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Abstract— HTTP Adaptive Streaming (HAS) is a streaming 

video technique commonly employed over best-effort networks. 

However, it is characterized by some issues that harm its quality 

of experience (QoE) in cases of daily use. The main use case of 

the present investigation involves HAS clients competing for 

bandwidth inside the same home network. Based on related 

work, we found that one of the most convenient solutions for this 

use case is to define a bandwidth manager, on the gateway side, 

that divides the available home bandwidth between HAS clients. 

Two main methods have previously been proposed to shape the 

HAS streams in accordance with the bandwidth manager’s 

direction and are referred to as gateway-based shaping methods: 

a highly renowned method, Hierarchical Token Bucket Method 

(HTBM), that uses the hierarchical token bucket queuing 

discipline, and another method, Receive Window Tuning Method 

(RWTM), that employs TCP flow control by handling only 

acknowledgment TCP packets. In this paper, we compare these 

two shaping methods. Results indicate that RWTM improves the 

QoE better than HTBM and does not add queuing delay. Results 

were validated through experimentation and objective QoE 

analytical criteria. 

Keywords— Traffic Shaping; Quality of Experience; HTTP 

Adaptive Streaming; TCP Flow Control; Bandwidth Management 

I. INTRODUCTION  

HTTP Adaptive Streaming (HAS) is a streaming video 
technique based on downloading video segments of short 
playback duration, called chunks, from a HAS server to a HAS 
client. Each chunk is encoded at multiple encoding bitrates, 
also called video quality levels. After requesting a chunk using 
an HTTP GET request message [1], the player on the client 
side stores the chunk into a playback buffer. The player 
operates in one of two states: Buffering State and Steady State. 
During the Buffering-State, the player requests a set of chunks 
consecutively until the playback buffer has been filled. 
However, during the Steady State, the player requests the 
chunks periodically to maintain a constant playback buffer 
size. This periodicity creates periods of activity, called ON 
periods [2], [3], followed by periods of inactivity, called OFF 
periods [2], [3], without impacting the continuity of the video 
playing. The player selects the quality level for each chunk by 
estimating the available bandwidth during the previous ON 
period.  

The Quality of Experience (QoE) of HAS users can be 
evaluated by three main criteria: 

1- Video quality level stability [2], [6]: A frequent change of 
video quality level bothers the user. Therefore, quality 
level fluctuation should be avoided to improve the QoE. 

2- Fidelity to optimal quality level selection: The user prefers 
to watch the best quality level of video available. 
Accordingly, the HAS player should select the optimal 
quality level that has the highest feasible quality level 
permitted by the available bandwidth.  

3- Convergence speed [6]: The user prefers to achieve 
watching the optimal quality level as soon as possible. 
Therefore, the HAS player should efficiently select this 
level. The player’s delay to attain the optimal quality level 
is called the convergence speed [6]. 

 Video packets sent from the HAS server to the HAS client 
pass through many network devices. Each device has one or 
many queues, as well as an algorithm called a “queueing 
discipline” that enables the scheduling of packets into the 
queue. The queuing discipline also decides whether to buffer, 
route or drop incoming packets to better manage the queue and 
to avoid network congestion. Bottleneck points are most likely 
to be located in the Digital Subscriber Line Access Multiplexer 
(DSLAM) [12]. In fact, DSLAM may considerably reduce its 
allocated bandwidth when it must divide it between many 
subscribers (DSL routers). Accordingly, DSLAM is more 
likely than other network devices to drop packets when the 
backbone network is well-designed. To reduce network 
congestions, the TCP protocol implements in the sender 
machine a congestion control protocol that reduces the sending 
rate when a congestion event is detected. However, this 
reduction of bitrate may degrade QoE. Moreover, the ON-OFF 
periods that characterize HAS players during the Steady-State 
phase involve false estimations of the available bandwidth. In 
fact, during the OFF periods, the player cannot estimate the 
available bandwidth, which may change over time. 
Furthermore, when HAS clients are connected to the same 
DSL router, the bandwidth estimation becomes more difficult, 
especially when the ON period of one HAS client coincides 
with the OFF period of another HAS client, which leads to 
bandwidth overestimation, congestions, and consequently, the 
degradation of the QoE. As explained in [2], the competition 
between HAS clients in a home network causes an instability 
of quality level selection, unfairness between players, and 
bandwidth underutilization. 

