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Fast Grasp Planning Using Cord Geometry

Yi Li, Jean-Philippe Saut, Julien Pettré, Anis Sahbani, and Franck Multon∗†‡§

January 5, 2016

Abstract

In this paper, we propose a novel idea to address the problem of fast compu-
tation of stable force-closure grasp configurations for a multi-fingered hand and a
3D rigid object represented as polygonal soup model. The proposed method per-
forms a low-level shape exploration by wrapping multiple cords around the object
in order to quickly isolate promising grasping regions. Around these regions, we
compute grasp configurations by applying a variant of the close-until-contact pro-
cedure to find the contact points. The finger kinematics and the contact information
are then used to filter out unstable grasps. Through many simulated examples with
three different anthropomorphic hands, we demonstrate that, compared with pre-
vious grasp planners such as the generic grasp planner in Simox, the proposed
grasp planner can synthesize grasps that are more natural-looking for humans (as
measured by the grasp quality measure skewness) for objects with complex ge-
ometries in a short amount of time. Unlike many other planners, this is achieved
without costly model preprocessing such as segmentation by parts and medial axis
extraction.

Grasping, Multifingered Hands, Dexterous Manipulation, Service Robots, Domes-
tic Robots.

1 Introduction
Grasp planning research has long been focused on theoretical analysis of grasping us-
ing idealized models of both the robotic hand and object. With the arrival of more
affordable robotic manipulation platforms and sensors, the study of robotic grasping
has advanced towards the development of algorithms that work with real data (e.g.,
point clouds from RGBD sensors and images from stereo cameras) [1–5]. However,
these algorithms are often limited to simple grippers and/or simple objects (e.g., books,
water bottles, and wine glasses).
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With the introduction of next generation of 3D laser scanners and Microsoft’s
Kinect, and algorithms such as Kinect-Fusion [6] that merges several low resolution
point clouds of one scene into a high definition cloud, we believe it is time to proceed
to the next step that is grasp planning of complex objects represented by imperfect
but detailed mesh models built using 3D laser scanners or Kinect. These meshes can
even be non-manifold and have holes. Furthermore, we intend to give researchers, who
are not familiar with robotic grasping (e.g., researchers who are in the field of digital
character animation), an easy-to-implement grasp planner.

In this paper, we present an innovative and intuitive grasp planner to synthesize
grasps for objects with complex shapes such as objects consisted of multiple parts (e.g.,
a pair of pliers). The strategy is to tightly wrap multiple sets of cords [7] around an
object in order to quickly obtain information about its shape and extract the promising
grasping regions. By placing a non-stiff cord that is made up of a sequence of linear
segments around the object and then tightening it, the object’s local geometry under the
cord is revealed. To find out more about the local geometry, several parallel or almost
parallel cords are added. The procedure of cord generation is conceptually similar to
the computation of a two-dimensional convex hull [8]. The main reason for choosing
cords is their ability to provide a not only intuitive, but also interactive technique for
specifying curves with physics-like properties [7]. For example, to lift an object with
major surface bumps, ridges, and grooves such as a Stegosaurus toy with its dermal
plates, non-stiff cords used in this paper can be replaced with stiff cords. A stiff cord’s
resistance to bending sharply around object increases with increasing stiffness. When
stiffness is equal to zero, a stiff cord is equivalent to the corresponding non-stiff cord.

This paper is an extension of [9]. Apart from more extensive evaluation of the cord-
driven grasp planner and the addition of comparison with grasps synthesized by the
generic grasp planner in Simox [10] (a C++ toolbox containing, among other libraries,
a grasp planning library), the main difference between this version and the previous
one [9] is the introduction of grasp measure XOR χ: This new measure is based on
polygon clipping instead of the lengths of the cords. Furthermore, our implementation
is now built on top of Simox and relies on it for many standard grasp planning functions
such as grasp stability evaluation.

The paper is organized as follows. After a comparison to previous work in Sec-
tion 2, the proposed grasp planner is presented in two sections. Section 3 explains
how cords are constructed around sections of an object and how candidate hand poses
are obtained, whereas Section 4 details how finger configurations are computed and
how the resulting grasps’ stability is checked. Simulation results obtained with various
household objects from the KIT ObjectModels Web Database [11], among others, are
shown in Section 5.

2 A Comparison to Previous Work
Compared with previous planners that synthesize grasps for complex objects [12–19],
our cord-driven grasp planner has several advantages.

First, the proposed grasp planner enables the grasping of objects with more com-
plex geometries. For example, our grasp planner can synthesize grasps that grab both

2



handles of a pair of pliers by wrapping multiple sets of cords around it. A grasp re-
gion is then defined as the region spanned by a set of cords. After evaluating all grasp
regions, our grasp planner tends to choose the grasp that is synthesized around a set
of cords that wraps around both handles. Grasp planners that look for shapes that are
likely to fit into the robotic hand and maximize the surface area of contact [14, 16, 17]
can not make such a grasp.

