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Saccadic (rapid) eye movements are primary means by which humans and non-human primates sample
visual information. However, while saccadic decisions are intensively investigated in instrumental con-
texts where saccades guide subsequent actions, it is largely unknown how they may be influenced by
curiosity – the intrinsic desire to learn. While saccades are sensitive to visual novelty and visual surprise,
no study has examined their relation to epistemic curiosity – interest in symbolic, semantic information.
To investigate this question, we tracked the eye movements of human observers while they read trivia
questions and, after a brief delay, were visually given the answer. We show that higher curiosity was
associated with earlier anticipatory orienting of gaze toward the answer location without changes in
other metrics of saccades or fixations, and that these influences were distinct from those produced by
variations in confidence and surprise. Across subjects, the enhancement of anticipatory gaze was
correlated with measures of trait curiosity from personality questionnaires. Finally, a machine learning
algorithm could predict curiosity in a cross-subject manner, relying primarily on statistical features of
the gaze position before the answer onset and independently of covariations in confidence or surprise,
suggesting potential practical applications for educational technologies, recommender systems and
research in cognitive sciences. With this article, we provide full access to the annotated database allowing
readers to reproduce the results. Epistemic curiosity produces specific effects on oculomotor anticipation
that can be used to read out curiosity states.
� 2015 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Curiosity is defined as the intrinsic motivation to learn and
acquire information, and plays a central role in intelligent behavior
including in development, learning and exploration (Berlyne,
1954; Gottlieb, Oudeyer, Lopes, & Baranes, 2013; Oudeyer,
Baranes, & Kaplan, 2013). Psychological theories formulated in
the 1960s and 1970s distinguished between perceptual curiosity
– a desire to obtain new sensory inputs – and epistemic curiosity
– an interest in new knowledge or semantic information
(Lowenstein, 1994). More recently, epistemic curiosity was associ-
ated with cortical and subcortical structures in human observers,
including activation of reward-related structures (Kang et al.,
2009), and memory enhancement through reward modulations
of hippocampal mechanisms (Gruber, Gelman, & Ranganath, 2014).
An open question however concerns the links between curiosity
and selective attention. Attention, along with working memory, is
critical for learning and selective information processing
(Cardoso-Leite & Bavelier, 2014; Gottlieb et al., 2013). In humans
and non-human primates, visual attention and rapid eye move-
ments (saccades) are the primary means by which subjects sample
visual information, and are sensitive to value and motivation
(Gottlieb, 2012; Gottlieb, Hayhoe, Hikosaka, & Rangel, 2014;
Tatler, Hayhoe, Land, & Ballard, 2011). While a recent study has
shown that personality measures of trait curiosity correlate with
the numbers of saccades and numbers of regions explored during
free-viewing of complex scenes (Risko, Anderson, Lanthier, &
Kingstone, 2012), nothing is known about the links between eye
movements and epistemic curiosity – interest in semantic
information.

In this report we examined this question by tracking the eye
movements of human observers while they were presented a ser-
ies of trivia questions that created high or low epistemic curiosity
states. Because curiosity can covary with other epistemic factors
such as confidence and surprise, we asked subjects to provide
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independent ratings of the 3 subjective states. We tested the
hypothesis that curiosity will influence eye movement control,
and that these influences would be sufficiently specific to allow
curiosity to be ‘‘read out” from eye movements using data mining
algorithms. The results confirmed both predictions. We show that
curiosity enhanced anticipatory eye movements toward the
expected location of the answer and the dwell time on the answer
after it was presented, without affecting other metrics of saccades
or fixations. The ocular signatures of high or low curiosity, confi-
dence or surprise were sufficiently specific so that a machine learn-
ing algorithm could discriminate these levels with above-chance
accuracy across multiple individual observers.

2. Methods

2.1. Subjects

Twenty subjects (11 women) were recruited from the Columbia
University community and were compensated for their participa-
tion at the rate of $15 per hour. All the experimental procedures
were approved by The Institutional Review Board of Columbia
University and written informed consent was obtained for each
subject.

2.2. Procedure

During the experiments subjects were comfortably seated in a
dimly lit room with their head stabilized by a chin-rest at a dis-
tance of 54 cm from a computer screen. Eye position and pupil size
were measured at a sampling rate of 500 Hz using an Eye-link 1000
eye-tracking system configured for binocular tracking. Before data
collection began, the subjects received a task description and per-
formed a few practice trials that were not included in the data set.

In the first part of a session the subjects were required to
perform a series of 120 trials in which they read and rated trivia
questions and were subsequently shown the answer. The trials
were evenly divided between 60 one-question trials in which the
subjects received a single question, and 60 two-question trials, in
which they saw two sequentially presented questions and could
select the one for which they wished to see the answer. One and
two-question trials were signaled in advance by, respectively,
one or two ‘‘beeps” and were presented in randomly interleaved
order in one trial block. A progress bar was displayed after every
trial indicating the number of remaining questions.
On which continent is Paris ?
How Curious are you about this question?