 The objective of the present study is to improve the user’s 
experience (QoE) when HAS clients compete for available 
home bandwidth. Our methodology involves comparing 
between proposed methods, mainly gateway-based methods, 
by using three objective metrics of QoE in accordance with the 
description provided above. The remainder of this paper is 
organized as follows. In Section II, we describe and critique 



recent works addressing related methods. In Section III, we 
define a well-optimized bandwidth manager and describe the 
gateway-based shaping method Receive Window Tuning 
Method (RWTM) [13]. Section IV presents the experimental 
implementation that was used. Section V provides a detailed 
evaluation of results. In Section VI, we conclude the paper and 
suggest future directions to extend this work. 

II. RELATED WORK 

Many research studies have been conducted to improve the 
QoE when several HAS clients are located in the same home 
network. The methodology most often employed involved 
avoiding false estimations of the available bandwidth during 
ON periods in order to more effectively select the video quality 
level. Three types of solutions were proposed to improve HAS 
user QoE: client-based, server-based and gateway-based 
solutions. These differ with respect to the device in which the 
solution is implemented. Below, we cite relevant methods for 
each type of solution: 

- One of the recent client-based solutions is proposed in the 
FESTIVE method [4]. It randomizes the events of chunk 
requests inside the player in order to reduce the periodicity 
of ON periods. Consequently, most of the incorrect 
estimations of bandwidth could be avoided when several 
HAS clients competed for bandwidth. However, this 
method is not efficient enough to prevent all incorrect 
estimations. Moreover, FESTIVE does not provide 
coordination between HAS clients, which is required to 
further improve bandwidth estimations and QoE.  

- The authors of [5] propose a server-based method: it 
consists of detecting the oscillation between quality levels 
on the server side and deciding which optimal quality level 
must be selected. Although this method improves the QoE, 
it cannot conveniently respond to the typical use cases of 
many HAS servers. Moreover, it requires an additional 
processing task, which becomes burdensome when many 
HAS clients are demanding video contents from the same 
HAS server.  

- The gateway-based solution consists of employing a 
bandwidth manager in the gateway that divides the 
available bandwidth between the HAS clients. The 
bandwidth manager defines a shaping rate for each HAS 
client based on the manifest files that define the available 
quality levels for each HAS session. Then, this manager 
shapes the sending bitrate for each client. This solution is 
more convenient than client-based and server-based 
solutions because the gateway can acquire information 
about the HAS traffic of all clients of the same home 
network, which is not possible for the server or the client. 
Additionally, the gateway-based solution does not require 
changes in the implementations of the player or the server.  

 One of the recent gateway-based solutions was proposed in 
the HTB shaping Method (HTBM) [6]. It employs the 
bandwidth manager with a specific shaping method, the 
“Hierarchical Token Bucket” (HTB) queuing discipline. It uses 
one link, designated as the parent class, to emulate several 
slower links, designated as the children classes, and to send 
different kinds of traffic on different emulated links. HTB also 
employs the “tokens and buckets” concept together with the 

class-based system, to achieve better control over traffic and 
for shaping in particular [14]. A fundamental part of the HTB 
queuing discipline is the “borrowing mechanism”: children 
classes borrow tokens from their parent once they have 
exceeded the shaping rate. A child class will continue to try to 
borrow until it reaches a defined threshold of shaping, at which 
point it will begin to queue packets that will be transmitted 
when more tokens become available. HTBM considers each 
HAS stream as a child class. Accordingly, it enables shaping 
by delaying packets received from a HAS server. The authors 
of [6] indicate that HTBM improves the user’s QoE; features 
that are enhanced include stability of video quality level, 
fidelity to optimal quality level, and convergence speed.  

