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Abstract

Mathematical models are expected to play a pivotal role for driving microalgal produc-

tion towards a profitable process of renewable energy generation. To render models of

microalgae growth useful tools for prediction and process optimization, reliable parame-

ters need to be provided. This reliability implies a careful design of experiments that can

be exploited for parameter estimation. In this paper, we provide guidelines for the design

of experiments with high informative content based on optimal experiment techniques to

attain an accurate parameter estimation. We study a real experimental device devoted

to evaluate the effect of temperature and light on microalgae growth. On the basis of a

mathematical model of the experimental system, the optimal experiment design problem

was formulated and solved with both static (constant light and temperature) and dynamic

(time varying light and temperature) approaches. Simulation results indicated that the

optimal experiment design allows for a more accurate parameter estimation than that

provided by the existing experimental protocol. For its efficacy in terms of the maximum

likelihood properties and its practical aspects of implementation, the dynamic approach

is recommended over the static approach.
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1. Introduction1

Microalgae have received a specific attention in the framework of renewable energy2

generation [1]. However, optimizing productivity in large scale systems is a difficult task3

since microalgae growth is driven by multiple factors including light intensity, tempera-4

ture and pH [2]. Mathematical modelling is thus required for quantifying the effect of5

environmental factors on microalgae dynamics.6

In order to obtain reliable models that can be used in prediction and optimization of7

large scale systems, the model calibration stage requires carefully designed experiments8

with high informative content. Providing accurate parameters is indeed crucial since9

model-based optimality might be sensitive to parameters values as shown in [3]. More-10

over, assessing the effect of operational factors via sensitivity analysis can provide useful11

information for improving configuration design of photobioreactors [4].12

Looking for high informative experiments is the objective of optimal experiment design13

(OED) for parameter estimation. Extensive work has been done for tackling the OED14

problem for dynamical systems (see, e.g., [5, 6, 7, 8]). The OED problem can be formulated15

as an optimal control problem. For low dimension models, analytical solutions may be16

obtained by the application of Pontryagin’s Maximum Principle, which provides necessary17

conditions to be satisfied by the optimal inputs (see,e.g. [9]). When model complexity18

increases, analytical solutions are arduous to obtain and thus the solution of the OED19

problem relies on numerical optimization techniques (see,e.g. [10, 11]).20

When dealing with biological systems, OED approaches are based either on static or21

dynamic experiments (see, e.g., [12, 13]). In this work, we analyze these two strategies22

and capitalize the available tools for OED to provide guidelines for the design of optimal23

experiments that allow an efficient assessment of the effect of temperature and light on24

microalgae growth. The model under investigation represents a real experimental device25

used to assess optimal growth conditions under batch mode. This device is operated at26

IFREMER Nantes, France.27

The paper is organized as follows. Section 2 presents the system under study and its28
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mathematical description, which corresponds to a simplified model of microalgae growth.29

The OED framework based on this model is detailed in Section 3. In Section 4 we show30

the results of solving the OED problem. Two strategies are analyzed, namely static and31

dynamic approaches. Furthermore, we discuss about the relevance of OED for model-32

driven decisions on raceway performance. For that, we make use of a local sensitivity33

analysis of a more complex model describing microalgae growth in an outdoor pond. In34

Appendix A, we discuss about the structural and practical identifiability of the model.35

The main conclusions of the study are summarized in Section 5.36

2. Modelling37

We focus our study on the effect of temperature and light on the growth of microalgae.38

More precisely, we aim at designing efficient experimental protocols for a real experimental39

system that allow an accurate estimation of the model parameters. The experimental40

apparatus, named the TIP (Fig. 1), consists of 18 batch photobioreactors located inside41

an incubator (see [14] for more details). In each photobioreactor, it is possible to regulate42

the temperature, pH and light intensity.43

Following the models developed for microalgae growth [15, 16], we study here a sim-44

plified model of microalgae growth under the hypotheses that the experiment is carried45

out at low cellular concentrations and under conditions of non-limiting nutrients. The46

first hypothesis implies that light is homogeneous along the depth of the photobioreactor.47

The second hypothesis implies that the cells grow in exponential phase. The resulting48

mass balance equation on the TIP system reads49

ẋ = f(x, θ, I, T, t) = µ(θ, I, T )x, x(0) = x0, (1)

with x the biomass concentration, I the light intensity and T the temperature in the50

reactor, θ the parameter vector and µ(·) the specific growth rate µ(·) defined by51

µ(θ, I, T ) = µmaxφIφT . (2)

with µmax the maximal specific growth rate. The factors φI , φT , detailed below, represent52

the effects of light and temperature on microalgae growth.53
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Temperature has a homogeneous effect on uptake and growth rates [17]. The effect of54

temperature is described by the cardinal model developed for bacteria [18] and validated55

for microalgae [16].56

φT =





0, T < Tmin

(T −Tmax)(T −Tmin)2

(Topt−Tmin)[(Topt−Tmin)(T −Topt)−(Topt−Tmax)(Topt+Tmin−2T )]
, T ∈ [Tmin, Tmax]

0, T > Tmax.

(3)

The effect of light (φI) on microalgae growth is often represented by a Haldane type57

kinetics that accounts for photoinhibition [19]. The following parameterization of the58

standard Haldane equation is used [16]59

φI =
I

I + µmax

α

(
I

Iopt
− 1

)2 , (4)

where α is the initial slope of the growth response curve w.r.t. light.60

In terms of practical identifiability properties, Eq. (4) excels the standard Haldane61

kinetics. For a brief discussion, the reader is referred to Appendix A.62

The above equations implies that microalgae exhibit a maximal growth rate at optimal63

conditions of light (Iopt) and temperature (Topt).64

The model is then determined by the parameter vector θ

θ = [µmax, α, Iopt, Tmin, Tmax, Topt].