How Confident are you that you know the answer?
1 2 3 4 5

1 2 3 4 5

92

On which continent is Paris ?
How Curious are you about this question?

How Confident are you that you know the answer?
1 2 3 4 5

1 2 3 4 5

How many protons in Uranium? 
How Curious are you about this question?

How Confident are you that you know the answer?
1 2 3 4 5

1 2 3 4 5

How Surprised are you by the answer ?
1 2 3 4 5

1 2

5 6Answer display  
1.5 sec 

Fig. 1. Task design. The panels illustrate the sequence of events on a 2-question trial: (1)
of the second question and its curiosity/confidence rating, (3) choice of question, (4) an
As shown in Fig. 1 a trial began when the first question was dis-
played in the upper part of the screen and subjects were asked to
rate their levels of curiosity and confidence using a scale of 1
(low) to 5 (high) (panel 1). On 2-question trials, this was followed
by the presentation of the second question and its ratings (Fig. 1,
panel 2), after which the subjects were prompted to select one
question to which they wished to receive the answer using an
up/down key press (Fig. 1, panel 3). The trial then progressed to
the answer period during which we recorded eye movements as
described below (Fig. 1, panels 4–5). After viewing the answer,
the subjects received a final rating scale asking them to indicate
their surprise in the answer (Fig. 1, panel 6; 1 low, 5 high). One-
question trials were identical, except that only one question was
displayed and, after giving their curiosity and confidence ratings,
the subjects pressed a button to progress to the answer stage.

Our focus was on the subjects’ eye movements during a 3 s per-
iod centered on answer presentation. To dissociate the anticipatory
and reactive components of gaze we divided this period into a 1.5 s
anticipatory epoch when a rectangular empty box appeared at the
top of the screen indicating the forthcoming position of the answer
(Fig. 1, panel 4), and a 1.5 s answer period, when the answer was
displayed aligned to the left edge of the box (Fig. 1, panel 5). All let-
ters (for the questions and answers) were displayed in black with a
luminance lower than that of the background, and letter height
was approximately 0.39 degrees of visual angle (DVA).

After completing the trivia questions, the subjects completed
three questionnaires developed to assess personality traits (110
questions total). The first questionnaire measured the tendency
to maximize external or internal sensations on a sensation seeking
scale (Zuckerman, 1964). The second questionnaire was the Curios-
ity and Exploration Inventory II (Kashdan et al., 2009) which mea-
sures curiosity and exploration using 2 dimensions: interest for
novelty, challenge and absorption (full engagement in specific
activities). The third questionnaire analyzes novelty-seeking
behaviors on four subscales based on the origin of the stimulation:
internal or external to the body, and cognitive versus sensational
(Pearson, 1970).
2.3. Data analysis

To study the impact of epistemic curiosity on eye movement
patterns we measured eye position as a function of time during
the answer period, as well as the number, amplitudes and peak
velocities of individual saccades and the number and durations
On which continent is Paris ?
How Curious are you about this question?

How Confident are you that you know the answer?
1 2 3 4 5

1 2 3 4 5

How many protons in Uranium? 
How Curious are you about this question?

How Confident are you that you know the answer?
1 2 3 4 5

1 2 3 4 5

Select a Question using UP or DOWN arrows

3 4

Eye-movement recording

Answer anticipation  
1.5 sec 

presentation of the first question and curiosity/confidence ratings, (2) presentation
ticipation of answer, (5) presentation of answer, (5) surprise rating.
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of individual fixations. Saccades were detected offline as displace-
ments with amplitudes larger than 1 degrees of visual angle and
velocity exceeding 0.1 deg/s. A fixation was counted when eye-
position was stable for a minimum of 100 ms.

Because subjects had a tendency to emphasize ratings of 1 and
5 for all measures (Fig. 2A–C), we focused on comparing trials with
these ratings, which we refer to as, respectively, ‘‘low” or ‘‘high”
curiosity, confidence or surprise.

