
HAL Id: hal-01249805
https://hal.archives-ouvertes.fr/hal-01249805

Submitted on 3 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evaluation of Gateway-Based Shaping Methods for
HTTP Adaptive Streaming

Chiheb Ben Ameur, Emmanuel Mory, Bernard Cousin

To cite this version:
Chiheb Ben Ameur, Emmanuel Mory, Bernard Cousin. Evaluation of Gateway-Based Shaping Meth-
ods for HTTP Adaptive Streaming. 2015 IEEE International Conference on Communication Workshop
(ICCW 2015), Jun 2015, London, United Kingdom. pp.1777 - 1782, �10.1109/ICCW.2015.7247438�.
�hal-01249805�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49440467?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01249805
https://hal.archives-ouvertes.fr

Evaluation of Gateway-Based Shaping Methods

for HTTP Adaptive Streaming
Chiheb Ben Ameur

Orange Labs

Rennes, France

chiheb.benameur@orange.com

Emmanuel Mory

Orange Labs

Rennes, France

emmanuel.mory@orange.com

Bernard Cousin

IRISA, University of Rennes 1

Rennes, France

Bernard.Cousin@irisa.fr

Abstract— HTTP Adaptive Streaming (HAS) is a streaming

video technique commonly employed over best-effort networks.

However, it is characterized by some issues that harm its quality

of experience (QoE) in cases of daily use. The main use case of

the present investigation involves HAS clients competing for

bandwidth inside the same home network. Based on related

work, we found that one of the most convenient solutions for this

use case is to define a bandwidth manager, on the gateway side,

that divides the available home bandwidth between HAS clients.

Two main methods have previously been proposed to shape the

HAS streams in accordance with the bandwidth manager’s

direction and are referred to as gateway-based shaping methods:

a highly renowned method, Hierarchical Token Bucket Method

(HTBM), that uses the hierarchical token bucket queuing

discipline, and another method, Receive Window Tuning Method

(RWTM), that employs TCP flow control by handling only

acknowledgment TCP packets. In this paper, we compare these

two shaping methods. Results indicate that RWTM improves the

QoE better than HTBM and does not add queuing delay. Results

were validated through experimentation and objective QoE

analytical criteria.

Keywords— Traffic Shaping; Quality of Experience; HTTP

Adaptive Streaming; TCP Flow Control; Bandwidth Management

I. INTRODUCTION

HTTP Adaptive Streaming (HAS) is a streaming video
technique based on downloading video segments of short
playback duration, called chunks, from a HAS server to a HAS
client. Each chunk is encoded at multiple encoding bitrates,
also called video quality levels. After requesting a chunk using
an HTTP GET request message [1], the player on the client
side stores the chunk into a playback buffer. The player
operates in one of two states: Buffering State and Steady State.
During the Buffering-State, the player requests a set of chunks
consecutively until the playback buffer has been filled.
However, during the Steady State, the player requests the
chunks periodically to maintain a constant playback buffer
size. This periodicity creates periods of activity, called ON
periods [2], [3], followed by periods of inactivity, called OFF
periods [2], [3], without impacting the continuity of the video
playing. The player selects the quality level for each chunk by
estimating the available bandwidth during the previous ON
period.

The Quality of Experience (QoE) of HAS users can be
evaluated by three main criteria:

1- Video quality level stability [2], [6]: A frequent change of
video quality level bothers the user. Therefore, quality
level fluctuation should be avoided to improve the QoE.

2- Fidelity to optimal quality level selection: The user prefers
to watch the best quality level of video available.
Accordingly, the HAS player should select the optimal
quality level that has the highest feasible quality level
permitted by the available bandwidth.

3- Convergence speed [6]: The user prefers to achieve
watching the optimal quality level as soon as possible.
Therefore, the HAS player should efficiently select this
level. The player’s delay to attain the optimal quality level
is called the convergence speed [6].

