
HAL Id: hal-01249259
https://hal.archives-ouvertes.fr/hal-01249259

Submitted on 30 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing an Evolutionary Ordering is Hard
Laurent Bulteau, Gustavo Sacomoto, Blerina Sinaimeri

To cite this version:
Laurent Bulteau, Gustavo Sacomoto, Blerina Sinaimeri. Computing an Evolutionary Ordering is
Hard. Electronic Notes in Discrete Mathematics, Elsevier, 2015, �10.1016/j.endm.2015.07.043�. �hal-
01249259�

https://hal.archives-ouvertes.fr/hal-01249259
https://hal.archives-ouvertes.fr


Computing an Evolutionary Ordering is Hard 1

Laurent Bulteau a,2, Gustavo Sacomoto a,3 Blerina Sinaimeri a,4

a INRIA Grenoble Rhône-Alpes, France
UMR CNRS 5558

LBBE, Université Lyon 1, France

Abstract

A family of sets is evolutionary if it is possible to order its elements such that each
set except the first one has an element in the union of the previous sets and also
an element not in that union. This definition is inspired by a conjecture of Naddef
and Pulleyblank concerning ear decompositions of 1-extendable graphs. Here we
consider the problem of determining whether a family of sets is evolutionary. We
show that the problem is NP-complete even when every set in the family has at
most 3 elements and each element appears at most a constant number of times. In
contrast, for families of intervals of integers, we provide a polynomial time algorithm
for the problem.

Keywords: evolutionary family, ear-decomposition, complexity.

1 This work was supported by the European Research Council under the European Com-
munity’s Seventh Framework Programme (FP7 / 2007-2013) / ERC grant agreement no.
[247073]10 and by the European Union Framework Program 7 “BacHBerry”, Project num-
ber FP7-613793.
2 Email: laurent.bulteau@inria.fr
3 Email: gustavo.sacomoto@inria.fr
4 Email: blerina.sinaimeri@inria.fr



1 Introduction

A family of sets S, is called evolutionary if there exists an ordering of the sets
in S such that except for the first set, every set in the order contains both an
element that belongs to the union of the previous sets (an old element) and an
element that does not (a new one). The concept of evolutionary families was
introduced in [2] motivated by a result of Carvalho, Lucchesi and Murty [1]
on a question related to the ear-decomposition of 1-extendable graphs, posed
by Naddef and Pulleyblank in [4].

Let G be a graph and G′ a subgraph of G. A path P in G of odd length
is called an ear of G′ if V (P ) ∩ V (G′) consists of the two endpoints of P . An
n-ear is a set of n vertex-disjoint ears. A graph G is 1-extendable if each one
of its edges belongs to a perfect matching of G.

It is well-known that bipartite graphs that are 1-extendable can be con-
structed simply by adding one ear at a time to smaller graphs of the same
type. This property does not hold in general for 1-extendable graphs. In
order to guarantee an ear decomposition where each graph in the sequence
is also 1-extendable we have to allow to add more ears simultaneously. In
[3], Lovász and Plummer proved the so called Two Ear Theorem, where they
show that in constructing 1-extendable graphs, adding at most two (disjoint)
ears in each step will suffice to guarantee that the intermediate graphs in the
construction are themselves 1-extendable. Naddef and Pulleyblank [4] asked
about the smallest number of 2-ear additions necessary in such a decomposi-
tion. This question was answered in [1] and their results inspired Little and
Campbell [2] to introduce the concept of evolutionary families.

Indeed, it was proved in [1] that the minimum number of 2-ear additions
in a ear decomposition of a 1-extendable graph G is dimC(G) − dimA(G),
where C(G) and A(G) denote the cycle space and the alternating subspace
of G, respectively. Little and Campbell [2] then observed that the minimum
number of 2-ear additions is achieved for a basis of A(G) that, among other
properties, is evolutionary. They also gave some sufficient conditions for a
family to be evolutionary.

In this paper, we investigate the complexity of deciding whether a given
family is evolutionary. More formally, we consider the following problem:

Evolutionary Ordering Problem
INSTANCE: A family S of sets.
DECIDE: Is S evolutionary?

This problem was posed by M. Steel as one of the “Penny Ante” prize



questions of the Annual New Zealand Phylogenetics Meeting in 2012 [5]. In
this paper we fully answer this question by showing in Section 2 that the
problem is NP-complete and remains so even when every set in the family
has at most 3 elements and where each element appears a constant number of
times. Observe that this result is tight regarding the set cardinalities as for
the case when each set has at most two elements the problem can be easily
solved in polynomial time as already observed in [2].