In the next Section, we tackle the OED problem locally, that is the design of op-65

timal experiments is carried out on the basis of nominal values θ̂. Table 1 shows the66

nominal values of the model parameters used in this study. They correspond to the mi-67

croalgae Isochrysis aff. galbana, currently named as Tisochrysis lutea [20]. Parameter68

values were mainly obtained from [3] and [21]. The temperature parameters are those69

of Nannochloropsis oceanica [16] whose maximal and optimal temperatures are close to70

those of Tisochrysis lutea [22].71
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3. OED problem for parameter estimation72

The problem of OED for parameter estimation consists in designing an experimental73

protocol that provides data with high informative content to allow an accurate identifica-74

tion of the model parameters, that is to provide estimates with small confidence intervals.75

Classical approaches of OED for parameter estimation rely on the optimization of a scalar76

function of the Fisher information matrix (FIM), since this matrix is the core for the cal-77

culation of the confidence intervals of the parameter estimates (see, e.g., [6], [8]). Recent78

approaches such as the Sigma Point Method have been proposed to estimate parameter79

uncertainty without the explicit calculation of the FIM [23]. Here, we will focus on the80

classical approach.81

Let us recall some basic principles of parameter identification. We consider here a local82

design approach. Our aim is to design optimal experiments on the basis of the nominal83

parameter vector θ̂. We first assume that the ith measurement (observation) yi of our84

experiment is modelled as:85

yi = ymi
(θ∗) + ε, (5)

where ymi
(θ∗) is the deterministic output of the model and θ∗ the true value of the pa-86

rameter vector. The measurement error ε is here assumed to follow a normal distribution87

ε ∼ N(0, σ2). Note that (5) implies that a deterministic model is available and represents88

adequately the system. Moreover, the model structure must be structurally identifiable.89

In Appendix A, structural identifiability of the model is checked.90

The maximum likelihood (ML) estimate θ̂ of θ minimizes the cost function91

J(θ) =
1

σ2
s

n∑

i=1

(yi − ymi
(θ))2, (6)

with n the number of data points.92

The covariance matrix P̂ of θ̂ can be approximated to93

P̂ = F−1(θ̂), (7)

where F is the Fisher information matrix. An estimate of the standard deviation of θ̂j is94

given by95

ηj =
√

P̂jj. (8)
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We will be then interested in designing an experiment that render ηj small.96

In our case study, we aim at determining optimal profiles (or levels) of temperature97

(T ) and light intensity (I) for attaining an accurate estimation of parameters. Optimal98

experiments are built w.r.t. the D-optimality criterion, which maximizes the determinant99

of the FIM. Maximizing the determinant implies minimizing the volume of the confidence100

ellipsoids for the parameters [6].101

By means of simulations, we tested also other optimality criteria, namely E-optimality102

(maximization of the smallest eigenvalue of the FIM) and modified E-optimality ((min-103

imization of the condition number of the FIM)). D-optimality provided the best results104

in terms of the volume of the confidence ellipsoids. Therefore, we chose D-optimality as105

criterion of optimal design. Interestingly, the modified E-optimality criterion resulted in106

large confidence intervals. Indeed, it has been noted that since the modified E-optimality107

criterion is a criterion of shape of the ellipsoids, it is possible to obtain circular confidence108

regions with large volumes [24].109

It should be noted that the performance of the obtained optimal experiment strongly110

depend on the nominal values of the estimates of the parameter vector. Ideally, θ̂ should111

be as close as possible to θ∗. In our case study, the nominal values of the parameters112

used are expected to be close to the true values, since the selection of priors was based113

on published experimental studies.114

The OED problem is tackled by means of two strategies, namely dynamic and static115

approaches, which are detailed in the following.116

3.1. Dynamic approach117

The OED by the dynamic approach is directly applied on the dynamic (primary)118

model (1). Here, the temperature and light intensity can be set to vary in time.119

For the dynamic approach, the FIM reads as follows120

Fd(θ̂) =
2

σ2
d

ne∑

k=1

nt∑

i=1

[
∂ymk,i

∂θ

]T

θ̂

[
∂ymk,i

∂θ

]

θ̂

=
2

σ2
d

M̂d, (9)

with nt the number of sampling times. Here, ymk,i
is the biomass concentration predicted121

by the model (1) for the kth experiment at the ith time and σ2
d is the noise variance of the122
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measurement of biomass concentration. M̂d is the matrix resulting from the summation123

term. This formulation is made for facilitating further discussion. The terms in brackets124

in (9) contains the local sensitivities of the model output w.r.t. the parameter vector θ.125

The sensitivity functions were computed automatically with the Matlab Toolbox IDEAS126

[25]. The toolbox is devoted to estimate parameters of ODE models. It uses symbolic127

differentiation to calculate the sensitivity functions for the evaluation of the FIM.128

An approximate noise variance σ2
d = 9.31 was calculated from the data reported in129

[26] and the mathematical model developed in [27].130

The OED problem is defined as131

min
ϕd

Det (F) , (10)

with ϕd the design vector132

ϕd = [T1(t), I1(t), . . . , T (t)ne
, I(t)ne

] ,

such that

TL = 12 ≤ Tk(t) ≤ TU = 33.2◦C

IL = 20 ≤ Ik(t) ≤ IU = 1200 µE m−2s−1

ṪL = −5 ≤ Ṫk(t) ≤ ṪU = 15◦C,

(11)

with ne the number of distinct experiments. We set ne = 9 with duplicate experiments.133