 Video packets sent from the HAS server to the HAS client
pass through many network devices. Each device has one or
many queues, as well as an algorithm called a “queueing
discipline” that enables the scheduling of packets into the
queue. The queuing discipline also decides whether to buffer,
route or drop incoming packets to better manage the queue and
to avoid network congestion. Bottleneck points are most likely
to be located in the Digital Subscriber Line Access Multiplexer
(DSLAM) [12]. In fact, DSLAM may considerably reduce its
allocated bandwidth when it must divide it between many
subscribers (DSL routers). Accordingly, DSLAM is more
likely than other network devices to drop packets when the
backbone network is well-designed. To reduce network
congestions, the TCP protocol implements in the sender
machine a congestion control protocol that reduces the sending
rate when a congestion event is detected. However, this
reduction of bitrate may degrade QoE. Moreover, the ON-OFF
periods that characterize HAS players during the Steady-State
phase involve false estimations of the available bandwidth. In
fact, during the OFF periods, the player cannot estimate the
available bandwidth, which may change over time.
Furthermore, when HAS clients are connected to the same
DSL router, the bandwidth estimation becomes more difficult,
especially when the ON period of one HAS client coincides
with the OFF period of another HAS client, which leads to
bandwidth overestimation, congestions, and consequently, the
degradation of the QoE. As explained in [2], the competition
between HAS clients in a home network causes an instability
of quality level selection, unfairness between players, and
bandwidth underutilization.

 The objective of the present study is to improve the user’s
experience (QoE) when HAS clients compete for available
home bandwidth. Our methodology involves comparing
between proposed methods, mainly gateway-based methods,
by using three objective metrics of QoE in accordance with the
description provided above. The remainder of this paper is
organized as follows. In Section II, we describe and critique

recent works addressing related methods. In Section III, we
define a well-optimized bandwidth manager and describe the
gateway-based shaping method Receive Window Tuning
Method (RWTM) [13]. Section IV presents the experimental
implementation that was used. Section V provides a detailed
evaluation of results. In Section VI, we conclude the paper and
suggest future directions to extend this work.

II. RELATED WORK

Many research studies have been conducted to improve the
QoE when several HAS clients are located in the same home
network. The methodology most often employed involved
avoiding false estimations of the available bandwidth during
ON periods in order to more effectively select the video quality
level. Three types of solutions were proposed to improve HAS
user QoE: client-based, server-based and gateway-based
solutions. These differ with respect to the device in which the
solution is implemented. Below, we cite relevant methods for
each type of solution:

- One of the recent client-based solutions is proposed in the
FESTIVE method [4]. It randomizes the events of chunk
requests inside the player in order to reduce the periodicity
of ON periods. Consequently, most of the incorrect
estimations of bandwidth could be avoided when several
HAS clients competed for bandwidth. However, this
method is not efficient enough to prevent all incorrect
estimations. Moreover, FESTIVE does not provide
coordination between HAS clients, which is required to
further improve bandwidth estimations and QoE.

- The authors of [5] propose a server-based method: it
consists of detecting the oscillation between quality levels
on the server side and deciding which optimal quality level
must be selected. Although this method improves the QoE,
it cannot conveniently respond to the typical use cases of
many HAS servers. Moreover, it requires an additional
processing task, which becomes burdensome when many
HAS clients are demanding video contents from the same
HAS server.

- The gateway-based solution consists of employing a
bandwidth manager in the gateway that divides the
available bandwidth between the HAS clients. The
bandwidth manager defines a shaping rate for each HAS
client based on the manifest files that define the available
quality levels for each HAS session. Then, this manager
shapes the sending bitrate for each client. This solution is
more convenient than client-based and server-based
solutions because the gateway can acquire information
about the HAS traffic of all clients of the same home
network, which is not possible for the server or the client.
Additionally, the gateway-based solution does not require
changes in the implementations of the player or the server.

 One of the recent gateway-based solutions was proposed in
the HTB shaping Method (HTBM) [6]. It employs the
bandwidth manager with a specific shaping method, the
“Hierarchical Token Bucket” (HTB) queuing discipline. It uses
one link, designated as the parent class, to emulate several
slower links, designated as the children classes, and to send
different kinds of traffic on different emulated links. HTB also
employs the “tokens and buckets” concept together with the

class-based system, to achieve better control over traffic and
for shaping in particular [14]. A fundamental part of the HTB
queuing discipline is the “borrowing mechanism”: children
classes borrow tokens from their parent once they have
exceeded the shaping rate. A child class will continue to try to
borrow until it reaches a defined threshold of shaping, at which
point it will begin to queue packets that will be transmitted
when more tokens become available. HTBM considers each
HAS stream as a child class. Accordingly, it enables shaping
by delaying packets received from a HAS server. The authors
of [6] indicate that HTBM improves the user’s QoE; features
that are enhanced include stability of video quality level,
fidelity to optimal quality level, and convergence speed.