Our proposed method, Receive Window Tuning Method 
(RWTM) [13], was also integrated in the gateway due to the 
convenience of gateway-based solutions, described above. It is 
based on TCP flow control to define the shaping rate for each 
HAS client in accordance with the bandwidth manager’s 
directions. Knowing that the sending rate of a given TCP 
session is bounded by the amount min(rwnd, cwnd)/RTT, 
where rwnd is the receiver’s advertised window, cwnd is the 
congestion window of the sender, and RTT is the round trip 
time between the sender and the receiver, RWTM consists of 
limiting the rwnd of the HAS client so that the shaping rate of 
the bandwidth manager will be equal to rwnd/RTT. The 
methodology of RWTM involves acquiring the shaping rate 
value, SHR, from the bandwidth manager, to estimate the RTT 
value and to modify the rwnd of each HAS client in the 
gateway to be equal to SHR×RTT. The modification of rwnd is 
ensured in the gateway by modifying the rwnd field of each 
TCP acknowledgment (ACK) packet sent from a HAS client to 
the HAS server. The modification of rwnd and the estimation 
of RTT will be described in detail in Subsect. III-B. The 
investigations of [13] have demonstrated that RWTM improves 
QoE. The objective of this paper is to compare the two 
gateway-based shaping methods, HTBM and RWTM, by using 
an identical well-chosen bandwidth manager that is intended to 
define the optimal quality level for each HAS client. 

III. BANDWIDTH MANAGEMENT ALGORITH                            

AND RWTM  DESCRIPTION 

In this section, we describe the bandwidth manager that 
defines the shaping rate for HAS clients in accordance with the 
optimal quality level definition used for QoE metrics in Section 
I. We next provide a more accurate description of the RWTM 
method. For this purpose, we define in Table I the parameters 
that are used in this section. 

TABLE I.  DESCRIPTION OF PARAMETERS 

Parameter Description 

avail_bw Available bandwidth in home network for HAS streams 

N 
Total number of active HAS clients connected to the 
home network 

C HAS client index, C ϵ {1,…,N} 

l Video quality level index, or profile index 

Rl 
Rate of the lth profile index; 10% higher than the profile 
encoding rate 

SHRC-S 
The shaping rate for the HAS stream requested by the 

client C from the server S 

RTTC-S The round-trip time between client C and server S 

rwndC-S 
The rwnd value defined by RWTM in the TCP ACK 

packet sent from client C to server S  



A. Bandwidth management algorithm 

 The bandwidth manager is the fundamental component of 
the gateway-based solution. It uses as inputs three parameters: 
the avail_bw, N, and the manifest file of each HAS stream that 
defines profile encoding rates. Then, it computes the shaping 
rate for each HAS client as indicated in equation (1): 

 

 SHRC-S is chosen in a manner that enables the players to 
select optimal quality levels by ensuring both the fairest share 
of avail_bw between HAS clients and the maximum use of 
avail_bw. This choice necessitates that if the fair share of 
avail_bw according to {max(Rl) | Rl ≤ avail_bw/N} involves 
avail_bw underutilization, and if the unused portion of 
avail_bw enables one or more HAS clients to switch to a 
higher quality level, the bandwidth manager will allow it.  

 The bandwidth manager is sufficiently sophisticated to be 
able to update the number of active connected HAS clients in 
the home gateway, N, by sniffing the SYN and FIN flags in the 
headers of TCP packets. We also assume that it is capable of 
estimating the avail_bw and updating its value over time. 
Accordingly, the manager updates the shaping rate when any 
change occurs. 