The boundaries in (11) correspond to the physical boundaries of the TIP system. Note134

that the rate of temperature change (Ṫ ) is imposed. This constraint is bounded by the135

thermal dynamics of the equipment but also it must account for the potential thermal136

stress induced to the microalgal cells.137

No boundaries were imposed to the rate of change of light, since it can be changed138

instantaneously. We assumed that microalgae respond instantaneously to light changes.139

However, it is known that microalgae can adapt its photosynthetic system to changes of140

light [17]. Here, we consider time scales larger than the photosynthesis response time141

(in the range of minutes for photoinhibition). In this case study, we neglect however142

photoacclimation (adaptation of the pigment content to light intensity, at the scale of143
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weeks). Further experiments will be needed to assess the dynamics of such an adaptation.144

Note that ϕd is of infinite dimension. However, ϕd will be further transformed into a145

finite dimension vector to solve the optimization problem numerically.146

Before attempting to solve the full OED problem, we first partitioned the original OED147

problem into simpler subproblems in which we study the effect of either temperature or148

light. This strategy was for instance used in [28] to estimate the cardinal temperatures149

for E. coli.150

Each subproblem is dedicated to improve the accuracy of the estimation of a couple151

of parameters, while the other parameters are assumed to be known. In this case, Fd is152

a square matrix of dimension 2 × 2 for each subproblem (for the full OED problem, the153

FIM is of dimension 6 × 6). The initial concentration of biomass was set to x0 = 10 mg/L154

and. The duration of the experiment to tf = 4 d with ten equidistant sampling times.155

When studying the temperature parameters, the light was set to I = 547 µE m−2s−1,156

and when studying the light, the temperature was set to T = 26.7 ◦C. These constant157

values correspond to the optimal values for growth obtained from the model parameters158

(Table 1). This choice is supported by the fact that the FIM of each subproblem only159

involves either parameters related to the effect of light or to the effect of temperature,160

therefore the other experimental input only affects relatively the calculation of the sen-161

sitivity functions. By setting the experimental inputs to their optimal values, we favor162

growth.163

A total number of nine subproblems was obtained. Table 2 shows the combination of164

parameters and the experiment input (T or I) for each subproblem. In practice, the nine165

solutions will be implemented in duplicates in the TIP.166

The resulting subproblems were solved numerically via two discretization methods,167

namely sequential and simultaneous. The discretization allows to convert the original in-168

finite dimensional optimization problem into a finite dimension problem. In the sequential169

approach (also called control vector parametrization (CVP)), the control variables are ap-170

proximated by a set of basis functions that depend on a finite number of real parameters.171

In the simultaneous approach, all state and control variables are discretized w.r.t. time.172

Hence, this method is also known as total discretization. In this case, the dimension of173
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the optimization problem depends on the number of discretization steps [29, 30].174

The simultaneous method was implemented with the open source toolbox Bocop175

[31](http://bocop.org), based on the Ipopt solver [32]. The simultaneous method used176

a Midpoint discretization with 1000 steps, with a 10−14 tolerance for solving the discretized177

problem. All state and control variables were initialized with constant values.178

Numerical solutions of the CVP approach were obtained with the SSmGo tool-179

box (http://www.iim.csic.es/ gingproc/ssmGO.html), with the parameterization de-180

picted in Fig. 2. SSmGo performs global optimization by using a scatter search method181

[33, 34].182

The experiment inputs are thus defined by four parameters, namely u1, u2, t1, t2. The183

dimension of the optimization problem is therefore 9 × 4 with the decision vector184

ϕd = [u1(1), u2(1), t1(1), t2(1) . . . , u1(ne), u2(ne), t1(ne), t2(ne)] . (12)

3.2. Static approach185

The OED by the static approach is based on the secondary model of growth (here186

represented in (2)). In this approach, one experiment is characterized by a constant187

environment (T ,I in our case). The dynamic data of the biomass evolution for a given188

experiment is first used to calculate the maximal growth. Once different growth rates189

are calculated at different conditions of temperature and light intensity, the parameter190

estimation procedure is applied on the growth model (2).191

Since the TIP system allows to run 18 experiments simultaneously, a parallel design192

procedure is here used. Hence, the following OED strategies aim at finding the nine best193

experiment conditions to account for duplicate experiments.194

For the static approach, the FIM is computed as195

Fs(θ̂) =
2

σ2
s

ne∑

k=1

[
∂ymk

∂θ

]T

θ̂

[
∂ymk

∂θ

]

θ̂

=
2

σ2
s

M̂s, (13)

where ymk
is the maximal growth predicted by the model (2) for the kth experiment, ne196

is the number of distinct experiments (ne = 9) and σ2
s is the noise variance associated197

to measurement of the maximal growth. To provide an approximate value of the noise198
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variance, the dynamic model was simulated for nine experiments. Each of them charac-199

terized by a level of temperature and light intensity. Normal distributed data of biomass200

concentration was further generated by taking the value of noise variance of biomass201

σ2
d. The generated noisy data was used to calculate the variance of specific growth. An202

approximate value of σ2
s = 3.8 · 10−3 was obtained.203

The OED problem is then defined as204

min
ϕs

Det (F) , (14)

with ϕs the design vector205

ϕs = [T1, I1, . . . , Tne
, Ine

] ,

such that

TL = 12 ≤ Tk ≤ TU = 33.2◦C

IL = 20 ≤ Ik ≤ IU = 1200 µE m−2s−1.