Our proposed method, Receive Window Tuning Method
(RWTM) [13], was also integrated in the gateway due to the
convenience of gateway-based solutions, described above. It is
based on TCP flow control to define the shaping rate for each
HAS client in accordance with the bandwidth manager’s
directions. Knowing that the sending rate of a given TCP
session is bounded by the amount min(rwnd, cwnd)/RTT,
where rwnd is the receiver’s advertised window, cwnd is the
congestion window of the sender, and RTT is the round trip
time between the sender and the receiver, RWTM consists of
limiting the rwnd of the HAS client so that the shaping rate of
the bandwidth manager will be equal to rwnd/RTT. The
methodology of RWTM involves acquiring the shaping rate
value, SHR, from the bandwidth manager, to estimate the RTT
value and to modify the rwnd of each HAS client in the
gateway to be equal to SHR×RTT. The modification of rwnd is
ensured in the gateway by modifying the rwnd field of each
TCP acknowledgment (ACK) packet sent from a HAS client to
the HAS server. The modification of rwnd and the estimation
of RTT will be described in detail in Subsect. III-B. The
investigations of [13] have demonstrated that RWTM improves
QoE. The objective of this paper is to compare the two
gateway-based shaping methods, HTBM and RWTM, by using
an identical well-chosen bandwidth manager that is intended to
define the optimal quality level for each HAS client.

III. BANDWIDTH MANAGEMENT ALGORITH

AND RWTM DESCRIPTION

In this section, we describe the bandwidth manager that
defines the shaping rate for HAS clients in accordance with the
optimal quality level definition used for QoE metrics in Section
I. We next provide a more accurate description of the RWTM
method. For this purpose, we define in Table I the parameters
that are used in this section.

TABLE I. DESCRIPTION OF PARAMETERS

Parameter Description

avail_bw Available bandwidth in home network for HAS streams

N
Total number of active HAS clients connected to the
home network

C HAS client index, C ϵ {1,…,N}

l Video quality level index, or profile index

Rl
Rate of the lth profile index; 10% higher than the profile
encoding rate

SHRC-S
The shaping rate for the HAS stream requested by the

client C from the server S

RTTC-S The round-trip time between client C and server S

rwndC-S
The rwnd value defined by RWTM in the TCP ACK

packet sent from client C to server S

A. Bandwidth management algorithm

 The bandwidth manager is the fundamental component of
the gateway-based solution. It uses as inputs three parameters:
the avail_bw, N, and the manifest file of each HAS stream that
defines profile encoding rates. Then, it computes the shaping
rate for each HAS client as indicated in equation (1):

 SHRC-S is chosen in a manner that enables the players to
select optimal quality levels by ensuring both the fairest share
of avail_bw between HAS clients and the maximum use of
avail_bw. This choice necessitates that if the fair share of
avail_bw according to {max(Rl) | Rl ≤ avail_bw/N} involves
avail_bw underutilization, and if the unused portion of
avail_bw enables one or more HAS clients to switch to a
higher quality level, the bandwidth manager will allow it.

 The bandwidth manager is sufficiently sophisticated to be
able to update the number of active connected HAS clients in
the home gateway, N, by sniffing the SYN and FIN flags in the
headers of TCP packets. We also assume that it is capable of
estimating the avail_bw and updating its value over time.
Accordingly, the manager updates the shaping rate when any
change occurs.

B. Receive Window Tuning Method description

1) Constant RTT
 When RTTC-S is stationary, the definition of rwndC-S will
depend only on SHRC-S after the first estimation of RTTC-S.
Accordingly, computing RTTC-S in the three-way handshake
phase of the TCP connection before data transfer, as proposed
in [9], will be sufficient for RWTM processing. However, the
authors of SABRE [7] reveal that during the ON period of a
HAS stream, the RTTC-S value increases. This is caused by the
queuing delay in the home gateway. In fact, the reception of
many bursts of video packets fills the queue at the gateway,
which causes new packets to experience long delays until the
queue is drained. Thus, in order to improve the estimation of
RTTC-S during the ON period, we multiply it by a weight
empirical constant μ (μ >1) as shown in equation (2):

 RTT*C-S = μ× RTTC-S (2)

Hence, an improved definition of rwndC-S is proposed in
equation (3): rwndC-S = SHRC-S × RTT*C-S (3)

2) General case: variable RTT
 When RTTC-S becomes variable over time, RWTM should
update the rwndC-S value to maintain the same shaping rate as
described in equation (4):

 rwndC-S(t) = SHRC-S × RTT*C-S (t) (4)