Second, the proposed grasp planner eliminates the need for costly preprocessing
such as shape segmentation/approximation [13, 15] and medial axis computation [18].
For example, our grasp planner can not only synthesize grasps for a bottle without
having to approximate it with a cylinder, but also synthesize grasps for a sickle-shaped
object without computing its medial axis.

Third, grasps synthesized by the proposed grasp planner are more similar to human-
planned grasps compared with grasps synthesized by previous approaches such as the
generic grasp planner in Simox [10], because the most promising grasp regions will be
covered by similar cords [16] and the grasp measure XOR χ enables us to find these re-
gions. To evaluate how natural-looking a grasp is for humans, we use the grasp quality
measure skewness [20]. For example, given a long cylinder to be grasped, most people
align the wrist almost perpendicularly to the largest principal axis of the cylinder and
grasp the smallest principal axis, which corresponds to low skewness. Furthermore, it
is also shown in [20] that grasps with low skewness were significantly more robust, and
they were preferred by the human subjects independent of the task. Even though it is
certainly possible to add grasp quality measure skewness into existing grasp planners,
how to integrate it with other grasp quality measures such as epsilon [21] and our grasp
measure XOR χ is beyond the scope of this paper. In [22], a novel grasp synthesis
method for solving the configuration problem (i.e., configure the hand relative to the
object so that each hand region establishes contact on its corresponding object region)
was presented. It was then extended in [23] with a procedure for optimizing the qual-
ity of the obtained grasps. Even though the resulting grasp configurations in [22, 23]
appear quite natural-looking for humans, the final result produced by these methods is
in some sense guided by a given set of contact constraints, because they require that
both regions on the surface of the hand, and corresponding regions on the surface of
the object are given as inputs.

Fourth, unlike [14, 17, 19], the proposed grasp planner works with objects rep-
resented by non-manifold polygonal meshes. The test cases demonstrate that objects
with small surface bumps, ridges, and grooves can be easily handled. In fact, even poly-
gon meshes with holes can be used to represent objects. Furthermore, unlike [22, 23],
our grasp planner makes no assumption that the surface normal vectors always point
outward from the surface.

Fifth, the proposed grasp planner can be implemented easily, because the compu-
tation consists mostly of geometrical calculations. Our grasp planner is now built on
top of Simox, thus we have greatly reduced the number of lines of code. Furthermore,
our grasp planner does not require grasp prototypes (i.e., example grasps), unlike [12].
Finally, compared to the methods in [22,23], our grasp planner is not only much easier
to be implemented, but also less computationally involved.
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3 The Exploration Stage
In this section, we detail how multiple sets of non-stiff cords are wrapped around an
object to delineate its geometry. First, we describe how we construct one cord by
tightening a seed guide curve in the shape of a triangle around the object (Section
3.1). If the grasping region under the cord is promising, we construct the rest of the
set by rotating the seed guide curve around one of its vertices to generate additional
guide curves (Section 3.2) and tightening them. Next, we explain how we synthesize
the seed guide curve by random sampling the corresponding triangle’s three vertices
in Section 3.3. Lastly, we present grasp measure XOR χ to compare and sort the
promising grasping regions (Section 3.4).

3.1 Cord Generation
To generate a cord, we follow the algorithm presented in [7]. The cord’s resistance to
bending is modeled by its stiffness property. In this paper, we are only interested in
non-stiff cords because we seek to use cords to reveal the overall surface geometry of
objects and non-stiff cords wrap more tightly around objects, whereas stiff cords are
resistant to bending [7]. Before a non-stiff cord can be constructed, a guide curve that
does not intersect with the object must be created. In Fig. 1, the black curve on top
of the cyan rectangular object with 3 indentations is the guide curve. After choosing
one of the two extreme points of the guide curve as the initial point, and adding it
to the empty cord, rays are repeatedly cast towards the guide curve, away from the
most recently added point in the cord. Whenever a ray intersects with the object, a
grazing intersection is added to the cord. The process is repeated until the final point
of the guide curve is reached. The green curve in Fig. 1 is the generated non-stiff cord
that is made up of a sequence of linear segments. For full details relating to the cord
generation algorithm, we refer the reader to [7].

Guide Curve

Non−stiff Cord

Figure 1: Geometric construction of a non-stiff cord.