To analyze the 3 questionnaires, each of which captured a
slightly different aspect of curiosity, we summarized the results
using a subject-specific aggregate curiosity score. To derive this
score we first normalized each subject’s responses to each ques-
tionnaire on a scale from 0 to 100 (i.e., Sensation seeking scale:
True = 0, False = 100; Curiosity and exploration inventory: very
slightly or not at all = 0; a little = 25; moderately = 50; quite a
bit = 75; extremely = 100; Novelty seeking questionnaire: dis-
like = 0; like = 100), and then computed the average score across
the 3 questionnaires.
2.4. Data mining

2.4.1. The random forests algorithm
To determine whether machine learning techniques can learn

an accurate predictive model of epistemic states (curiosity, confi-
dence or surprise) we used a common algorithm, the random forest
algorithm, which was used in many prior applications. The algo-
rithm showed superior performance in other domains (Criminisi,
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Fig. 2. Ratings in one-question and two-question trials. (A) The distribution of ratings for
for one subject across all questions (including 1- and 2 question trials). (D) Curiosity is
subject, and confidence ratings were transformed to percentages by dividing by 5 and m
one- and 2-question trials and across subjects. The large circles show the average curios
model fit and 95% confidence intervals. The fit produced a significant linear coefficient
described in the text. (E) Correlation between curiosity and surprise (r = 0.81, p < 10�18).
on 2-question trials. For each 2-question trial, we calculated relative curiosity/confidenc
then plotted the fraction of trials in which subjects chose to see the answer for the que
show the SEM across subjects. The two data columns on the right show the values across
large symbols show the across-subject means and SEM.
Shotton & Konukoglu, 2011) including image classification
(Bosch, Zisserman & Muoz, 2007), ecology (Cutler et al., 2007)
and micro-array analysis (Pang et al., 2006), as well as superior
capabilities to identify informative features and disregard redun-
dant ones, model complex predictive interactions between fea-
tures, and rely on only a few parameters that are easily tuned
(Breiman, 2001; Cutler et al., 2007).

The random forests algorithm is based on combinations of clas-
sification trees. In one classification tree, each node denotes an
individual test on an attribute and branches represent the corre-
sponding outcome, leading progressively to terminal nodes that
hold the class labels (e.g., high or low curiosity, confidence or sur-
prise). The algorithm takes as input a vector of eye movement
parameters (see below, ‘‘Eye movement parametrization”) and gen-
erates several classification trees on a randomly selected subset of
features, training them by bootstrapping different versions of the
training data. Trees are created incrementally to target training
data that are not yet well classified by already constructed trees.
Finally, the algorithm fuses the results of all the trees and attempts
to classify new data in a test set that had not been included in the
training set (Breiman, 2001).
2.4.2. Implementation
We parameterized the Random Forests algorithm using 250

random trees, each using 8 features, and a 10-fold cross-
validation method that selects each 10th of data as a test set, while
using the remaining data for training. We implemented the
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analysis in the open-source software ‘‘Weka” (Witten & Frank,
2005), which is freely available at http://www.cs.waikato.ac.nz/
~ml/weka, and make the full annotated eye movement data set
publicly available at: www.gottlieblab.com. Readers can reproduce
our analysis by using Weka with parameters –I 250 –K 8 –S 1.

We conducted the mining analyses separately for predicting
ratings of curiosity, confidence and surprise. In a first population
analysis we used all trials with ratings of 1 or 5, pooled across all
observers. Because any imbalance in the frequency of high and
low ratings can artificially inflate prediction accuracy, we resam-
pled the pooled data set to provide equal number of trials with
each type of rating, thereby ensuring that chance accuracy was
50%. After resampling we were left with 990 trials for the analysis
of curiosity, 1144 trials for confidence and 1042 trials for surprise.
In this remaining data set, the number of trials per subject was too
low to provide a meaningful evaluation of how accurate a machine
learning algorithm is for individual subjects. Therefore, to verify
the consistency of the algorithm, we used a standard cross-
subject validation procedure, whereby we trained the algorithm on
19 of the 20 subjects and tested its prediction accuracy on the
remaining subject, iterating until each subject served as a test. To
assess statistical significance we tested the set of predictions
against 0.5 using non-parametric tests. Note that, although the
training sets overlap across the 20 subjects, the results of the test
phase are based on the individual subject data, and therefore pro-
duce 20 independent points, satisfying the independence assump-
tion for statistical tests.

To determine the prediction value of individual eye movement
features we used the ‘‘GainRatio” tool provided by Weka. The tool
outputs the information gain ratio (IGR), defined as the reduction
in entropy achieved by using information only from that feature:

IGR ¼ GainRðClass; featureÞ
¼ ðHðClassÞ �HðClassjFeatureÞÞ=HðFeatureÞ

where ‘‘class” refers to the categories to be predicted (high or low
curiosity, confidence or surprise) and H() denotes the entropy of
the respective distribution (see Witten & Frank, 2005).

2.4.3. Eye movement features
While traditional data analyses can only focus on a small num-

ber of features, data mining techniques based on machine learning
can rapidly evaluate very large sets of features and feature combi-
nations. Therefore, these techniques can reveal new parametriza-
tion of the eye movement traces that make efficient statistical
predictions but may not have been identified on an a priori basis.

We parametrized the input to the algorithm using a vector of
183 features that described the statistical properties of the eye
movement traces on each trial. A complete list of features is given
in Supplementary Table 1 and a general description is given below.