 The gateway may have to compute the RTTC-S value
exhaustively. Since this may be a heavy processing task, our
idea consists of only estimating RTTC-S from packets sent by
the HAS client: this is called passive estimation of RTT [10].
As a result, we define two parameters, RTTG-S and RTTC-G,
which are the round trip time between the home gateway and
the HAS server, and the round trip time between the HAS
client and the gateway, respectively. Since all packets

circulating between the HAS client and HAS server pass
through the home gateway, we can provide the following
equation:

 RTTC-S ≈ RTTC-G + RTTG-S (5)

RTTC-S estimation is only possible when the HAS client
sends a HTTP GET request message, as illustrated in Fig. 1. In
fact, the HAS client will receive the HTTP response message
after one RTTC-S and will immediately send an ACK packet.
The time difference between the HTTP GET request message
and the first ACK message in the home gateway is close to the
RTTC-S value because it satisfies equation (5).

Fig. 1. RTTC-S estimation in the home gateway

 Accordingly, the home gateway will be able to estimate
RTTC-S at the beginning of each chunk request. Then, it applies
equations (2) and (4) to update the rwndC-S value.

IV. EXPERIMENTAL IMPLEMENTATION

 We propose a testbed architecture, presented in Fig. 2, that
emulates our use case described in Section I. The choice of
only two clients is sufficient to demonstrate the behavior of the
concurrence between many HAS flows in the same home
network. In this paragraph, we describe the configurations of
each component presented in Fig. 2:

Fig. 2. Architecture used in testbed

 HAS server
 The HAS server is modeled by an HTTP/1.1 Apache Server
installed on a Linux machine operating on Debian version 3.2.
It employs CUBIC [11] as its TCP congestion control
algorithm. All tests use five video quality levels denoted by 0,
1, 2, 3 and 4. Their encoding rates are constant and equal to
248 kbps, 456 kbps, 928 kbps, 1,632 kbps, and 4,256 kbps,
respectively. The playback duration of a chunk is 2 seconds.

 Best-effort network
 The best-effort network is characterized by the presence of
network devices to route packets. The round trip time RTTC-S(t)
in a best-effort network is modeled by equation (6) in [8] as
follows:

 RTTC-S (t) = aC-S + q(t)/ς (6)

where aC-S is a fixed propagation delay between client C and
server S; q(t) is the queue length of a single congested router,
which is the home gateway in our use case; and ς is the

transmission capacity of the router. Indeed, q(t)/ς models the
queuing processing delay.

To comply with equation (6), we used the normal
distribution with a mean value aC-S and a standard deviation
equal to 0.07.aC-S. The standard deviation emulates the queuing
processing delay q(t)/ς. This emulation is accomplished by
using the “netem delay” parameter of the traffic controller tool
in the gateway machine interfaces.

 Home gateway
We consider the two connected components, DSL router

and DSLAM, as unique equipment called the home gateway.
The emulated home gateway consists of a Linux machine
configured as a network bridge to forward packets between the
home network and the best-effort network. We emulate the
queuing discipline of DSLAM by using two 64-packet-size
FIFO subqueues. In the gateway, we implemented the
bandwidth manager as described in Subsect III-A. The two
shaping methods, HTBM and RWTM, are implemented in this
gateway, and they shape bandwidth in accordance with the
bandwidth manager’s decisions, as described in Sections II and
III. The weight constant µ of equation (2) employed by RWTM
is chosen empirically and is equal to µ =1.275.

 Home network
In the modeled home network, the clients are connected to

the gateway. The bandwidth is limited to 8 Mbps. We selected
this value because it is lower than twice the video encoding
bitrate of the highest quality level. As a result, two clients in
the home network cannot easily select the highest quality level
at the same time. In this case, client 1 should select quality
level 4 and client 2 should select quality level 3 as the optimal
qualities defined by the bandwidth manager. We do not employ
a use case in which two clients can select the same quality
level, because this is a specific case in reality, and dissimilarity
between optimal quality levels represents a more general case.

 HAS clients
We used two Linux machines as HAS clients. We

developed a simple player in each client that reproduces the
behavior of the HAS player without decoding and displaying a
video stream.

V. EVALUATION OF THE RESULTS

In this section, we evaluate the QoE between HTBM and
RWTM. Accordingly, we define objective QoE metrics and
three significant scenarios.