In order to grasp an object stably, it is preferable that a cord encloses the object or
part of it completely. However, if the object or part of it to be grasped is too big or
wide for the hand, a cord that does not entirely enclose the object or part of it can be
constructed instead. Consequently, we distinguish a cord enclosing the object or part
of it completely, and enclosing the object or part of it only partially.
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Case I As shown in Fig. 1, the cord constructed by the standard cord generation
algorithm does not enclose the rectangular object. In fact, in two line segments out
of three they do not follow the overall object geometry. Here, we present a two-step
procedure that encloses the target object or part of it using two cords. For the first
step, an acute triangle 4P1P2P3 (formed by line segments P1P2, P2P3, and P3P1)
is chosen as the guide curve as shown in Fig. 2, where segments P1P2 and P1P3 can
be compared to the thumb and index finger, respectively. After executing the standard
cord generation algorithm, we obtain a cord (the red one in the left subfigure in Fig. 2)
that wraps around the object geometry except for its first and last segments. We obtain
the red cord shown in the right subfigure by removing these two segments from the
cord. In the second step, the guide curve is defined by the following segments: PrP3,
P3P1, P1P2, and P2Pl. The second cord (the green one in the right subfigure) is then
constructed by applying the standard cord generation algorithm. As shown in the right
subfigure, after removing the first and last segments, the red and green cords wrap
around the object geometry completely. Since these two cords are connected at points
Pl and Pr and they separate the visible part from the hidden part as seen from point
P1, we denote the green and red cords as the front and back cords, respectively, where
the front cord is defined by a sequence of points {Pr, Pρ, . . . , Pλ, Pl}. Consequently,
Pr and Pρ bind the first segment of the front cord, whereas Pλ and Pl bind the last
segment. If the front cord is made up of three line segments, then Pρ and Pλ represent
the same point (i.e., the middle one). If there is only one line segment in the front cord,
Pρ and Pλ are not defined, and the only segment is bounded by Pr and Pl.

Guide Curve
Back Cord

Front Cord

P1

Pl Pr

P2

P1

Pl Pr

P3 P2 P3

Pλ Pρ

Figure 2: Geometric construction of two non-stiff cords that completely encloses an
object.

The border points Pl and Pr are not the actual contact points between the hand and
object. The contact points are determined later in Section 4. However, if Pl and Pr
meet the eligibility criterion described below, these two points are denoted as virtual
grasping points. Let variable ξ characterize the size of the front cord, where ξ is the
maximum distance between the midpoint of line segment PlPr and the front cord. The
eligibility criterion is then defined as: ξmin ≤ ξ ≤ ξmax. Essentially, variable ξ is used
to quickly assess that the part of the object under the front cord is neither too small nor
too large for the hand. Because the stability of each grasp will be checked later in
the finger configuration computation stage (Section 4), there is no need to determined
the exact values of ξmin and ξmax. In this paper, three different dexterous hands,
the Schunk Anthropomorphic Hand (SAH), the iCub (right) hand, and the ARMAR-III
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(right) hand are used to test our cord-driven grasp planner. The values of ξmin = 1.5cm
and ξmax = 7.5cm are used for all three dexterous hands. If Pl and Pr meet the
eligibility criterion, P1 gives the initial hand position, whereas the triangle 4P1PrPl
defines the hand orientation, as will be described in detail later.

Case II In the previous case, we have assumed that the virtual grasping points
Pl and Pr are always visible from P1. Unfortunately, this assumption is restrictive,
because virtual grasping points that are not visible from P1 are necessary when, for
example, grasping a wide object such as a book as shown in Fig. 3. To handle this
case, we start from an acute triangle4P1P2P3 as before, but line segment P2P3 must
intersect with the object this time. The two intersection points that are closest to P2

and P3 are denoted as Pl and Pr (see Fig. 3), respectively. The front cord is then
constructed by using line segments PrP3, P3P1, P1P2, and P2Pl as the guide curve;
therefore, the local geometry of the object under the front cord is delineated despite
the fact that Pl and/or Pr may be invisible from P1. Pl and Pr are classified as virtual
grasping points if and only if the above criterion mentioned before is met in addition
to the following criterion: The angle between vectors

−−−→
PλPl and

−−−→
PρPr should be as

small as possible if rays
−−−→
PlPλ and

−−−→
PrPρ intersect, because the object is more likely to

slip if the angle is too big, imagining that the fingertips of the thumb and index finger
are placed at Pl and Pr, respectively. In all the experiments, the maximum threshold
of the angle was set to a reasonably conservative value: 1

4π. The exact value of this
threshold depends on many factors such as coefficients of friction of the object and
hand, whether soft contacts are enabled, and the object’s center of mass. Fortunately,
there is no need to determine the exact value of the threshold, as the stability of each
grasp will be checked later in Section 4.

Guide Curve

Front Cord

P1P1

P2 P3P2 P3

PrPl

Pλ Pρ

Figure 3: Geometric construction of a non-stiff cord that wraps around part of a wide
object.

3.2 Object Scanning Using Cords
In Section 3.1, we presented a method for generating two virtual grasping points on
the surface of an object with a front cord that wraps around the object. However, the
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information contained in this single cord is not sufficient to verify whether the region
around the cord is a promising grasping region. Similar to the way a single laser beam
is used to scan an object, we can shift the guide curve up and down in order to construct
additional front cords, and hence obtain more information about the region.