The majority of the features were statistical properties of 4 sig-
nals: (1) the horizontal position of the eye in screen coordinates,
(2) the vertical position of the eyes in screen coordinates, (3) pupil
diameter (z-scored for each subject by subtracting the mean and
dividing by the standard deviation across all the trials given by that
subject), and (4) the Euclidean distance between the eye and the
upper left corner of the answer box. Each signal was measured
during the 1.5 s before-answer and after-answer periods at a fre-
quency of 500 Hz, providing 2 data sets of 750 data points each.

For each of the 8 resulting data sets (4 signals * two epochs), we
extracted a set of 40 basic features before the answer and after
answer onset (listed, respectively, in lines 1–40 and 84–123 in
Supplementary Table 1). These values were based on statistical
properties of the measurements, including the minimum, maxi-
mum, mean, median, variance, range (max–min), and the first
quartile, third quartile and interquartile range (difference between
the first and second quartiles). In addition, to capture aspects of
gaze dynamics during the two epochs, we computed a vector of
local derivatives (differences between successive time points)
and extracted the mean of the absolute value of the derivatives
in each epoch. Finally, we provided the difference between the ‘‘be-
fore answer” and ‘‘after answer” values for the 20 features charac-
terizing the distance to answer and the pupil size (features 164 to
183). For measures of pupil size, to mitigate noise induced by vari-
ations in gaze location or luminance, we extracted additional
descriptors from a subset of trials when the eyes were continu-
ously inside the answer box during the interval 0.5 s before to
0.5 s after answer onset. The 10 features extracted from the first
and second halves of this interval (250 samples each) are listed
in lines 74 to 83 (before answer), and 154 to 174 (after answer).

Finally, we extracted features describing individual saccades
and fixation: 6 features for each of the 5 first fixation of epochs
before the answer (Supplementary Table 1, lines 41 to 70) and after
the answer display (lines 124 to 153). For each fixation we
extracted (1) the time of beginning of the fixation (the end of the
pre-fixation saccade), (2) the end of each fixation (the onset of the
post-fixation saccade), (3) fixation duration (difference between
start and end times), (4) the average horizontal position during
the fixation period in screen coordinates, (5) the average vertical
position during the fixation period in screen coordinates, (6) the
average Euclidean distance between the fixation location and the
answer box. If a trial included fewer than 5 fixations in either epoch,
themissing numberswere coded as NaN (not a number). Finally, we
computed the time when the eyes first entered the answer box (71
if this time was before, and line 72 if it was after answer onset) and
the duration of the first fixation in this area (line 73).

3. Results

3.1. Ratings and choices

As shown in Fig. 2A–C, the distribution of ratings was not uni-
form but tended to be concentrated on values of 1 and 5 for curios-
ity, confidence and surprise. This suggests that subjects were
engaged in the task and did not merely settle on a default interme-
diate rating. Because of this asymmetry, we focused our eye move-
ment analyses on trials with ratings of 1 or 5 (which we refer to as
‘‘low” or ‘‘high”).

Previous investigations proposed that a key factor driving epis-
temic curiosity is an ‘‘information gap” – a discrepancy between
what one knows and what one would like to know – and therefore
that curiosity should peak when one has a little bit of knowledge,
but diminish if a subject knows too little or too much about a topic
(Kang et al., 2009; Lowenstein, 1994). Consistent with this predic-
tion, we found that ratings of curiosity were an inverted U-shaped
function of confidence – peaking at intermediate levels but becom-
ing lower for the lowest or the highest levels of confidence
(Fig. 2D). Following the method of Kang et al. (Kang et al., 2009),
we transformed confidence ratings to percentages (dividing each
rating by 5 and multiplying by 100), and fit the data to the equa-
tion: curiosity = b0 + b1 * p + b2 * p * (1 � p), where p is the trans-
formed confidence score. The model provided R2 = 0.73 and a
significant quadratic coefficient (b2 = 30 * 10�4, 95% confidence
interval, [24 * 10�4, 36 * 10�4]) consistent with a peak at interme-
diate values. We obtained equivalent results whether we used
the raw or z-scored confidence ratings.

Ratings of curiosity were positively correlated with ratings of
surprise (Fig. 2E; r = 0.982, p = 0.003). Interestingly, subjects could
have understood their ratings of ‘‘surprise” in this task to indicate
how unlikely they believed the answer to be (how much it differed
from the set of possible answers) or alternatively, how much
weight they gave to the new information. The high correlation

http://www.cs.waikato.ac.nz/~ml/weka
http://www.cs.waikato.ac.nz/~ml/weka
http://www.gottlieblab.com
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between curiosity and surprise suggests that subjects adopted the
latter interpretation – i.e., the more curious they were while antic-
ipating the answer, the more salience they assigned to the answer
when it was finally shown. In the following analyses we show that,
despite this high correlation between curiosity and surprise, the
two constructs have different oculomotor effects.