A. QoE metrics

In this paragraph, we define analytically three objective
QoE metrics in accordance with Section I. For this purpose, we
define in Table II the parameters to be used in this section.

TABLE II. PARAMETER DESCRIPTION

Parameter Description

i Discrete time index

LC(i) Video quality level index of client C at time i
LC(i) ϵ {0,1,2,3,4}

LC,opt(i) Theoretical optimal value of LC(i)

QC(i) Video encoding bitrate of client C at time i

1) Instability of video quality level
We employ a defined instability metric of FESTIVE [4],

ISC(K); it measures the instability rate of client C for a test
duration of K seconds:

where w(i) = K-i is a weight function that adds a linear penalty
to a more recent quality level switch.

2) Infidelity to optimal quality level selection
We define the infidelity metric IFC(k) of client C for a test

duration of K seconds. It measures the portion of time during
which the HAS client C requests optimal quality.

3) Convergence speed
We use the convergence speed metric described in [6]. It is

defined as follows:

This metric describes the duration of time that the player of
HAS client C requires to reach a stable optimal quality level
for at least T seconds for a test duration of K seconds.

B. Scenarios

 We define three scenarios that describe the concurrence
between HAS clients in the home network. We used only two
HAS clients because this setup is easy to analyze and is
sufficient to show the behavior of the competition for
avail_bw:

1. Both clients start to play simultaneously and continue
for 3 minutes. This scenario shows how clients
compete.

2. Client 1 starts to play, and after 30 seconds, the second
client starts; both continue together for 150 seconds.
This scenario shows how a transition from one client to
two clients occurs.

3. Both clients start to play simultaneously, and after 30
seconds, we stop client 2; client 1 continues alone for
150 seconds. This scenario shows how a transition
from two clients to one takes place.

The choice of test duration of 3 minutes has an objective to
offer sufficient delay for players to stabilize.

C. Results analysis

In this section, we discuss the QoE measurements of the two

shaping methods during the three scenarios, and we provide a

more precise explanation of the observed results by showing

the congestion window variation.

1) Scenarios 1, 2 and 3
For each scenario, we repeated each test 60 times, and we

employed the average value of QoE metrics in our evaluation.
The number of 60 runs was justified by the fact that the
difference of the average results obtained after 40 runs and 60
runs is lower than 6%. This observation was verified for all
scenarios. Accordingly, using 60 tests is sufficient to yield
statistically significant results. The average values of metrics

 1: for i=1 to int(idle/RTO) do

 2: cwnd = max (min (cwnd , rwnd)/2, 1 MSS)

 3: end for

are listed in Table III. We note that convergence speed metric
is computed for scenarios 2 and 3 from 30 seconds instead of
the beginning of the test, i.e., when the number of HAS clients
changes.

TABLE III. PERFORMANCE METRIC MEASUREMENTS AVERAGE VALUES

Scenario 1 2 3 Average

Client 1 2 1 1 1

Instability (%)

ISc(k)

W/o* 7.47 5.82 3.87 2.18 4.5

HTBM 1.86 1.15 3.44 2.19 2.49

RWTM 1.63 1.13 1.43 1.63 1.56

Infidelity (%)

IFC(k)

W/o 50.46 36.93 67.36 13.94 43.92

HTBM 20.45 4.47 32.09 18.49 23.95

RWTM 5.02 2.61 3.42 4.81 4.42

Convergence

speed

(seconds)

VC,60(k)

W/o DC** 92.81 DC 20.1 -----

HTBM 52.06 13.26 64.13 34.65 50.28

RWTM 19.55 8.95 10.98 14.36 14.96

*Without Shaping **Did not converge

For all scenarios, we verified that the two shaping methods
improved the QoE, except as noted. For the first scenario, the
simultaneous playing of two clients involves better QoE
measurements for client1 than client2. This behavior is
expected because the bandwidth manager assigns lower
optimal quality level (n° 3) for client 2 than client 1 (n° 4),
which is easier to achieve. Moreover, we observe that RWTM
has better QoE than HTBM, and the gap between
measurements is higher for client 1. RWTM is 4 times more
faithful to optimal quality level (IF=5.02% vs. 20.45%) and
converges 2.6 times faster (V=19.55 s vs. 52.06 s) than HTBM.

For the second scenario, we observe an improvement of
QoE measurements of RWTM but a degradation of HTBM.
This finding suggests that HTBM is highly disturbed by the
increase of HAS clients from one to two clients.