To construct a set of front cords, we start with a seed cord: a promising front cord
along with two corresponding virtual grasping points found in Section 3.1. The guide
curve from which the seed cord is derived is called the seed guide curve (i.e., t0 in
Fig. 4). As shown in Fig. 4, t0 is then shifted up and down to generate additional guide
curves called upper / lower guide curves, respectively. The shift is accomplished by
rotating the seed guide curve around the axis defined by P1 and the cross product of two
vectors. This first vector is the normal of the plane of the seed guide curve. The second
vector is the one that points from P1 to the midpoint of line segment PlPr (defined in
Section 3.1). As will be described further in this paper, the second vector defines the
approach direction for the hand, whereas P1 gives the initial hand position. For each
shift upward, the seed guide curve is rotated by angle iupθ, where θ > 0 and iup is
the current number of upward shifts. For each shift downward, the seed guide curve
is rotated by −idownθ instead, where idown is the current number of downward shifts.
If segment P2P3 on the seed guide curve intersects with the object, the corresponding
segment of any additional guide curve must also intersect with the object. Similarly,
if P2P3 on the seed guide curve does not intersect with the object, the corresponding
segment of any additional guide curve is considered to be invalid if it intersects with
the object. Essentially, we separate the two cases mentioned in the previous subsection
due to the fact that the most promising grasp regions will be covered by similar front
cords [16]. When the object is scanned with guide curves and a guide curve of one
case is followed by a guide curve of another case, the two resulting front cords are
unlikely to be similar to each other. This process is repeated until enough front cords
are generated so that the distance traveled by the line segment P2P3 is roughly equal
to the width of the palm. Note that the number of additional guide curves we generate
around the seed guide curve depends not only on the chosen hand, but also on angle θ.
Lastly, we stipulate that the numbers of additional guide curves in both directions must
be equal, because the front cord derived from the seed guide curve defines the initial
orientation of the hand; hence, the seed guide curve should always lie in the middle.

3.3 Random Sampling of Guide Curves
Thus far, we have simply stated that the guide curve is given. In this subsection, we
present a method that randomly samples guide curves for household objects such as
items from the KIT ObjectModels Web Database. Different random sampling schemes
are required to grasp other kinds of objects (e.g., larger ones such as tables), although
they are beyond the scope of this paper.

First, we construct a bounding sphere s for the object. As shown in Fig. 5, the
bounding sphere is centered at the object’s barycenter C and its radius is r. Second,
two additional spheres that are also centered atC are constructed: sphere s1 with radius
r1 and sphere s2 with radius r2, where r2 is slightly greater than r and r1 = r2 + ∆r,
where ∆r = 10cm and 10cm is the average length of a male’s fingers. The value of r2
was chosen such that when a cord is wrapped around sphere s2 (with its medial axis on

7



rotation axis

Guide Curves

P1

t+2

t+1

t0

t−1

t−2

P3P2

Figure 4: The seed guide curve t0 is shifted up and down in order to generate additional
guide curves.

the surface of the sphere), the cord does not intersect with sphere s, whereas the value
of r1 was chosen such that it is unlikely that the object and hand would collide when the
hand is placed on s1 and its opening is facing the object. If the hand collides with the
object, our cord-driven grasp planner simply moves the hand away from the object until
there is no collision before closing the fingers around the object. Consequently, we are
able to utilize ∆r = 10cm for all three robotic hands in the experiments. Third, a
deterministic sampling method [24] is employed to sample three uniform deterministic
sequences of samples Φ1, Φ2, and Φ3 on the surfaces of spheres s1, s2, and s2 (again),
respectively. Fourth, in order to generate a guide curve, three points are randomly
selected among the points in the deterministic sequences Φ1, Φ2, and Φ3 as P1, P2,
and P3, respectively. Among the three points, P1 defines the initial position of the
hand. Finally, if4P1P2P3 is acute, it is used as the guide curve to scan the object (as
described in Sections 3.1 and 3.2). The whole process is summarized in Algorithm 1,
where the outer loop iterates at most M times, whereas the inner loop iterates at most
N times, which is also the size of sequences Φ1, Φ2, and Φ3. We set M and N to 1000
and 10000, respectively. Instead of this brute force method to sample acute triangles in
3D, a more involved solution can be derived from the procedure in [25]. Furthermore,
in our current implementation, the sequences of sampled acute triangles are not stored
and hence we re-sample for every object even if two objects’ bounding spheres have the
same radius. Since the spheres are quasi-independent from the object, the sequences of
sampled acute triangles could be stored.

After a set of front cords have been generated in Algorithm 1, a local improve-
ment procedure is applied to improve the performance of our grasp planner such that
additional sets of front cords are generated by sampling further poses for 4P1P2P3

around its current pose. This inspiration comes from the field of motion planning:
Non-uniform measures are employed by most probabilistic roadmap (PRM) planners
in order to dramatically improve performance, whereas the basic PRM uses the uniform
sampling measure [26].
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r1

P1

C

r2

S1

r P3

P2

S2

Figure 5: Sampling of a guide curve on the surfaces of two spheres.