(15)

The design vector ϕs ∈ R
ne .206

To solve the OED problem of the static approach, the Matlab optimization toolbox207

SSmGo was used.208

4. Results and Discussion209

Before presenting the resulting optimal experiments for both static and dynamic ap-210

proaches, we should keep in mind that in our case study the D-optimal experiments do211

not depend on the value of the noise variance σ2, given that we assumed that the measure-212

ment errors are homoscedastic. Indeed, the optimal experiment inputs depend only on213

the matrix M̂, defined previously in (9,13). On the other hand, the confidence intervals214

of the estimates do depend on the actual value of σ since the estimate of the standard215

deviation of the parameter θj is given by216

ηj =
σ√
2

√
(M̂jj)−1. (16)
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4.1. OED by the static approach217

The nine D-optimal experiments are given in Table 3. These experiments are defined218

by six levels of light intensity and five levels of temperature (if the decimal digits are omit-219

ted). Note that the nine experiments include the repetition of two experimental conditions220

(experiments 1,2 and experiments 5,6), which results in seven distinct experimental con-221

ditions. This result is not surprising since D-optimal often calls for the repetition of a222

small number of experimental conditions [6]. Simulated data resulted from the D-optimal223

experiments are illustrated in Fig 5A.224

The performance of the D-optimal experiments was compared by means of simulation225

with a equidistant full 32 factorial design including duplicates and with the central com-226

posite design currently used in the TIP device [14]. This composite design involved 17227

experiments with five levels for the environmental variables temperature, pH and light228

intensity. Since in our study the effect of the pH is not considered in the OED problem,229

we only took into account the levels for temperature and light of the 17 experiments. The230

maximal level of temperature used in [14] was 33.7◦C. We set the maximal temperature231

of culture to 33.2◦C, which is lower than the nominal value of the upper temperature for232

algae growth (Tmax).233

Table 4 illustrates the advantage of the D-optimal experiments over the factorial de-234

signs. Firstly, we notice that with the equidistant full factorial design the determinant235

of the FIM is zero, implying that the FIM is singular. Indeed, the inverse of the condi-236

tion number of the FIM (defined as ratio of the largest eigenvalue to the smallest one) is237

smaller than the precision of floating point format (2·10−16). In this case, confidence in-238

tervals for the parameter estimates can not be computed on the basis of the density of the239

estimator. To identify alternatives for guaranteeing a non-singular FIM for a full factorial240

design, a series of computations was performed. From the computations, it is concluded241

that a miminum number of four levels need to be considered in a full factorial design to242

provide a well-conditioned FIM. Other option to avoid an ill-conditioned FIM is to reduce243

the dimension of the matrix by splitting the full problem into subproblems (as we did for244

the dynamic OED). Our computations indicated that for combinations of five parameters245

(
6
5

)
, five out of six possible combinations of parameters led to a well-conditioned FIM.246

11



The combination that resulted in a singular FIM was [µmax, α, Tmin, Tmax, Topt]. For247

combinations of four parameters (FIM has dimension 4×4), the FIM was well-conditioned248

for all the fifteen combinations.249

It should be noted that in a simulation study performed in [35], full factorial design was250

applied for a cardinal model describing the effects of temperature, pH and water activity251

on the microbial growth rate, and the estimated values were close to the nominal values252

used in the simulation. However, we should not be content only with this result, since the253

actual values need to be supported by their corresponding confidence intervals in order254

to identify practical identifiability problems and to provide a quantitative measurement255

of the accuracy of the estimation.256

We note that the composite factorial design does provide a well-conditioned FIM.257

However the determinant of the FIM for this design is much lower than that obtained258

with the D-optimal design, and this is actually reflected on the accuracy of the estimates.259

The second raw of Table 4 shows the ratio of the standard deviations of the parameters260

obtained with the D-optimal design to the standard deviations obtained with the compos-261

ite design. D-optimal design provides lower standard deviations, 36% better in average.262

This result establishes the benefit of designing optimal experiments with OED techniques263

for obtaining accurate parameter estimates.264

4.2. OED by the dynamic approach265

As it was mentioned in Section 3, the dynamic OED problem (10-11) was solved via266

the simultaneous and CVP approaches. While the CVP method reduces substantially267

the dimension of the original optimization problem, the simultaneous approach allows to268

find solutions without restricting the shape of the controls. These solutions potentially269

give better objective values, but may not be fit for practical use, if the controls have270

a complicated shape. Comparing the two methods also give a hint at what we lose by271

restricting the control shape to simple functions.272

The CVP and the simultaneous approaches were compared for the case when the full273

problem was partitioned into nine subproblems devoted to improve the accuracy of the274

estimation of a couple of parameters. Overall, the CVP and the simultaneous methods275
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find very similar solutions with the exception of the experiment 7 (see Fig. 3). The276

controls found with the simultaneous approach are often quite close in shape to piecewise277

linear functions. This confirms that our choice of shape for the controls in the CVP was278

a sensible one.279

Table 5 compares the optimality cost functions provided by the simultaneous (JSim)280

and the CVP (Jcvp) methods. For all the nine experiments, the simultaneous approach281

converges to better solutions than the CVP ones. However, the CVP approach provides282

optimality cost functions very close to those obtained with the simultaneous approach.283