For the third scenario, we observe that the instability
measurements of the three methods are similar. This result is
expected because the client operates alone for 150 seconds, and
therefore is easier to stabilize. Moreover, HTBM has the worst
instability and convergence speed measurement. Additionally,
RWTM maintains practically the same QoE measurements of
scenario 1.

 The last column of Table III indicates the average
performance values of three scenarios related to client 1. We
can conclude that RWTM is 37.3% more stable (IS=1.56% vs.
2.49%), 5.41 times more faithful to optimal quality level
(IF=4.42% vs. 23.95%), and has convergence that is 3.4 times
faster (V=14.96 s vs. 50.28 s) than HTBM. We can conclude
that the recommended gateway-based method to be used for
improved user’s experience is RWTM. We provide an
explanation of these results in the next subsection.

2) Congestion window variation
In order to explain the cause of these results, we used the

tcp_probe module in the HAS server. This module shows the
evolution of the congestion window, cwnd, and slow start
threshold, ssthresh, during each test. We selected two tests that
have the nearest QoE measurements of the first column of
Table III related to HTBM and RWTM, respectively. We
present the cwnd and ssthresh variation of the two tests in Fig.
3 and 4. In the two figures, we indicate by a vertical bold

dotted line the moment of convergence. We observe that this
moment coincides with a considerably higher stability of
ssthresh and higher stability of cwnd in the congestion
avoidance phase.

Fig. 3. Cwnd and ssthresh variation when using HTBM (IS=1.98% ,

IF=19.03%, V=33 s)

Fig. 4. Cwnd and ssthresh variation when using RWTM (IS=1.78%,

IF=5.5%, V=8 s)

 In order to be accurate in our analyses, based on the CUBIC

[11] congestion control algorithm used in the server and its

source code tcp_cubic.c, we present some important value

updates of cwnd and ssthresh for different events:

 Congestion event - we have two cases:

o When three duplicated ACKs are received, the Fast

Recovery / Fast Retransmit (FR/FR) phase reduces

ssthresh and sets cwnd to ssthresh+3. Hence, cwnd

remains in congestion avoidance phase.

o When the retransmission timeout expires before

receiving ACK of the lost packet, ssthresh is

reduced, and cwnd is set to a small value and

restarts from slow start phase.

 Idle period: When the server sends a packet after an idle

period that exeeds retransmission timeout (RTO),

ssthresh is set to max(ssthresh, ¾ cwnd), and the

cwnd value is computed as in Algorithm 1:

 Algorithm 1 cwnd update after an idle period

 where MSS is the maximum segment size.

convergence

convergence

 In the context of HAS, an idle period coincides with an
OFF period between two consecutive chunks. We denote by
OFF* the OFF period whose duration exceeds RTO.

 After convergence, with HTBM we have a high congestion

rate: as presented in Fig. 3, the majority of congestions is

caused by retransmission timeout. In contrast, with RWTM,

congestion events are negligeable: only two visible

congestions occur in Fig. 4. As a consequence, ssthresh

becomes lower when using HTBM than when using RWTM:

75 MSS in Fig. 3 vs. 110 MSS in Fig. 4. On the other hand,

RWTM has frequent OFF* periods, with one OFF* period

every 4.14 chunks, on average, unlike HTBM, which shows

pratically no idle periods in Fig. 3. In Fig. 4, cwnd is divided

by 8 after each OFF* period. Based on Algorithm 1, the

OFF* period’s duration is included in the interval [3 RTO, 4

RTO]. This observation leads us to compute the RTT variation

between client 1 and server, RTT1-S, for each test. RTT1-S jumps

from 100 ms to around 200 ms when using HTBM, as

presented in black in Fig. 5. In contrast, when using RWTM,

RTT1-S increases slightly and reaches approximately 120 ms, as

presented in green in Fig. 5.

Fig. 5. RTT1-S variation

 Consequently, approximately 100 ms of queuing delay is

generated by HTBM, in contrast to about 20 ms generated by

RWTM. As result, on one hand, a large number of packets is

buffered in the gateway queue when using HTBM, and that

increases the congestion rate. On the other hand, the high

queuing delay generated by HTBM has the advantage of

reducing the frequency of OFF* periods by increasing RTO

duration: the ratio (OFF*)/RTO is reduced. Even if an OFF*

period occurs, based on Algorithm 1, the cwnd value will be

divided, but will still be twice as high as when using RWTM.