Algorithm 1: Random sampling of guide curves.
input : An object and its bounding sphere defined by a barycenter C and a radius r;

1 s1← a sphere of radius r1, centred at C;
2 s2← a sphere of radius r2, centred at C;
3 Φ1← a uniform deterministic sequence of samples over sphere s1;
4 Φ2← a uniform deterministic sequence of samples over sphere s2;
5 Φ3← a uniform deterministic sequence of samples over sphere s2;
6 for i = 1 to M do
7 Rearrange elements in Φ1, Φ2, and Φ3 randomly;
8 for j = 1 to N do
9 P1← Φ1[j], P2← Φ2[j], P3← Φ3[j];

10 if4P1P2P3 is acute then
11 Scan object surface with4P1P2P3 as the guide curve;

3.4 Evaluating Grasp Regions
In order to check whether the region covered by a set of front cords generated in Sec-
tion 3.2 is a promising grasping region or not, we propose a polygon-clipping-based
grasp measure XOR χ to determine how similar the front cords are to each other, be-
cause a promising grasp region will be covered by similar front cords according to [16].
In this subsection, we explain the grasp measure XOR through one example.

Suppose that we want to synthesize a grasp for the cylinder shown in Fig. 6. Af-
ter constructing a set of guide curves around the seed guide curve 4P1P2P3 and then
generating the corresponding front cords by tightening the guide curves, we need to
evaluate whether P1 is a correct initial position for the hand and the region covered
by the front cords is a promising grasping region. From each front cord (shown as
blue curves in Fig. 6), we construct a convex polygon by connecting its two end-
points. All convex polygons are then projected orthogonally onto the plane spanned by
4P1P2P3. We denote the resulting 2D convex polygon as Qi, where i ∈ {−n,−(n−
1), . . . , 1, 0, 1, . . . , n − 1, n} and n is the number of upper / lower front cords. Note
that Q0 is the one derived from the seed front cord. Next, we compare each projected
2D convex polygon Qi with Q0. To measure the difference between the two polygons,
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we perform the Boolean XOR operation (exclusive-or) on both convex polygons. The
smaller the area of the resulting polygon, the more similar are the two input polygons.
Fig. 7 shows the result of the Boolean XOR operation applied to two convex polygons.
Consequently, our polygon-clipping-based grasp measure XOR χ is defined as

χ =
1

2n

n∑
i=−n

A(Qi ⊕Q0), (1)

where A is the area symbol and ⊕ represents the XOR operator. Note that the sum
is averaged over the total number of upper and lower front cords (i.e., 2n).

In the left subfigure in Fig. 6, the red polygon represents the intersection between
the cylinder and the plane defined by the given 4P1P2P3 (points P2 and P3 not
shown), whereas the green represents the intersection between the cylinder and the
plane spanned by an upper / a lower guide curve. The right subfigure in Fig. 6 shows
the intersections for a different 4P1P2P3. The projected 2D convex polygons corre-
sponding to the right subfigure in Fig. 6 are shown in Fig. 7 along with the polygon
outputted by the polygon clipper after performing the Boolean XOR operation. In the
two examples shown in Fig. 6, the left one is preferable because the angle between the
approaching direction of the hand and the cylinder’s largest principal axis is closer to
90◦; hence, its grasp measure XOR score is lower.

We use the Vatti clipping algorithm [27] for clipping because it is extremely fast as
a result of: (1) The 2D polygons used in our calculations have only a small number of
edges; (2) Our polygons are convex, and hence there are no self intersecting polygons
to be taken account of.

Figure 6: Intersections (ellipses) between a cylinder and two sets of guide curves. For
clarity, only two ellipses are shown for each set. Front cords are drawn in blue.

4 Computing finger configuration from a grasp region
Around the promising grasping regions identified in Section 3, we look for a stable
force-closure grasp in this section. In other words, after finding out the wrist pose,
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Figure 7: The two 2D polygons shown in the first two subfigures originate from the
intersections shown in the right subfigure of Fig. 6. After performing the Boolean
XOR operation on these polygons, the polygon clipper outputs one 2D polygon (the
striped region shown in the third subfigure).

which is given by a previously identified grasp region, we now need to calculate how
the fingers should be placed/closed on the object. A common procedure is to set the
hand in a preshape configuration and then close the fingers until they contact the object
surface. The closing motion is predefined from the knowledge of the hand specific
kinematics. This method has been widely used in the literature (e.g., in [4, 10, 18, 28])
and in grasping simulators such as GraspIt! and Simox. Its main advantages are its
simplicity and that it allows contact anywhere on the finger surface. The procedure
described in this section is based on the one implemented in Simox and hence suitable
for robot hands built with rigid parts. If an adaptive and soft hand such as the Pisa/IIT
SoftHand [29] is used instead, the procedure needs to be modified accordingly. For
example, soft finger contact must be considered instead of hard finger contact.