Finally, in Section 3 we show that for sets of intervals of integers the
problem is solvable in polynomial time.

2 Evolutionary ordering is NP-complete

We show in this section that deciding whether a given family is evolutionary
is NP-complete. Moreover, it remains so even when each of the sets in the
family has cardinality at most 3. The reduction is obtained using a restricted
version of the SAT problem defined as follows:

(3, 2)-SAT [6]
INSTANCE: A Boolean formula F in conjunctive normal form where each
clause has two or three literals and each literal appears in at most 2 clauses.
DECIDE: Is there some assignment of true and false value that will make the
formula F true?

Theorem 2.1 Evolutionary Ordering is NP-complete.

Proof. It is clear that the Evolutionary Ordering problem is in NP. We show
it is also NP-complete. Let Φ be an instance of (3,2)-SAT with n variables and
m clauses. For ease of presentation, assume that each literal occurs exactly 2
times, and each clause has exactly 3 literals. Note that 4n = 3m.

We construct an instance of Evolutionary Ordering problem by assigning
a set to each variable, literal and clause. The main idea is that every evolu-
tionary ordering of the sets would necessary imply an ordering where the sets
corresponding to variables that are assigned true come first, then the sets of
the corresponding literals, then all the clauses that contain at least one literal
assigned true and hence that appeared before, and finally it must be possi-
ble to add the remaining sets corresponding to the variables that are assigned
false. Note, that in order to have an assignment we have to guarantee that not
both sets corresponding to xi, x̄i are taken before the clause sets. We proceed
now to formally detail the construction.

The universe in which the sets are constructed contains the following



8n+ 2m+ 1 elements:

• 1 trigger element, denoted τ

• 2n assignment elements, denoted xi and x̄i for each 1 ≤ i ≤ n

• 2n free elements, denoted fi and f̄i for each 1 ≤ i ≤ n

• 4n literal elements, denoted `1i , `
2
i and ¯̀1

i ,
¯̀2
i for each 1 ≤ i ≤ n

• 2m clause elements, denoted cj and c′j for each 1 ≤ j ≤ j′

We create the following sets:

• A triggering set : T := {τ}
• For each 1 ≤ i ≤ n, define two variable sets and a verification set :

Li := {xi, τ, fi, `1i , `2i } and L̄i := {x̄i, τ, f̄i, ¯̀1
i , `

2
i }

Vi := {xi, x̄i, c1, c′1, c2, c′2, . . . cm, c′m}
• For each 1 ≤ j ≤ m, where the jth clause uses, say, literals `11, `

1
2,

¯̀1
3, define

two clause sets

Cj := {`11, `12, ¯̀1
3, cj} and C ′j := {cj, c′j}

Let S denote this family of sets. We prove that S has an evolutionary
ordering if, and only if, Φ is satisfiable.

If. Given a truth assignment, we simply give an evolutionary ordering of
the sets. Start with the triggering set {τ}. No condition needs to be satisfied
for this set.

For each variable xi add the set Li if xi is assigned true, L̄i otherwise. For
each one of them, τ is old, and fi (or f̄i) is new.

For each clause cj, add sets Cj and C ′j. Since the clause is satisfied, some
literal `hi (or ¯̀h

i ) must be assigned true, so the corresponding element in Li is
old for set Cj. Element cj is new for set Cj, and then old for set C ′j. Element
c′j is new for set C ′j.

For each variable add the verification set Vi. For every i the elements ci, c
′
i

are all old for each of those sets. If xi is assigned true (resp. false), then
element x̄i (resp. xi) is new.

Finally, we add the remaining variable sets. For each variable xi add L̄i if
xi is assigned true, Li otherwise. For each one, τ is old, and fi (or f̄i) is new.

Overall, we have an ordering of the sets where each one has an old and a
new element: the set is evolutionary.

Only if. Consider an evolutionary ordering of the sets. Observe that every



such ordering would put set T = {τ} in the first position. Moreover, all the
clauses C ′j must appear before any Vi as C ′j ⊂ Vi.

Let us write A for the family of the sets Li and L̄i that appear before their
corresponding verification sets Vi. For each variable xi, it is not possible to
have both Li ∈ A and L̄i ∈ A. Otherwise, Vi would not have any new element,
since Vi ⊆ Li∪ L̄i∪

⋃m
j=1C

′
j and each C ′j is already before Vi. Thus, we design

a truth assignment such that xi is true if Li ∈ A, and false otherwise. This
way, for each Li or L̄i in A, the corresponding literal (xi or x̄i), is assigned
true.