B. Receive Window Tuning Method description  

1) Constant RTT 
 When RTTC-S is stationary, the definition of rwndC-S will 
depend only on SHRC-S after the first estimation of RTTC-S. 
Accordingly, computing RTTC-S in the three-way handshake 
phase of the TCP connection before data transfer, as proposed 
in [9], will be sufficient for RWTM processing. However, the 
authors of SABRE [7] reveal that during the ON period of a 
HAS stream, the RTTC-S value increases. This is caused by the 
queuing delay in the home gateway. In fact, the reception of 
many bursts of video packets fills the queue at the gateway, 
which causes new packets to experience long delays until the 
queue is drained. Thus, in order to improve the estimation of 
RTTC-S during the ON period, we multiply it by a weight 
empirical constant μ  (μ >1) as shown in equation (2): 

   RTT*C-S = μ× RTTC-S          (2) 

Hence, an improved definition of rwndC-S is proposed in 
equation (3):         rwndC-S = SHRC-S × RTT*C-S             (3) 

2) General case: variable RTT 
 When RTTC-S becomes variable over time, RWTM should 
update the rwndC-S value to maintain the same shaping rate as 
described in equation (4): 

       rwndC-S(t) = SHRC-S × RTT*C-S (t)       (4) 

 The gateway may have to compute the RTTC-S value 
exhaustively. Since this may be a heavy processing task, our 
idea consists of only estimating RTTC-S from packets sent by 
the HAS client: this is called passive estimation of RTT [10]. 
As a result, we define two parameters, RTTG-S and RTTC-G, 
which are the round trip time between the home gateway and 
the HAS server, and the round trip time between the HAS 
client and the gateway, respectively. Since all packets 

circulating between the HAS client and HAS server pass 
through the home gateway, we can provide the following 
equation: 

   RTTC-S  ≈  RTTC-G  + RTTG-S  (5) 

RTTC-S estimation is only possible when the HAS client 
sends a HTTP GET request message, as illustrated in Fig. 1. In 
fact, the HAS client will receive the HTTP response message 
after one RTTC-S and will immediately send an ACK packet. 
The time difference between the HTTP GET request message 
and the first ACK message in the home gateway is close to the 
RTTC-S value because it satisfies equation (5). 

 
Fig. 1. RTTC-S estimation in the home gateway 

 Accordingly, the home gateway will be able to estimate 
RTTC-S at the beginning of each chunk request. Then, it applies 
equations (2) and (4) to update the rwndC-S value. 

IV. EXPERIMENTAL IMPLEMENTATION 

 We propose a testbed architecture, presented in Fig. 2, that 
emulates our use case described in Section I. The choice of 
only two clients is sufficient to demonstrate the behavior of the 
concurrence between many HAS flows in the same home 
network. In this paragraph, we describe the configurations of 
each component presented in Fig. 2: 

 
Fig. 2. Architecture used in testbed 

 HAS server 
 The HAS server is modeled by an HTTP/1.1 Apache Server 
installed on a Linux machine operating on Debian version 3.2. 
It employs CUBIC [11] as its TCP congestion control 
algorithm. All tests use five video quality levels denoted by 0, 
1, 2, 3 and 4. Their encoding rates are constant and equal to 
248 kbps, 456 kbps, 928 kbps, 1,632 kbps, and 4,256 kbps, 
respectively. The playback duration of a chunk is 2 seconds. 

 Best-effort network 
 The best-effort network is characterized by the presence of 
network devices to route packets. The round trip time RTTC-S(t) 
in a best-effort network is modeled by equation (6) in [8] as 
follows: 

        RTTC-S (t) =  aC-S + q(t)/ς      (6) 



where aC-S  is a fixed propagation delay between client C and 
server S; q(t) is the queue length of a single congested router, 
which is the home gateway in our use case; and ς is the 

transmission capacity of the router. Indeed, q(t)/ς models the 
queuing processing delay.  

To comply with equation (6), we used the normal 
distribution with a mean value aC-S and a standard deviation 
equal to 0.07.aC-S. The standard deviation emulates the queuing 
processing delay q(t)/ς. This emulation is accomplished by 
using the “netem delay” parameter of the traffic controller tool 
in the gateway machine interfaces. 

 Home gateway 
We consider the two connected components, DSL router 

and DSLAM, as unique equipment called the home gateway. 
The emulated home gateway consists of a Linux machine 
configured as a network bridge to forward packets between the 
home network and the best-effort network. We emulate the 
queuing discipline of DSLAM by using two 64-packet-size 
FIFO subqueues. In the gateway, we implemented the 
bandwidth manager as described in Subsect III-A. The two 
shaping methods, HTBM and RWTM, are implemented in this 
gateway, and they shape bandwidth in accordance with the 
bandwidth manager’s decisions, as described in Sections II and 
III. The weight constant µ of equation (2) employed by RWTM 
is chosen empirically and is equal to µ =1.275. 