4.1 Synthesizing Grasps from the Seed Front Cord
If the region under a set of front cords is considered to be a promising grasping region,
points {P1, Pl, Pr} define the initial position and orientation of the hand relative to the
object, where Pl and Pr are located on the seed front cord (i.e., the middle one of the
set), whereas P1 is on the seed guide curve (i.e., the guide curve that gave rise to the
seed front cord). More specifically, the hand’s approach direction is given by

−−−→
P1Pm,

where Pm is the midpoint of line segment PlPr and the rotation of the hand around
the approach direction is determined by the normal to the plane spanned by points
{P1, Pl, Pr}, instead of being randomly sampled as done by the generic grasp planner
in Simox. To close the hand around the object, the hand is moved towards the object
until the hand’s Grasp Center Point (GCP) [10] reaches the object surface or the hand
intersects with the object. In the latter case, the hand is moved away until it no longer
intersects with the object. Finally, the fingers are closed around the object.

4.2 Assessing the Grasp Stability
In order to check grasp stability, we rely on the grasp wrench space computation im-
plemented by Simox. First, Simox constructs 6D wrenches from the contact informa-
tion [28, 30, 31] to represent the contact force and torque. Second, a quality measure
is obtained from the analysis of the convex hull of all contact wrenches. The resulting
grasp is considered to be force-closure by Simox, if the convex hull contains the origin
of the wrench space as an interior point. Third, the minimum distance between the
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origin of the wrench space and the convex hull surface demonstrates the ability of the
grasp to compensate for external disturbances; hence, it is used by Simox as the grasp
quality metric.

5 Test Cases
In this section, we show that grasps synthesized by our cord-driven grasp planner are
more similar to human-planned grasps than those synthesized by the generic grasp
planner in Simox. We chose 26 objects (Fig. 9), such as Toothpaste (the left subfigure
in Fig. 8) and ToyCarYelloq (the right subfigure in Fig. 8), from the KIT database [11]
plus 5 computer-designed objects (Fig. 10). The KIT database was built from real
objects by scanning them with a 3D digitizer, and polygon mesh of each KIT object
has 800 faces (triangles). The 26 KIT objects in the subset were selected because they
offer a wide diversity of shapes, and some objects even have small surface bumps,
ridges, and grooves. In addition, Toothpaste is given as a non-manifold mesh, whereas
ToyCarYelloq contains several holes. The computer-designed objects were chosen for
their complex shapes. The chosen hand models are the Schunk anthropomorphic hand,
the iCub (right) hand, and the Armar-III (right) hand. The grasp planner was built on
top of Simox and executed on a workstation with the following configuration: Ubuntu
12.04 (x86 64), 8 GB memory (RAM), and an Intel Core i5 CPU at 3.40 GHz.

In Section 5.1, we describe briefly grasp quality measure skewness α [20] and
determine experimentally the optimal number of front cord sets that are needed in the
exploration stage. In Section 5.2, we analyze the performance of our cord-driven grasp
planner by synthesizing grasps for both the 26 KIT objects and the 5 computer-designed
objects.

Figure 8: Left: KIT Toothpaste is a non-manifold mesh. Note that the zoomed-in
section of the object is shown inside the rectangle. Right: KIT ToyCarYelloq has
several holes.

5.1 Evaluation of Grasps Using Grasp Quality Measure Skewness
In this subsection, we determine experimentally the optimal number of sets of front
cords that are needed in the exploration stage after a brief description of grasp quality
measure skewness α.

The grasp quality measure skewness α is defined as follows in [20]:
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Figure 9: 26 KIT objects used in the evaluation of our cord-driven grasp planner. All
objects are rendered at the same scale to facilitate comparisons.

α =


δ if δ ≤ π

4
π
2 − δ if π4 < δ < π

2
δ − π

2 if π2 < δ < 3π
4

π − δ if δ ≥ 3π
4 ,

(2)

where δ is the angle between the axis that points from the palm of the hand and
the object’s largest principal axis. We choose this measure because the skewness for
human-planned grasps was significantly smaller than for grasps synthesized by an au-
tomated technique (i.e., GraspIt! [32]) according to [20], whereas no significant differ-
ence was observed when other measures listed in [20] were used.