It remains to show that the assignment satisfies formula Φ. Consider each
regular clause cj. First, Cj appears before C ′j. Indeed, the only sets intersect-
ing C ′j are Cj and each Vi. Remember that Vis appear after C ′j, so either C ′j
is first or Cj is before C ′j. It follows that the old element of Cj cannot be cj,
hence it is a literal element `hi or ¯̀h

i . So the corresponding variable set Li or
L̄i must be before Cj, hence before C ′j and Vi. Overall, for each clause, one
of Li or L̄i corresponding to a literal of the clause is in A, and the literal is
satisfied by our assignment. 2

It is possible to modify the gadget used in the previous reduction in such
a way that every set in the family has cardinality at most 3 and every element
appears at most a constant number of times. Thus, the following stronger
result holds.

Theorem 2.2 Evolutionary Ordering is NP-complete even if each set in the
family has cardinality at most 3 and each element appears at most a constant
number of times.

3 A polynomial algorithm for interval families

In this section we consider the particular case where the sets in S are intervals
of integers, i.e. for each Si ∈ S we have that Si = [ai, bi] = {k ∈ Z | ai ≤
k ≤ bi}. We obtain a polynomial algorithm for this case using a dynamic
programing approach. Before describing the algorithm, we need some extra
definitions. Given a family of intervals S, we define a(S) = min{ai | [ai, bi] ∈
S} and b(S) = max{bi | [ai, bi] ∈ S}. We say Si = [ai, bi] is the leftmost (resp.
rightmost) interval if it is a unique interval with ai = a(S) (resp. bi = b(S)).
In other words, aj > ai (resp. bj < bi) for all j 6= i.

An immediate property is that if the union of the sets in S is not an interval
(precisely, the interval [a(S), b(S)]), then S cannot be evolutionary. The key
observation to obtain an efficient algorithm is given in the next lemma.



Lemma 3.1 The last interval in any evolutionary ordering of S is a leftmost
or rightmost interval. Moreover, if S has no leftmost nor rightmost intervals
then S is not evolutionary.

Proof. Suppose by contradiction that the last interval [x, y] in an evolutionary
order of S is not a leftmost or rightmost interval. Write S ′ = S \{[x, y]}. This
implies that a(S ′) = a(S) and b(S ′) = b(S). On the other hand, [x, y] has a
new element z. Thus, there is no evolutionary ordering for S ′, since this set
contains intervals both to the left and to the right of z but none including it.2

As a corollary, we have the following recursive relation: (?) S is evolution-
ary iff S has a leftmost interval Sl and S \ {Sl} is evolutionary, or S has a
rightmost interval Sr and S \ {Sr} is evolutionary.

Lemma 3.2 Let S ′,S ′′ ⊆ S correspond to subproblems of (?), if a(S ′) =
a(S ′′) and b(S ′) = b(S ′′) then S ′ = S ′′.

Proof. At each step of (?) a leftmost (or rightmost) interval is removed from
the current set S, thus strictly increasing a(S) (or decreasing b(S)). This
implies that S ′ contains all intervals entirely included in [a(S ′), b(S ′)]. Thus,
S ′ = S ′′. 2

It follows that the number of subproblems of (?) is bounded by the number
of intervals of the form [ai, bj], which in turn is bounded by |S|2. A standard
dynamic programming approach based on (?) gives a polynomial algorithm.

References

[1] M. H. Carvalho, C. L. Lucchesi, and U. S. R. Murty, Ear Decompositions of
Matching Covered Graphs, Combinatorica, 19 (2) (1999), pp. 151–174.

[2] C. H. C. Little and A. E. Campbell, Evolutionary families of sets, The Electronic
Journal of Combinatorics, 7 (1) (2000).

[3] L. Lovász and M. D. Plummer, Matching Theory, Akadémiai Kiadó, Budapest
(1986).

[4] D. J. Naddef and W. R. Pulleyblank Ear Decompositions of Elementary Graphs
and GF2-rank of Perfect Matchings, North-Holland Mathematics Studies 66 (1982), pp.
241–260.

[5] M. Steel, The “Penny Ante” 2012, http://www.math.canterbury.ac.nz/bio/

events/south2012/files//penny_ante_problems.pdf (2012).

[6] C. A. Tovey, A simplified NP-complete satisfiability problem, Discrete Applied
Mathematics, 8 (1) (1984), pp. 85–89.

http://www.math.canterbury.ac.nz/bio/events/south2012/files//penny_ante_problems.pdf
http://www.math.canterbury.ac.nz/bio/events/south2012/files//penny_ante_problems.pdf

	Introduction
	Evolutionary ordering is NP-complete
	A polynomial algorithm for interval families
	References