In average, the cost functions obtained by the CVP approach are 95% of those obtained284

with the simultaneous approach.285

From the study of the subproblems, we can conclude that the CVP approach with a286

simple piecewise parametrization seems well suited to design highly informative exper-287

iments. We now apply the CVP approach to the full OED problem, with the FIM of288

dimension 6 × 6. The optimal experiment inputs obtained are displayed in Fig. 4. The289

simulation of the nine D-optimal experiments is displayed in Fig 5B. Note that in the290

experiment 9, the biomass concentration exhibits, for a certain time interval, a behavior291

close to the steady state. This is due to the fact that the temperature reaches a very292

close value to Tmax and thus the growth rate becomes close zero. When performing the293

experiments, caution should be made for the selection of the maximal operational temper-294

ature. Indeed, an erroneous a priori on Tmax with a higher value than the real maximal295

temperature would lead to cell inactivation [13]. For microalgae cultures, Tmax must be296

well characterized to avoid operations that can be detrimental for attaining maximal pro-297

ductivities [38]. In our case study, we were conservative in the selection of the prior of298

Tmax. By setting the prior lower than the maximal value reported in [14], we assured that299

the temperature will allow growth in all the experiments.300

Additionally, we wanted to assess the accuracy of the estimates when applying the301

optimal solutions obtained from the nine small subproblems to the full OED. Table 6 shows302

the ratio of the standard deviations of the estimates obtained from the full OED solutions303

to those obtained from the solutions of the OED subproblems. We observe that the304

standard deviations obtained when solving the full OED problem are usually smaller than305
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those for the partitioned subproblems, 70% in average. For Tmax the estimated standard306

deviations of the two approaches are very close. For the light associated parameters, in307

particular, the accuracy of the estimation provided by the solution of the full OED problem308

is substantially better. A higher determinant of the FIM (two orders of magnitude) is309

obtained with the full OED solution while the condition numbers for the partitioned and310

the full OED are of the same magnitude. On the other hand, we also see that partitioning311

the full OED problem into small subproblems gives satisfactory results. This strategy of312

simplification could be easier to implement when dealing with the full model, even if a313

better accuracy is achieved by considering the full FIM.314

4.3. Static vs Dynamic OED315

A complete comparison between the static and the dynamic approaches for OED316

would require the knowledge on the noise variance for the measurements of the maximal317

growth rate (σ2
s ) and the biomass concentration (σ2

s ). However, even if this information318

is unknown a priori we can still draw a comparative analysis of the performance of these319

methods, assuming that the data is generated by (5).320

The unbiased estimator of the noise variance reads as321

σ2 =
1

n − np

n∑

i=1

[yi − ymi
(θ∗)]2, (17)

with n the total number of data measurements and np the number of parameters . Since322

the ML estimator is efficient asymptotically (as n → ∞), we can infer that the dynamic323

approach provides a more efficient estimator than the static approach. Indeed, for our case324

study, while the number of data points in the static approach is only 3 times the number325

of parameters, when applying the dynamic approach we get a number of experimental326

points that is 30 times the number of parameters.327

To allow for a quantitative comparison, we used the approximated noise variances328

previously estimated σ2
d = 9.31 and σ2

s = 3.8 ·10−3 to generate random simulated data for329

tackling the parameter estimation problem for both methods. Table 7 shows the estimated330

values and their confidence intervals for both approaches. The standard deviations of the331

parameters obtained with the dynamic approach are in average 42% lower than those332

given by the static approach. For the parametes µmax, Iopt the dynamic approach excels333
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substantially the static approach by providing standard deviations 13% lower. Finally, it334

is worth noting that for the static approach to equal in average the dynamic approach, it335

is required to reduce significantly the value of σs, which is only possible for n >> np.336

The correlation matrix of the estimates for the dynamic approach was337

µmax 1.0

α −0.47 1.0

Iopt −0.08 −0.36 1.0

Tmin 0.34 −0.04 −0.07 1.0

Tmax −0.19 0.10 −0.04 0.33 1.0

Topt −0.14 0.01 0.05 −0.35 −0.34 1.0

For the static approach, The correlation matrix of the estimates was338

µmax 1.0

α −0.47 1.0

Iopt −0.32 0.32 1.0

Tmin 0.49 −0.19 −0.15 1.0

Tmax −0.07 0.03 0.03 0.18 1.0

Topt −0.21 0.04 −0.02 −0.39 −0.33 1.0

The condition numbers of both approaches are comparable (see Table 4 and Table 6).339

The correlation matrices for both approaches indicated a low correlation between the340

parameters despite the high condition numbers . This is indeed thanks to the practical341

identifiability properties of the cardinal model as discussed in Appendix A.342

For the dynamic approach the mean squared error (MSE) of the estimated parameters343

w.r.t the nominal parameters was 1.42 while for the static approach MSE = 2.30·103,344

indicating the dynamic approach provides closest estimates to the nominal values in com-345

parison to the static approach. Only for Tmax, both approaches perform equally.346

Practical aspects as the labor of performing a two-step identification [12] place the347

static approach in disadvantage compared to the dynamic approach. These reasons lead348

us to favor the dynamic approach. Another benefit is that the sampling times could be349

further optimized within the experimental protocol, giving additional degrees of freedom.350
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From the mechanistic point of view, by stimulating the system with time-varying in-351

puts, the dynamic approach allows a better characterization of the system behavior. On352

the opposite, the static approach can hide the relevance of certain important phenonema.353

This factor is critical to our case study where microalgae are meant to grow in a dynamic354

environment that is periodically forced by daily variations of light and temperature. How-355

ever, we should keep in mind that to take advantage fully of the dynamic approach, a356

step forward in the mathematical description of the process needs to be done for account-357

ing important phenomena such as acclimation to light and temperature [17, 36] and cell358

inactivation due to high temperatures. For the sake of generality, a further study should359

be done to include the impact of the initial conditions and the physiological state of the360

cells on the determination of optimal experiment inputs. We also recommend to perform361

a preliminary experiment for which the cells get acclimated to their light and temper-362

ature growth conditions. This experiment will allow a dynamic characterization of the363

adaptation phenomena.364

4.4. Relevance of accurate estimation on model-driven optimization365

One of the ultimate goals of developing microalgae growth models is to provide a

platform for model predictions and for the design of optimal control strategies for systems

operated at large scale. Following this aim, we wanted to assess the relevance of providing

accurate parameter estimates on the quality of the predictions for a more complex model

representing the continuous cultivation of microalgae on an outdoor pond. For that, we

used the raceway model described in [3]. The model takes the configuration of a pilot-scale

raceway (Algotron) located at INRA LBE, Narbonne (France). The model is described

by

ṡ =D(sin − s) − ρ(·)x, (18)

q̇n =ρ(·) − (µ(·) − R(·))qn, (19)