Next, we determine experimentally the optimal number of sets of front cords (not
counting the local improvement) that are needed in the exploration stage. To grasp a
long circular cylinder, most people align their wrists perpendicular to the cylinder’s
largest principal axis. To check whether grasps synthesized by our cord-driven grasp
planner also aligns the wrist in a similar way, we randomly generated multiple sets of
front cords. After each run, the best set of front cords (based on the grasp measure XOR
χ) was chosen and the skewness measure α for the corresponding grasp computed. The
upper subfigure in Fig. 11 illustrates the mean and standard deviation (pooled over 100
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Figure 10: 5 computer-designed objects, from left, Decor, Desk Lamp, Pliers, Sai
Weapon, and Spike Weapon. Top: stable grasps synthesized by the generic grasp plan-
ner in Simox. Bottom: stable grasps synthesized by our cord-driven grasp planner.

runs) of the skewness measure α. Clearly, α is much lower with local improvement
and it decreases with the additional number of sets of front cords. However, as shown
in the lower subfigure in Fig. 11, the running time of the exploration stage increases
linearly with local improvement. In the rest of this section, 20 sets of front cords are
generated in the exploration stage (plus local improvement), because it strikes the best
balance between quality (as measured by the skewness measure) and running time (in
seconds).

Lastly, we evaluate grasps synthesized by our cord-driven grasp planner for 5 KIT
objects with simple shape and clearly defined principal axes using grasp quality mea-
sure skewness α, and compared them to grasps synthesized by the generic grasp plan-
ner in Simox. In [20], the objects chosen for the experiments were simple household
items: wine glass, one-liter bottle, soda can, cereal box, coil of wire, phone, pitcher,
soap dispenser, and CD pouch. We selected 5 KIT objects among the 26 KIT objects
we use in this paper: CoffeeFilters (Cereal box), CokePlasticLarge (One-liter bottle),
KoalaCandy (Soda can), Pitcher (Pitcher), and Wineglass (Wine glass), where the ob-
jects in the parentheses are the look-alikes in [20]. For each object, we synthesized 10
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Figure 11: Upper: The mean values of the skewness measure α and the corresponding
standard deviations for the grasps synthesized by our cord-driven grasp planner for a
cylinder. Lower: The running time (in seconds) of the exploration stage of our cord-
driven grasp planner when it was used to synthesize grasps for a cylinder.

grasps with the proposed grasp planner and 10 + 10 + 10 grasps with the generic
grasp planner (with 3 different running time). The means and standard deviations
(shown in the parentheses) of the total running time of our cord-driven grasp plan-
ner are 2.43 sec (0.57 sec), 5.70 sec (0.36 sec), 2.44 sec (0.36 sec), 4.65 sec (4.65 sec),
and 3.75 sec (0.52 sec) for CoffeeFilters, CokePlasticLarge, KoalaCandy, Pitcher, and
Wineglass, respectively. The skewness data for the objects with simple shape shown
in Fig. 12 indicates that, in the vast majority of cases, the mean value and standard
deviation of α are lower for grasps synthesized by the proposed grasp planner.

5.2 Analysis of Our Cord-driven Grasp Planner
In this subsection, we analyze the performance of our cord-driven grasp planner that
synthesizes a stable grasp in two stages with the SAH: the exploration and the finger
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Figure 12: Both mean and standard deviation of the skewness grasp measure α are in
general lower for grasps synthesized by our cord-driven grasp planner for the 5 objects
with simple shape than grasps synthesized by the generic grasp planner in Simox.

configuration computation stages.
Initially, we synthesized grasps for the 26 KIT objects. Additional sets of front

cords were generated in addition to the initial 20 sets during the local improvement
phase. During the finger configuration computation stage, the sets of front cords for
each object are processed one by one until a stable grasp is found, where the sets are
sorted by their grasp measure XOR scores. Since there are 26 KIT objects to be grasped
and 10 attempts were made for each object, we made a total of 260 attempts and found
260 stable grasps. A histogram of the number of sets of front cords processed until
a stable grasp was found is shown in the upper subfigure in Fig. 13. This shows that
stable grasps were found among the top-ranked sets of front cords for the vast majority
of the 260 cases. Furthermore, in the finger configuration computation stage, stable
grasps were found within 0.2 sec for almost all cases as shown in the lower subfigure in
Fig. 13. Time (averaged over 10 attempts for each KIT object) taken by the proposed
grasp planner to find a stable grasp is shown in Fig. 14.

We also synthesized grasps for the 26 KIT objects with the iCub (right) and ARMAR-
III (right) hands. Three sets of stable grasps, one for each robotic hand, synthesized by
the proposed grasp planner for all 26 KIT objects can be found in the supplementary
digital video. In Fig. 15, 3 stable grasps using 3 different hands for 3 KIT objects are
shown. The right subfigure shows that, given a smaller object with a handle such as
a coffee cup (or the water jar in the subfigure), our grasp planner prefers to grasp the
cup instead of just the handle, because a grasp around the cup has lower skewness and
hence it is more stable. Furthermore, such a grasp is also much easier to be executed by
a robotic hand. However, given a kettle, our grasp planner will synthesize grasps that
grab the handle instead of the body of the kettle as shown in Fig. 16, because grasps
around the handle are more robust in this case; on the contrary, the generic grasp plan-
ner in Simox does not have a preference for the kettle handle.