 Home network 
In the modeled home network, the clients are connected to 

the gateway. The bandwidth is limited to 8 Mbps. We selected 
this value because it is lower than twice the video encoding 
bitrate of the highest quality level. As a result, two clients in 
the home network cannot easily select the highest quality level 
at the same time. In this case, client 1 should select quality 
level 4 and client 2 should select quality level 3 as the optimal 
qualities defined by the bandwidth manager. We do not employ 
a use case in which two clients can select the same quality 
level, because this is a specific case in reality, and dissimilarity 
between optimal quality levels represents a more general case. 

 HAS clients 
We used two Linux machines as HAS clients. We 

developed a simple player in each client that reproduces the 
behavior of the HAS player without decoding and displaying a 
video stream. 

V. EVALUATION OF THE RESULTS  

In this section, we evaluate the QoE between HTBM and 
RWTM. Accordingly, we define objective QoE metrics and 
three significant scenarios. 

A. QoE metrics 

In this paragraph, we define analytically three objective 
QoE metrics in accordance with Section I. For this purpose, we 
define in Table II the parameters to be used in this section.  

TABLE II.  PARAMETER DESCRIPTION 

Parameter Description 

i Discrete time index 

LC(i) Video quality level index of client C at time i 
LC(i) ϵ {0,1,2,3,4} 

LC,opt(i) Theoretical optimal value of LC(i) 

QC(i) Video encoding bitrate of client C at time i 

 

1) Instability of video quality level 
We employ a defined instability metric of FESTIVE [4], 

ISC(K); it measures the instability rate of client C for a test 
duration of K seconds: 

 

where w(i) = K-i is a weight function that adds a linear penalty 
to a more recent quality level switch. 

2) Infidelity to optimal quality level selection 
We define the infidelity metric IFC(k) of client C for a test 

duration of K seconds. It measures the portion of time during 
which the HAS client C requests optimal quality.  

 
3) Convergence speed 
We use the convergence speed metric described in [6]. It is 

defined as follows: 

 
 

This metric describes the duration of time that the player of 
HAS client C requires to reach a stable optimal quality level 
for at least T seconds for a test duration of K seconds. 

B. Scenarios 

 We define three scenarios that describe the concurrence 
between HAS clients in the home network. We used only two 
HAS clients because this setup is easy to analyze and is 
sufficient to show the behavior of the competition for 
avail_bw:  

1. Both clients start to play simultaneously and continue 
for 3 minutes. This scenario shows how clients 
compete. 

2. Client 1 starts to play, and after 30 seconds, the second 
client starts; both continue together for 150 seconds. 
This scenario shows how a transition from one client to 
two clients occurs.  

3. Both clients start to play simultaneously, and after 30 
seconds, we stop client 2; client 1 continues alone for 
150 seconds. This scenario shows how a transition 
from two clients to one takes place.  

The choice of test duration of 3 minutes has an objective to 
offer sufficient delay for players to stabilize.  

C. Results analysis 

In this section, we discuss the QoE measurements of the two 

shaping methods during the three scenarios, and we provide a 

more precise explanation of the observed results by showing 

the congestion window variation. 

1) Scenarios 1, 2 and 3 
For each scenario, we repeated each test 60 times, and we 

employed the average value of QoE metrics in our evaluation. 
The number of 60 runs was justified by the fact that the 
difference of the average results obtained after 40 runs and 60 
runs is lower than 6%. This observation was verified for all 
scenarios. Accordingly, using 60 tests is sufficient to yield 
statistically significant results. The average values of metrics 



    1: for i=1 to int(idle/RTO) do 

    2:   cwnd = max ( min ( cwnd , rwnd )/2, 1 MSS ) 

    3: end for 

 

are listed in Table III. We note that convergence speed metric 
is computed for scenarios 2 and 3 from 30 seconds instead of 
the beginning of the test, i.e., when the number of HAS clients 
changes. 