ẋ =(µ(·) − D − R(·))x, (20)

where s (mg N/L) is the extracellular nitrogen concentration and x (mg C/L) is the366

concentration of carbon biomass. The term qn (g N/g C) denotes the intracellular nitrogen367
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quota, that is the concentration of nitrogen per biomass unit. D is the dilution rate, µ(·)368

is the specific growth rate, ρ is the nitrogen uptake rate and R(·) the respiration rate. For369

more details, the reader is referred to [3].370

Firstly, we evaluated the sensitivity of the biomass concentration with respect to the371

model parameters along a year of operation. Meteorological data was used for the location372

of Narbonne to calculate the temperature and light intensities for each month. The373

normalized sensitivity matrix Sy was computed for each month. The element (k, j) of Sy374

is calculated as [37]375

Sy(k, j) =
nt∑

i=1

∣∣∣sk
j (ti, θ̂)

∣∣∣ , (21)

where sk
j is the normalized sensitivity of the model output ymk

w.r.t. θj,376

sk
j (ti, θ̂) =

θ̂j

ymk
(ti, θ̂)

[
∂ymk

∂θj

]

(ti,θ̂)

. (22)

Figure 6 shows a graphical representation of the sensitivity matrices for four months.377

January is the coldest month in Narbonne, while August is the warmest. October is378

an intermediate month. The sensitivities of June are also presented for illustration. It379

is interesting to observe that the influence of the parameters on the model response is380

modulated by the environmental conditions. Indeed, we can see a specific pattern of381

parameter influence for each month. In terms of the tuning importance, that is the382

importance of parameter changes around their nominal value for the model output [37],383

we observe that, overall, the most dominant parameter is Topt. In August the most384

dominant parameter is µmax. This month exhibits the most homogeneous distribution of385

the influence of parameters in comparison with months like January where the influence of386

two parameters (Tmax, Topt) exceeds substantially the influence of the rest of parameters.387

In cold months (e.g. January-March), the influence of Tmax is higher than the influence388

of µmax. This pattern is switched in warm months (e.g. June-August). In the figure, Tmin389

appears as the less influential parameter. This effect may be inverted in cold regions.390

Indeed, the minimum average temperature in Narbonne used in our simulation is 4.76 ◦C,391

which is very high compared to the nominal value of Tmin.392
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Figure 7 shows the dramatic effect of an uncertainty of 5% on the nominal value of393

Topt on the quality of model predictions for the month of January. Both overestimation394

(1.05Topt) and underestimation (0.95Topt) of the optimal temperature results in important395

discrepancies between the response of the model with the nomical value of Topt and those396

obtained with a small perturbation of 5% on the nominal value. Hence the importance of397

providing accurate estimates since small changes on the parameter values can induce large398

changes on the biomass dynamics. Model-driven decisions are thus strongly dependent399

on the accuracy of the parameter estimates.400

The previous result strengthens the relevance of the temperature effect for outdoor401

cultivation as discussed in [38]. It should be noted that with the meteorological data used402

here, the temperature of the culture (T ) never exceeded Tmax, so the effect of temperature403

φT was always higher than zero. We recalled that an overestimation on Tmax will have404

a strong impact on model predictions and system operation. In particular, when the405

temperature exceeds Tmax phenonema as cell inactivation and mortality take place. These406

phenomena, detrimental for attaining maximal productivities, need to be characterized407

by an approach combining both experiments and modelling in order to provide guidelines408

to mitigate negative effects.409

5. Conclusions410

We solved the OED problem for a simplified model of microalgae growth. We have411

determined optimal experiment conditions to provide an accurate estimation of the pa-412

rameters that drive microalgae growth by modulating the effects of light and temperature.413

Both static and dynamic approaches were evaluated to find D-optimal experiments. From414

our results, we recommend the use of the dynamic approach in virtue of the efficacy in415

terms of the maximum likelihood properties of the estimator. The protocol of experiment416

inputs determined in this study will be further implemented in the TIP system used at417

Ifremer Institute.418

For the dynamic case, we showed that a parameterization of the control input by419

piecewise linear functions (CVP approach) provides efficient results as compared as the420

simultaneous approach. Moreover, the strategy of partitioning the full OED problem421

18



into subproblems dedicated to improve the accuracy of the estimation of a couple of422

parameters was shown to be satisfactory. The CVP method and the partitioning of423

the full OED into subproblems are suitable approaches for solving the OED problem in424

microalgae growth models by reducing, additionally, the problem complexity. Finally,425

with the use of sensitivity analysis of a more complex model describing the cultivation of426

microalgae in a raceway, we showed the relevance of providing accurate parameters for427

enabling reliable model-driven decisions.428
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Figure 1: The TIP system. The device has 18 batch photobioreactors for microalgae cultivation.
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Figure 2: Parameterization of the experiment inputs u (T, I) for the CVP approach.
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Figure 3: Optimal experiment inputs given by the CVP approach (solid lines) and the simultaneous

approach (dashed lines) for the partitioned OED problem.
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Figure 4: Optimal experiment inputs obtained for the full OED problem.
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Figure 5: Simulated data resulted from D-optimal experiments including duplicates and responses of the

identified models. A. Measurements of specific growth (circles) for the static approach. B. Measure-

ments of biomass concentrations (circles) for the dynamic approach obtained for the full OED problem.