Next, we synthesized grasps for the 5 computer-designed objects. Since there are
5 computer-designed objects to be grasped and 10 attempts were made for each object,
we made a total of 50 attempts and found 50 stable grasps. The average time taken
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Figure 14: Time (averaged over 10 attempts for each object) taken by the cord-driven
grasp planner to find a stable grasp for each KIT object.

by our cord-driven grasp planner to find a stable grasp for Decor, Desk Lamp, Pliers,
Sai Weapon, and Spike Weapon is 31.25 sec (4.58 sec), 31.80 sec (5.95 sec), 13.36 sec
(0.99 sec), 16.16. sec (3.63 sec), and 9.59 sec (1.21 sec), respectively, where the values
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Figure 15: Three stable grasps for three KIT objects with three different robotic hands.

Figure 16: Left: A grasp synthesized by the generic grasp planner in Simox for a
kettle. Right: A grasp synthesized by our cord-driven grasp planner that grasps the
kettle handle.

shown in the parentheses are the corresponding standard deviations.
Finally, we compared stable grasps synthesized by our cord-driven grasp planner

for the 5 computer-designed objects to grasps synthesized by the generic grasp planner
in Simox. For each object, we set the timeout of the generic grasp planner to the maxi-
mum running time of the cord-driven grasp planner for the same object. Furthermore,
we enabled the force closure option and set the minimum quality to 0. Stable grasps
synthesized by the generic grasp planner and the proposed grasp planner for these 5
objects are shown in the top and bottom row in Fig. 10, respectively. These stable
grasps can also be found in the supplementary digital video. The skewness data for
these objects with complex shape shown in Fig. 17 indicates that both the mean value
and standard deviation of α are lower for grasps synthesized by the proposed grasp
planner. Therefore, stable grasps synthesized by the proposed grasp planner are more
natural-looking for humans. For example, given a spike weapon, the generic grasp
planner tends to grasp the spikes, whereas the proposed grasp planner tends to grasp
the handle, as most people would do. Furthermore, stable grasps synthesized by the
proposed grasp planner for these 5 objects are in general easier to be executed on real
robotic platforms. In Fig. 10, the grasp synthesized by the generic grasp planner for
object Decor is difficult to be executed on real robotic platforms, especially when the
object is localized from uncertain point cloud data.

18



0

5

10

15

20

25

30

S
k
e

w
n

e
s
s
 (

d
e

g
)

 

 

D
e

c
o

r 

D
e

s
k
 L

a
m

p
 

P
lie

rs
 

S
a

i 
W

e
a

p
o

n
 

S
p

ik
e

 W
e

a
p

o
n

 

The Generic Grasp Planner in Simox

The Cord−driven Grasp Planner

Figure 17: Both mean and standard deviation of the skewness grasp measure α are
lower for grasps synthesized by our cord-driven grasp planner for the 5 objects with
complex shape than grasps synthesized by the generic grasp planner in Simox.

6 Conclusion
We have presented an innovative and intuitive grasp planner that synthesizes stable
grasps after quickly identifying promising regions for force-closure grasps by wrap-
ping multiple sets of cords around an object in order to obtain information about its
shape. The proposed planner has several advantages compared to previous approaches:
it can be easily and rapidly implemented; it operates on polygon soup meshes; it can
handle objects with complex shapes; and it does not require costly preprocessing such
as shape segmentation and medial axis computation. Furthermore, grasps synthesized
by our cord-driven grasp planner are more similar to human-planned grasps as mea-
sured by grasp quality measure skewness compared to grasps synthesized by previous
approaches such as the generic grasp planner in Simox. Consequently, the proposed
planner is particularly suitable for the fast computation of grasps in the context of
human-robot interaction and interactive synthetic characters.

There are several ways to improve the proposed planner. The current sampling
approach is optimized for grasping of smaller household items. By utilizing a different
sampling strategy, the planner can be adapted to grasp larger household items such as
chairs and tables. Naturally, multiple hands are needed to lift a table. Another possible
improvement of the planner would be its adaptation to the synthesis of precision grasps
in order to for example pick up small items such as pens and small action figures. For
example, non-stiff front cords can be supplemented with stiff front cords [7] so that the
proposed grasp planner becomes more suitable for synthesizing of precision grasps.
Furthermore, the cord model used in this paper can be extended to have more width
or thickness to represent flat ribbons or thick tubes, respectively [7]. This way, even
grasps for objects such as an extended Slinky (a toy in the form of a pre-compressed
helical spring) can be synthesized. Finally, in addition to rely on the grasp quality
measure skewness to evaluate how natural-looking a grasp is for humans, we would
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like to perform perceptual studies to compare grasps synthesized by our cord-driven
grasp planner with grasps generated by human subjects and see if the subjects could
identify the synthesized grasps. We would also like to investigate whether our grasp
planner can synthesize even more natural-looking grasps with access to a database of
grasp knowledge.
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