TABLE III.  PERFORMANCE METRIC MEASUREMENTS AVERAGE VALUES 

Scenario 1 2 3 Average 

Client 1 2 1 1 1 

Instability (%) 

ISc(k) 

W/o* 7.47 5.82 3.87 2.18 4.5 

HTBM 1.86 1.15 3.44 2.19 2.49 

RWTM 1.63 1.13 1.43 1.63 1.56 

Infidelity (%) 

IFC(k) 

W/o 50.46 36.93 67.36 13.94 43.92 

HTBM 20.45 4.47 32.09 18.49 23.95 

RWTM 5.02 2.61 3.42 4.81 4.42 

Convergence 

speed 

(seconds) 

VC,60(k) 

W/o DC** 92.81 DC 20.1 ----- 

HTBM 52.06 13.26 64.13 34.65 50.28 

RWTM 19.55 8.95 10.98 14.36 14.96 

*Without Shaping **Did not converge 

For all scenarios, we verified that the two shaping methods 
improved the QoE, except as noted. For the first scenario, the 
simultaneous playing of two clients involves better QoE 
measurements for client1 than client2. This behavior is 
expected because the bandwidth manager assigns lower 
optimal quality level (n° 3) for client 2 than client 1 (n° 4), 
which is easier to achieve. Moreover, we observe that RWTM 
has better QoE than HTBM, and the gap between 
measurements is higher for client 1. RWTM is 4 times more 
faithful to optimal quality level (IF=5.02% vs. 20.45%) and 
converges 2.6 times faster (V=19.55 s vs. 52.06 s) than HTBM.  

For the second scenario, we observe an improvement of 
QoE measurements of RWTM but a degradation of HTBM. 
This finding suggests that HTBM is highly disturbed by the 
increase of HAS clients from one to two clients.  

For the third scenario, we observe that the instability 
measurements of the three methods are similar. This result is 
expected because the client operates alone for 150 seconds, and 
therefore is easier to stabilize. Moreover, HTBM has the worst 
instability and convergence speed measurement. Additionally, 
RWTM maintains practically the same QoE measurements of 
scenario 1. 

 The last column of Table III indicates the average 
performance values of three scenarios related to client 1. We 
can conclude that RWTM is 37.3% more stable (IS=1.56% vs. 
2.49%), 5.41 times more faithful to optimal quality level 
(IF=4.42% vs. 23.95%), and has convergence that is 3.4 times 
faster (V=14.96 s vs. 50.28 s) than HTBM. We can conclude 
that the recommended gateway-based method to be used for 
improved user’s experience is RWTM. We provide an 
explanation of these results in the next subsection.  

2) Congestion window variation 
In order to explain the cause of these results, we used the 

tcp_probe module in the HAS server. This module shows the 
evolution of the congestion window, cwnd, and slow start 
threshold, ssthresh, during each test. We selected two tests that 
have the nearest QoE measurements of the first column of 
Table III related to HTBM and RWTM, respectively. We 
present the cwnd and ssthresh variation of the two tests in Fig. 
3 and 4. In the two figures, we indicate by a vertical bold 

dotted line the moment of convergence. We observe that this 
moment coincides with a considerably higher stability of 
ssthresh and higher stability of cwnd in the congestion 
avoidance phase. 

 
Fig. 3. Cwnd and ssthresh variation when using HTBM (IS=1.98% , 

IF=19.03%, V=33 s) 

 
Fig. 4. Cwnd and ssthresh variation when using RWTM (IS=1.78%, 

IF=5.5%, V=8 s) 

    In order to be accurate in our analyses, based on the CUBIC 

[11] congestion control algorithm used in the server and its 

source code tcp_cubic.c, we present some important value 

updates of cwnd  and ssthresh for different events: 

 Congestion event - we have two cases: 

o When three duplicated ACKs are received, the Fast 

Recovery / Fast Retransmit (FR/FR) phase reduces 

ssthresh and sets cwnd to ssthresh+3. Hence, cwnd 

remains in congestion avoidance phase. 

o When the retransmission timeout expires before 

receiving ACK of the lost packet, ssthresh is 

reduced, and cwnd is set to a small value and 

restarts from slow start phase.  