The responses of the identified models (solid and dotted lines) for both static and dynamic approaches

described satisfactorily the simulated data.
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Figure 6: Overall sensitivity of the biomass concentration to the parameters in the complete raceway

model developed in [3]. Results are shown for four months illustrating how the influence of the parameters

on the model output is modulated by the environmental conditions.
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Figure 7: A small uncertainty of 5% on the value of Topt leads to important mismatches on model

predictions. The dynamic of the biomass concentration of the month of January with the nominal value

of Topt (solid blue line) is compared to the response of the model with 0.95Topt (dotted green line) and

1.05Topt (dashed red line) .
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Table 1: Nominal values of the model parameters.

Parameter Definition Value

α Initial slope of the growth 0.008 (µE m−2s−1 d)−1

response curve w.r.t. light

µmax Maximal specific growth rate 0.76 d−1

Iopt Optimal light intensity 548 µE m−2s−1

Tmin Lower temperature for -0.20 ◦C

microalgae growth

Tmax Upper temperature for 33.30 ◦C

microalgae growth

Topt Temperature at which 26.70 ◦C

growth rate is maximal
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Table 2: Subproblems of the dynamic OED strategy.

Experiment Couple of parameters Experiment input

1 (µmax, α) I

2 (µmax, Iopt) I

3 (α, Iopt) I

4 (µmax, Tmin) T

5 (µmax, Tmax) T

6 (µmax, Topt) T

7 (Tmin, Tmax) T

8 (Tmin, Topt) T

9 (Tmax, Topt) T
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Table 3: Experimental conditions for the static approach.

Full factorial design

Experiment

1 2 3 4 5 6 7 8 9

Temperature 12.0 22.60 33.20 12.0 22.60 33.20 12.0 22.60 33.20

(◦C)

Light intensity 20 20 20 610 610 610 1200 1200 1200

(µE m−2s−1)

Composite factorial design [14]

Experiment

1 2 3 4 5 6 7 8 9

Temperature 15.30 19.0 19.0 19.0 19.0 24.5 24.5 24.5 24.5

(◦C)

Light intensity 560 863 257 257 863 560 560 560 560

(µE m−2s−1)

10 11 12 13 14 15 16 17

Temperature 24.50 24.50 24.50 30.0 30.0 30.0 30.0 33.20

(◦C)

Light intensity 560 50 1070 863 257 257 863 560

(µE m−2s−1)

D-optimal design

Experiment

1 2 3 4 5 6 7 8 9

Temperature 12.10 12.10 24.30 24.60 26.70 26.70 30.60 30.70 33.20

(◦C)

Light intensity 536 536 1200 409 74 74 1200 395 547

(µE m−2s−1)
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Table 4: Comparison of D-optimal design with factorial design for the static approach.

µmax α Iopt Tmin Tmax Topt

ηjD-optimal

ηjComposite factorial design
0.50 0.48 0.76 0.16 0.02 0.25

Det(Fs) λmax/λmin

Full factorial design 0 5.30·1020

Composite factorial design 381.74 1.89·109

D-optimal 7.90 · 106 3.85 · 109
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Table 5: Comparison of the CVP and sequential strategies for the partitioned OED problem in the

dynamic approach.

Experiment − log Det (Fd)

Simultaneous (JSim) CVP (Jcvp) Jcvp/JSim

1 -26.1949 -25.8114 0.9854

2 -5.37552 -5.0026 0.9306

3 -10.2537 -9.8398 0.9596

4 -11.3121 -10.8970 0.9633

5 -16.9941 -16.5543 0.9741

6 -14.856 -14.6943 0.9891

7 -5.0363 -4.4793 0.8894

8 -4.5046 -4.0965 0.9094

9 -9.9769 -9.4997 0.9522
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Table 6: Comparison of the accuracy of the estimation obtained with the solutions of the full and

partitioned OED problems in the dynamic approach.

µmax α Iopt Tmin Tmax Topt

ηjFull

ηjPartitioned
0.85 0.57 0.41 0.76 1.05 0.59

Det(Fd) λmax/λmin

Full OED 1.76·1012 1.10·109

Partitioned OED 4.20·1010 4.44·109
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Table 7: Estimated parameters with their approximate confidence intervals for the static and dynamic

OED approaches. The parameter estimation was performed with simulated noisy data.

θ̂ ± 2ηj

µmax α Iopt Tmin Tmax Topt

Static 0.74±0.070 0.0075±0.0029 665.03±274.52 -0.86±4.84 33.34±0.30 26.80±0.97

Dynamic 0.76±0.0091 0.008±0.0014 550.64±35.44 -0.26±2.80 33.34±0.28 26.66±0.25
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Appendix A. Comments on structural and practical identifiability of the model537

Appendix A.1. Structural identifiability538

To check the structural identifiability of the model, we used the time power series539

method [39], briefly described below.540

Consider the following model

ẋ(t) =f(x(t), u(t), θ, t), (A.1)

ym(t) =h(x(t), θ), (A.2)

with x the state vector, ym the vector of model outputs(observations) and u(t) the control541

vector. The function vector f(·) is assumed to have infinitely many derivatives with542

respect to time and the input and state vector components. In the same manner, h(·)543

is infinitely differentiable w.r.t. the state vector and u(t) is infinitely differentiable w.r.t.544

time. Both the state and the outputs are infinitely differentiable w.r.t. time. The outputs545

can therefore be represented by the corresponding Taylor series expansion around t = 0.546