To investigate how the subjects’ ratings were related to their
choices on 2-question trials, we calculated for each trial the abso-
lute difference between the ratings of curiosity and confidence
assigned to the two alternative questions. We reasoned that, if
the relative ratings determined the subjects’ choices, subjects
may tend to choose the question with the higher curiosity or lower
confidence on each trial.

As shown in Fig. 2F, this hypothesis was confirmed and choices
were determined more strongly by ratings of curiosity than by
those of confidence. Subjects almost always asked for the answer
to the question that produced the higher curiosity, even if the rat-
ing differences were small (Fig. 2F; black trace). While the subjects
also tended to select the question in which they had lower confi-
dence, this was a weaker effect (Fig. 2F, gray). If both questions
elicited a similar level of confidence (a difference of 1), choices
were fully allocated to the question that elicited higher curiosity.
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Fig. 3. Probability density of fixations during the answer epoch. We divided the 3 s of eye
the screen display into pixels measuring 0.27 by 0.15 degrees of visual angle. We then c
were averaged for each subject and then averaged across subjects. The heat maps show
individual maps such that brighter areas correspond to zones that receive more explora
Across the entire set of 2-question trials (Fig. 2F, right panel), sub-
jects selected the question with the higher curiosity rating on
93% ± 2.3% of trials and the question with the lower confidence rat-
ing on only 68% ± 3.2% of trials (p < 10�5, Wilcoxon test). Together,
these findings suggest that confidence influences curiosity accord-
ing to an inverted-U function (Fig. 2D) but it is curiosity that ulti-
mately determines the subjects’ choice of information.

3.2. Eye movements

To examine the overall eye movement patterns during the task,
we constructed time-resolved maps of fixation density at each
screen location (Fig. 3). Consistent with previous investigations,
subjects allocated their gaze behavior in a task-related fashion,
both anticipating and reacting to the task events (Tatler et al.,
2011). At the onset of the anticipation period, gaze position was
diffusely distributed in the upper half of the screen – where the
subjects had just viewed the question and provided their ratings
– whereas thereafter gaze became increasingly clustered on the
left corner of the answer box – where the answer was expected
to be. Gaze transiently converged on the answer after it appeared,
and then gradually drifted toward the center of the screen – the
er ON +1.5s

position recording in 10 non-overlapping 300 ms bins, and divided the total area of
alculated the fraction of time, out of each time bin, that a pixel was fixated. Values
group averages of trials with ratings of 1 or 5. The subtraction maps subtract two
tion for the higher rating.
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ANOVA; stars show **p < 10�45, ***p < 10�75. (B) To examine whether the effect of curiosity was robust to variations in confidence, we divided trials into those with high and
low confidence ratings and computed a regression analysis to determine the impact of curiosity in each group (using average eye position in the 500 ms before answer onset).
The panel shows the regression coefficients and their 95% confidence interval, and the stars indicate p < 10�30. Negative coefficients indicate that higher curiosity ratings were
associated with smaller distance to the answer box.

Table 1
Comparison of saccade and fixation metrics as a function of epistemic states.

Curiosity Confidence Surprise

High Low High Low High Low

Anticipatory #Saccades 3.31(0.17) 3.33(0.13) 3.28(0.12) 3.74(0.18) 3.47(0.15) 3.34(0.13)
Sac. Amp. (deg.) 8.25(0.63) 9.00(0.62) 9.11(0.58) 7.78(0.49) 8.43(0.53) 8.92(0.55)
Peak. Vel. (deg/s) 240.78(11.83) 249.21(9.54) 243.56(8.27) 235.05(11.20) 245.36(11.12) 252.04(10.09)
#Fix. 2.92(0.12) 2.90(0.09) 2.89(0.11) 3.25(0.13) 3.03(0.10) 2.93(0.09)
Fix. Dur. (ms) 0.36(0.02) 0.35(0.02) 0.36(0.01) 0.33(0.02) 0.34(0.02) 0.35(0.02)

After answer #Saccades 3.51(0.13) 3.55(0.13) 3.49(0.11) 3.48(0.12) 3.45(0.16) 3.56(0.13)
Sac. Amp. (deg) 8.39(0.53) 7.60(0.54) 7.54(0.56) 7.42(0.43) 8.03(0.52) 7.77(0.58)
Peak. Vel. (deg) 240.54(9.67) 234.95(12.07) 228.94(11.18) 228.05(9.68) 246.66(12.21) 228.60(11.39)
# Fix. 2.82(0.13) 2.88(0.11) 2.76(0.09) 2.82(0.09) 2.69(0.12) 2.81(0.10)
Fix. Dur. (ms) 0.28(0.02) 0.30(0.02) 0.30(0.01) 0.29(0.01) 0.27(0.02) 0.30(0.02)

Each entry shows the average (SEM) of the respective metric in 1-question trials, first averaged by subject and then across subjects. For each metric we compared the high and
low rating trials using a Wilcoxon test. While higher confidence tended to be associated with fewer saccades, fewer fixations and larger saccade amplitudes during the
anticipation period, these trends did not reach statistical significance (p-values of, respectively, 0.063, 0.07 and 0.08). For all other comparisons, p > 0.13.
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anticipated location of the surprise ratings (whose presentation is
not included in Fig. 3).