So, on one hand, HTBM delays packets considerably,

which causes a high congestion rate and, by consequence,

lower convergence speed, but it practically eliminates OFF*

periods. On the other hand, RWTM does not generate

congestions, but concerning OFF* periods, RWTM reduces

their frequency but does not eliminate them. The cause is the

non-exhaustive estimation of RTTC-S, i.e. limited to only one

estimation per chunk, which may induce a low conformity of

the shaping rate computation to the SHRC-S value defined by

the bandwidth manager.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have conducted a comparative evaluation

between two gateway-based shaping methods, HTBM and

RWTM, employed to improve the HAS user’s experience

(QoE). The use case is defined as HAS clients being located in

the same home network and competing for bandwidth. We

define the same bandwidth manager in the gateway, and we

present the testbed and its parameters to permit an accurate

comparison. By defining objective QoE criteria, the

comparative evaluation shows that RWTM is more beneficial;

it is 37.3% more stable, 5.41 times more faithful to optimal

quality level, and converges 3.4 times faster to the optimal

quality level than HTBM. The main explanation of this result

is directly related to the additional queuing delay induced by

HTBM to shape HAS traffic, while RWTM just reduces the

advertised window of HAS clients and thus does not add

significant queueing delay.

However, RWTM estimates the round trip time between the

client and the server, RTTC-S, once for every chunk. This leads

us to inquire about the robustness of the shaping method

against RTTC-S instability in wireless home networks. This is a

very valuable aspect of our research that should be

investigated in future work.

REFERENCES

[1] W. Van Lancker et al. "HTTP Adaptive Streaming with Media Fragment
URIs". IEEE Intl. Conf. on Multimedia and Expo (ICME), 2011.

[2] S. Akhshabi, et al.. "What Happens when HTTP Adaptive Streaming
Players Compete for Bandwidth?." ACM workshop on Network and
Operating System Support for Digital Audio and Video, 2012.

[3] BJ. Villa and PE. Heegaard. "Group Based Traffic Shaping for Adaptive
HTTP Video Streaming by Segment Duration Control." Advanced
Information Networking and Applications (AINA), 2013.

[4] J. Jiang, V. Sekar, and H. Zhang. "Improving Fairness, Efficiency, and
Stability in HTTP-Based Adaptive Video Streaming with Festive,"
IEEE/ACM transactions on networking, VOL. 22, NO . 1, Feb 2014.

[5] S. Akhshabi, et al. "Server-based Traffic Shaping for Stabilizing
Oscillating Adaptive Streaming Players." ACM Workshop on Network
and Operating Systems Support for Digital Audio and Video, 2013.

[6] R. Houdaille and S. Gouache. "Shaping HTTP Adaptive Streams for a
Better User Experience." ACM Multimedia Systems Conference, 2012.

[7] A. Mansy, B. Ver Steeg, and M. Ammar. "SABRE: A Client Based
Technique for Mitigating the Buffer Bloat Effect of Adaptive Video
Flows." The 4th ACM Multimedia Systems Conference, 2013.

[8] V. Misra, W. Gong, and D. Towsley. "Fluid-based Analysis of a
Network of AQM Routers Supporting TCP Flows with an Application
to RED." In ACM SIGCOMM Computer Communication Review, 2000

[9] S. Wan and Y. Hao. “Research on TCP Optimization Strategy of
Application Delivery Network”, IEEE Intelligent Computation and Bio-
Medical Instrumentation (ICBMI), 2011

[10] H. Jiang and C. Dovrolis "Passive Estimation of TCP Round-trip
Times." ACM SIGCOMM Computer Communication Review 32, 2002.

[11] S. Han I Rhee and L Xu. "CUBIC: a New TCP-friendly High-speed
TCP variant." ACM SIGOPS Operating Systems Review 42, 2008.

[12] L. Stewart et al. "Multimedia-unfriendly TCP Congestion Control and
Home Gateway Queue Management," ACM conference on Multimedia
systems, 2011.

[13] C. Ben Ameur, E. Mory and B. Cousin, “Shaping HTTP Adaptive
Streams Using Receive Window Tuning Method in Home Gateway”,
The 33rd IEEE International Performance Computing and
Communications Conference (IPCCC). Dec. 2014.

[14] Martin A. Brown, Traffic Control HOWTO, at http://linux-
ip.net/articles/Traffic-Control-HOWTO. 2006.