 Idle period: When the server sends a packet after an idle 

period that exeeds retransmission timeout (RTO), 

ssthresh is set to max(ssthresh, ¾ cwnd), and the 

cwnd value is computed as in Algorithm 1: 
 

 Algorithm 1 cwnd update after an idle period  

 

 
  

     where MSS is the maximum segment size. 

convergence 

convergence 



 In the context of HAS, an idle period coincides with an 
OFF period between two consecutive chunks. We denote by 
OFF* the OFF period whose duration exceeds RTO. 

     After convergence, with HTBM we have a high congestion 

rate: as presented in Fig. 3, the majority of congestions is 

caused by retransmission timeout. In contrast, with RWTM, 

congestion events are negligeable: only two visible 

congestions occur in Fig. 4. As a consequence, ssthresh 

becomes lower when using HTBM than when using RWTM: 

75 MSS in Fig. 3 vs. 110 MSS in Fig. 4. On the other hand, 

RWTM has frequent OFF* periods, with one OFF* period 

every 4.14 chunks, on average, unlike HTBM, which shows 

pratically no idle periods in Fig. 3. In Fig. 4, cwnd is divided 

by 8 after each OFF* period. Based on Algorithm 1, the 

OFF* period’s duration is included in the interval [3 RTO, 4 

RTO]. This observation leads us to compute the RTT variation 

between client 1 and server, RTT1-S, for each test. RTT1-S jumps 

from 100 ms to around 200 ms when using HTBM, as 

presented in black in Fig. 5. In contrast, when using RWTM, 

RTT1-S increases slightly and reaches approximately 120 ms, as 

presented in green in Fig. 5.  

 
Fig. 5. RTT1-S variation  

    Consequently, approximately 100 ms of queuing delay is 

generated by HTBM, in contrast to about 20 ms generated by 

RWTM. As result, on one hand, a large number of packets is 

buffered in the gateway queue when using HTBM, and that 

increases the congestion rate. On the other hand, the high 

queuing delay generated by HTBM has the advantage of 

reducing the frequency of OFF* periods by increasing RTO 

duration: the ratio (OFF*)/RTO is reduced. Even if an OFF* 

period occurs, based on Algorithm 1, the cwnd value will be 

divided, but will still be twice as high as when using RWTM. 

So, on one hand, HTBM delays packets considerably, 

which causes a high congestion rate and, by consequence, 

lower convergence speed, but it practically eliminates OFF* 

periods. On the other hand, RWTM does not generate 

congestions, but concerning OFF* periods, RWTM reduces 

their frequency but does not eliminate them. The cause is the 

non-exhaustive estimation of RTTC-S, i.e. limited to only one 

estimation per chunk, which may induce a low conformity of 

the shaping rate computation to the SHRC-S value defined by 

the bandwidth manager. 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we have conducted a comparative evaluation 

between two gateway-based shaping methods, HTBM and 

RWTM, employed to improve the HAS user’s experience 

(QoE). The use case is defined as HAS clients being located in 

the same home network and competing for bandwidth. We 

define the same bandwidth manager in the gateway, and we 

present the testbed and its parameters to permit an accurate 

comparison. By defining objective QoE criteria, the 

comparative evaluation shows that RWTM is more beneficial; 

it is 37.3% more stable, 5.41 times more faithful to optimal 

quality level, and converges 3.4 times faster to the optimal 

quality level than HTBM. The main explanation of this result 

is directly related to the additional queuing delay induced by 

HTBM to shape HAS traffic, while RWTM just reduces the 

advertised window of HAS clients and thus does not add 

significant queueing delay. 

However, RWTM estimates the round trip time between the 

client and the server, RTTC-S, once for every chunk. This leads 

us to inquire about the robustness of the shaping method 

against RTTC-S instability in wireless home networks. This is a 

very valuable aspect of our research that should be 

investigated in future work. 
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