In addition to this task-related pattern, gaze was modulated by
curiosity, confidence and surprise. This can be appreciated by com-
paring the top two rows of fixation maps in each category, corre-
sponding to ‘‘high” and ‘‘low” ratings, and from the subtraction
maps on the 3rd row. These displays suggest that gaze converged
sooner and lingered longer on the expected answer location for
high relative to low curiosity states.

To quantitatively analyze these effects and distinguish them
from those of confidence and surprise, we measured the average
Euclidean distance between the eye and the top left corner of the
answer box as a function of time (Fig. 4A). This distance was
significantly smaller for questions with high relative to low curios-
ity ratings, and this difference was maintained consistently during
the entire anticipation epoch (p < 10�45, Wilcoxon test). Therefore,
subjects shifted gaze sooner to the answer box if they had higher
curiosity. In contrast, confidence had an inconsistent effect that
switched from early repulsion to a slight later attraction in high
versus low confidence states, but was not significant over the
entire interval (Fig. 4A, middle). To further confirm that the effects
of curiosity are not confounded by those of confidence, we carried
out a second analysis where we computed the effects of curiosity
separately in trials with high and low confidence ratings. Linear
regression coefficients computed over the 500 ms before answer
onset were significantly negative in both trial subgroups
(p < 10�30 in both cases), showing that high curiosity was
associated with a shorter distance to the answer independently
of confidence ratings (Fig. 4B).
Eye movements were also influenced by subjective ratings after
answer presentation – lingering longer on the answer for trials
with higher curiosity, lower confidence and higher surprise
(Fig. 4A). However, because of the statistical associations among
these ratings (Fig. 2D and E), these post-answer effects cannot be
unambiguously attributed to a specific factor – a topic to which
we return in the data mining analyses below.

As shown in Table 1, curiosity, confidence and surprise had no
significant effects on other gaze parameters, including the number,
amplitudes, peak velocities of saccades, or the number and dura-
tions of fixations, in the epochs that preceded or followed the
answer onset. Therefore in higher curiosity states, subjects seem
to have guided their gaze more precisely toward the answer box
without altering the speed or frequency of saccades.

3.3. Correlation with trait curiosity

To determine whether the impact of curiosity on eye move-
ments correlates with measures of trait curiosity (Risko et al.,
2012), we constructed an aggregate curiosity score based on the
subjects’ answers to 3 questionnaires designed to measure sensa-
tion seeking, curiosity and exploration and novelty seeking traits
(see Section 2). We found a negative correlation between the
questionnaire score and the effect of curiosity on saccadic antici-
pation (Fig. 5A; linear regression coefficient, �0.079; SE = 0.031,
p = 0.02). By contrast, there were no significant correlations
between questionnaire scores and the extent to which gaze was
affected by confidence (Fig. 5B; linear regression coefficient,
0.032; SE = 0.246, p = 0.17) or surprise after answer onset
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Fig. 5. Effects of state curiosity on eye movements correlate with trait curiosity. To measure the correlation between questionnaire ratings and oculomotor effects we
computed for each subject the average eye distance to answer (over the 3-s of eye-movement recording for curiosity and confidence, and over 1.5 s after answer onset for
surprise). We then computed an effect size for each subject as the average difference between trials with ratings of 5 versus 1, and plotted it against the subject’s aggregate
questionnaire score (see Section 2). Linear regression (black line) was significant for the first panel but not for the other two (omitted).

Table 2
Performance parameters for the random forests algorithm.

Class TP rate FP rate Precision Recall F-measure

Curiosity % correctly classified instances: 69.8%; ROC area: 0.753
Low 0.689 0.293 0.702 0.689 0.0695

A. Baranes et al. / Vision Research 117 (2015) 81–90 87
(Fig. 5C; �0.027; SE = 0.042, p = 0.53). Therefore trait curiosity
correlates with the impact of curiosity on gaze: subjects showing
higher trait curiosity as measured by questionnaires also showed
a stronger tendency to anticipate the answer in high versus low
curiosity states.
High 0.707 0.311 0.694 0.707 0.701
Average 0.698 0.302 0.698 0.698 0.698

Confidence % correctly classified instances: 72.8%, ROC area: 0.796
Low 0.771 0.315 0.71 0.771 0.739
High 0.685 0.229 0.75 0.685 0.716
Average 0.728 0.272 0.73 0.728 0.728