Consider the kth time derivative (ak) of the output.547

ak(θ) = lim
t→0+

dk

dtk
ym(t). (A.3)

Since all the time derivatives of the outputs are unique, it follows that a sufficient548

condition for the identifiability of the model is that set of equations549

h(k)(x(0), θ) = ak(0) (A.4)

have a unique solution for θ [39].550

For our case study, let us consider first the identifiability of the temperature parameters

of the cardinal model Tmin, Tmax, Topt. At constant light, the model is given by

ẋ(t) =µIφT (t)x(t), x(0) = x0, (A.5)

ym(t) =x(t), (A.6)

with µI = µmaxφI and x0 a known initial concentration of biomass. The effects of light551

φI and temperature φT on microalgae growth are here recalled:552
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φI =
I

I + µmax

α

(
I

Iopt
− 1

)2 , (A.7)

553

φT =





0, T < Tmin

(T −Tmax)(T −Tmin)2

(Topt−Tmin)[(Topt−Tmin)(T −Topt)−(Topt−Tmax)(Topt+Tmin−2T )]
, T ∈ [Tmin, Tmax]

0, T > Tmax.

(A.8)

By simple inspection of (A.8) and given the biological meaning of the parameters554

of the cardinal model, we can infer that a series of adequate experiments running at555

different temperature conditions in the interval [Tmin, Tmax] will allow to identify uniquely556

the temperature parameters.557

Coming back to the time power series method, let us consider the case of a specific558

input T (t) that is infinitely differentiable w.r.t. to time. For simplicity, we chose T (t) =559

c1t + c2 with c1 > 0, c2 > 0 and T (t) ∈ [Tmin, Tmax] in the experimentation time.560

The Taylor series coefficients are thus

a0 =x0, (A.9)

a1 =µIφT (0)x0, (A.10)

a2 =


(µIφT )2 + µI

[
∂φT

∂T

]

T =T (0)

Ṫ (0)


x0. (A.11)

Given the shaphe of φT and applying the first-optimality condition, the following cases

provide the parameters to be uniquely identifiable:

a1 = 0, and, a2 ≥ 0, ⇒ Tmin = T (0), (A.12)

a1 = 0, and, a2 < 0, ⇒ Tmax = T (0), (A.13)

a1 > 0, and, a2 = a2
1/x0, ⇒ Topt = T (0). (A.14)

The previous conditions can be reached by making T (t) vary along the interval [Tmin, Tmax].561

Following the same procedure, we can now check the identifiability of the light pa-

rameters Iopt, α and the maximal specific growth rate µmax. Since Topt is structurally

identifiable, let us consider a constant temperature T = Topt. The model is thus

ẋ(t) =µmaxφI(t)x(t), x(0) = x0, (A.15)

ym(t) =x(t). (A.16)
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By considering the case of a specific input I(t) = c1t+c2, the series expansion provides562

the following coefficients563

a0 = x0, (A.17)

a1 = µmaxφI(0)x0, (A.18)

a2 =
(

(µmaxφI(0))2 + µmax

[
∂φI

∂I

]
I=I(0)

İ(0)
)

x0. (A.19)

By applying the first-order optimality condition on φI , we get564

a1 > 0, and a2 = a2
1/x0, ⇒ Iopt = I(0). (A.20)

Injecting Iopt in (A.18) provides µmax.565

Once Iopt is identified, evaluating (A.18) at I(0) 6= Iopt provides α566

α =
a1µmax

I(0)(µmaxx0 − a1)

(
I(0)

Iopt

− 1

)2

. (A.21)

The model is therefore structurally identifiable.567

Appendix A.2. Practical identifiability568

Parameter estimation of Haldane and Monod type kinetics is known to be hampered569

by practical identifiability problems due to strong correlation between its parameters. To570

represent the effect of light on microalgae growth, the Haldane kinetics is often used571

φI = µ̃
I

I + KsI + I2/KiI

, (A.22)

where µ̃ is the specific growth rate, KsI is the light affinity constant and KiI is the572

inhibition constant. By applying the first-order optimality condition, the optimal light573

intensity for growth is Iopt =
√

KsIKiI . The nominal values for the Haldane model used in574

the present study were µ̃ = 1.18 d−1, KsI = 150 µE m−2s−1 and KsI = 2000 µE m−2s−1.575

In this work, instead of the standard Haldane kinetics, we made use of the param-576

eterized kinetics (A.7), which has the same shape than the Haldane kinetics but offers577

certain advantages in terms of practical identifiability properties. On the basis of good578

quality nominal parameters, it was previously shown that adequate inputs allow to iden-579

tify the optimal conditions for growth Iopt and Topt, which derive automatically on the580
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identification of µmax. Such property allows to weaken the correlation between µmax and581

α.582

For illustration, we performed a D-optimal protocol consisted of five experiments with583

ten equidistant sampling times for both standard Haldane and the parameterized kinetics.584

For the Haldane kinetics, the correlation matrix of the parameters was:585

µ̃ 1.0

KsI 0.96 1.0

KiI −0.98 −0.92 1.0

For the parameterized kinetics, the correlation matrix of the parameters was:586

µmax 1.0

α −0.53 1.0

Iopt −0.25 −0.10 1.0

As observed, the Haldane kinetics exhibits a stronger parameter correlation than the587

parameterized kinetics. Therefore, in terms of practical identifiability, the parameterized588

kinetics is preferred over the standard Haldane kinetics.589
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