. 43, pp. 395–406 (1992)

19. Schalekamp, F., Sitters, R., van der Ster, S., Stougie, L., Verdugo, V., van Zuylen,
A.: Split scheduling with uniform setup times. J. Sched. pp. 1–11 (2014). DOI
10.1007/s10951-014-0370-4

20. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)
21. Schuurman, P., Woeginger, G.J.: Preemptive scheduling with job-dependent setup

times. In: SODA, pp. 759–767 (1999)
22. Serafini, P.: Scheduling jobs on several machines with the job splitting property. Oper.

Res. 44, 617–628 (1996)
23. Shapiro, A.: Semi-infinite programming, duality, discretization and optimality condi-

tions. Optimization 58, 133–161 (2009)
24. Svensson, O.: Santa claus schedules jobs on unrelated machines. SIAM J. Comput. 41,

1318–1341 (2012)
25. Sviridenko, M., Wiese, A.: Approximating the configuration-lp for minimizing weighted

sum of completion times on unrelated machines. In: IPCO 2013, pp. 387–398 (2013)
26. van der Ster, S.: The allocation of scarce resources in disaster relief (2010). MSc-Thesis

in Operations Research at VU University Amsterdam
27. Verschae, J., Wiese, A.: On the configuration-LP for scheduling on unrelated machines.

In: ESA, pp. 530–542 (2011)
28. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cambridge

University Press (2011)
29. Xing, W., Zhang, J.: Parallel machine scheduling with splitting jobs. Discrete Appl.

Math. 103, 259–269 (2000)