Surprise % correctly classified instances: 63.1%; ROC area 0.687
Low 0.614 0.353 0.635 0.614 0.624
High 0.647 0.386 0.626 0.647 0.636
Average 0.631 0.369 0.631 0.631 0.63

TP rate: rate of true positives (fraction correctly classified as a given class); FP rate:
rate of false positives (fraction falsely classified as a given class); Precision: pro-
portion of instances that are truly of a class divided by the total instances classified
as that class; Recall: proportion of instances classified as a given class divided by the
actual total in that class (equivalent to TP rate); F-measure: a combined measure for
precision and recall calculated as 2 * Precision * Recall/(Precision + Recall).
3.4. Data mining

While the analyses we conducted so far show that ratings of
curiosity, confidence and surprise affect eye movement patterns,
in the following section we asked the converse question: are the
eye movements effects specific enough to provide a read out of
the subject’s epistemic state? Please note that these two questions
are mathematically distinct and are expected to provide non-
redundant information. Traditional analyses are equivalent to esti-
mating the conditional probability of an eye movement pattern
given an epistemic state (e.g., P(eye movement | high or low rating)),
whereas a data mining approach estimates the inverse probability
– the likelihood of an epistemic state given an eye movement pattern
(e.g., P(high or low rating | eye movement)). In addition, while a
traditional approach focuses on a small set of ‘‘intuitive” features
that are believed to be relevant based on prior hypotheses, data
mining algorithms sift through very large sets of features and fea-
ture combinations, and can reveal new parameterizations of the
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data set, pooled across observers. This produced above-chance clas-
sification accuracy of 69.79%, 72.81% and 63.05% for, respectively,
curiosity, confidence and surprise (Fig. 6A; recall that chance levels
were 50% in the re-sampled data set; see Section 2). Details of the
algorithmperformance are shown in Table 2, and establish that per-
formancewas unbiased and of similar accuracy for low and high rat-
ing trials. To examine the reliability of the algorithm across
individual observers we used a cross-subject validation procedure,
whereby predictionswere derived for each individual subject based
on training on the remaining subjects (see Section 2). Individual pre-
diction accuracy was similar to that obtained across the population
and, across subjects, was significantly higher than chance (Fig. 6B,
mean and SEM were, for curiosity: 0.65 ± 0.02, p < 10�6 relative to
0.5 (Wilcoxon test); confidence 0.68 ± 0.01, p < 10�9; and surprise
0.57 ± 0.01, p < 10�4). Finally, the cross-validation procedure
produced similar results when it was replicated using only the 15
most informative features (see below; Fig. 6C), showing that the
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same set of IGR values sorted as a function of the feature number. The dotted horizonta
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provided to the data mining algorithm, we computed the difference between the ave
differences that were significant at p < 0.05. Note that different features spanned differen
because they were very small relative to the ordinate scale (which was chosen so as to inc
references to color in this figure legend, the reader is referred to the web version of thi
algorithm achieves above-chance performance based on a small
number of predictive features that generalize acrossmultiple subjects.

To investigate the basis of the classification performance we
examined the gain in prediction – the IGR metric – afforded by indi-
vidual features (see Section2).Of the set of 183 features that the algo-
rithm received as input, only a small subset was identified as having
high IGR (Fig. 7A). Replotting the IGR values in the order of features
showed that these features clustered in several groups (Fig. 7B).
The most informative features for predicting curiosity, confidence
or surprise were related to the eye position, primarily before the
answer (features 1–30) and, to a lesser extent also after answer onset
(features numbers 85–113; see in Supplementary Table 1). Measures
of pupil dilation were only weakly informative after answer onset
(feature114–123), consistentwith the fact that pupil diameter covar-
ied weakly with the curiosity ratings (Supplementary Fig. 1).

To compare these results with those that would be expected
from a traditional analysis, we computed the difference in average
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l lines show the threshold separating the 15 features with the highest IGR from the
mentary Table 1. (C) Effect of rating on the 183 features. For each of the features
rage values on trials with high minus those with low ratings. Filled circles show
t ranges of numerical values; in this plot, some significant differences appear to be 0
orporate the numerical range spanned by all the features). (For interpretation of the
s article.)



Table 3
The 15 most informative features for the random forests algorithm.

Curiosity Confidence Surprise

IGR Feature # Feature ID IGR Feature # Feature ID IGR Feature # Feature ID

0.1438 9 bXinterQuartileRange(1) 0.1314 9 bXinterQuartileRange(1) 0.1301 168 cDV(1)
0.1359 4 bXRange(1) 0.1105 3 bXMax(1) 0.0933 3 bXMax(1)
0.1206 23 bDMax(1) 0.1041 4 bXRange(1) 0.0854 4 bXRange(1)
0.1081 3 bXMax(1) 0.1032 87 aXRange(1) 0.0825 24 bDRange(1)
0.0997 5 bXV(1) 0.0776 23 bDMax(1) 0.0764 25 bDV(1)
0.0962 24 bDRange(1) 0.073 25 bDV(1) 0.0639 5 bXV(1)
0.0755 25 bDV(1) 0.0726 173 cDMDerv(1) 0.052 23 bDMax(1)
0.0500 90 axFirstQ(1) 0.0608 113 aDMDerv(1) 0.0408 35 bPSV(1)
0.0418 117 aPSRange(1) 0.0591 167 cDRange(1) 0.0354 39 bPSinterQuartileRange(1)
0.0397 99 aYMedian(1) 0.0584 107 aDRange(1) 0.0341 95 aYMin(1)
0.0368 10 bXMDerv(1) 0.0544 24 bDRange(1) 0.0269 117 aPSRange(1)
0.0363 73 aFDur(1) 0.0438 84 aXMean(1) 0.0258 118 aPSV(1)
0.0361 110 aDFirstQ(1) 0.0421 86 aXMax(1) 0.0246 99 aYMedian(1)
0.0355 30 bDMDerv(1) 0.0421 166 cDMax(1) 0.0225 30 bDMDerv(1)
0.0350 101 aYThirdQ(1) 0.0415 168 cDV(1) 0.0225 89 aXMedian(1)

The feature # and feature ID refers to the entries in Supplementary Table 1.
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values between high and low rating trials for each of the 183 fea-
tures used for data mining (Fig. 7C). Comparison of Fig. 7B and C
highlights several noteworthy points. First, while many features
are modulated as a function of ratings (show differences above
or below 0 in Fig. 7C) only some of these features have high IGR
(Fig. 7B). The features with high IGR are those that modulate in a
manner that is specific enough to allow accurate predictions. Nota-
bly, features describing eye position before the answer onset (fea-
tures 1–30) tend to modulate in distinct manners for the 3
ratings (e.g., change in opposite directions for curiosity and confi-
dence and be unaffected by surprise) and have high IGR. In con-
trast, features describing eye position after the answer (features
84–113) show correlated variability for curiosity and surprise
and thus have lower IGR. This result illustrates how data mining
techniques can help interpret empirically measured effects, and
upholds our conclusion based on Fig. 4 that the anticipatory, rather
than reactive, component of gaze can most reliably distinguish
between epistemic states.

Second, for the anticipatory component of gaze (features 1–30),
data mining assigns high IGR to features related to the variability
rather than the central tendencies of the eye position – including
the interquartile range, the absolute range, the maximum value
and the standard deviation of the horizontal eye positions and
the distance to answer (Table 3). Examination of Fig. 4 shows that
this finding extends rather than conflicting with our initial analy-
sis. While in our initial analysis (Figs. 3 and 4) we focused on the
average distance to answer, the results can be equally well
described by variance statistics: across the anticipatory epoch,
the range of distances between the eye and the answer box was
larger for low relative to high curiosity states, due primarily to
the maximum distance (at �1500 ms) being larger for the former
set. Indeed, the vast majority of the variance-related features that
had high IGR also showed significant differences between high and
low curiosity trials when re-examined in Fig. 7C.

In sum, as expected, the data mining analysis upholds our con-
clusion that curiosity states affect the anticipatory component of
gaze, and identifies new parameterizations of the eye movement
trace that support efficient statistical classification.
4. Discussion

In addition to its documented ability to enhance memory and
motivation (Gruber et al., 2014; Kang et al., 2009), epistemic
curiosity influences attention and gaze. On some level this finding
seems unsurprising – as it seems natural to look more intently at
information that we are more curious about. However, no studies
have quantitatively examined the link between eye movements
and semantic curiosity, and recent studies have remained agnostic
about (Gruber et al., 2014) or even argued against such a link
(Kang et al., 2009). Our results provide empirical data showing that
semantic curiosity affects eye movement control and that these
effects are specific enough to allow curiosity to be read out indepen-
dently of other epistemic variables such as confidence and surprise.
This finding, combined with a previous report linking trait curiosity
with free-viewing visual exploration (Risko et al., 2012), suggests
that curiosity has multiple influences on eye movement control.

An important question concerns the relation between curiosity
and surprise, because novelty and surprise have been shown to
impact eye movement control (Baldi & Itti, 2010; Itti & Baldi,
2009; Yang, Chen, & Zelinsky, 2009), and in our results these two
ratings were significantly correlated (Fig. 2B). However, whereas
prior studies focused on visual paradigms, here we focus on
semantic factors. Most relevant to our work, two papers focused
on Bayesian surprise have defined surprise in a purely bottom-up
fashion – based on the conditional probability of observing a pixel
given its local visual context (Baldi & Itti, 2010; Itti & Baldi, 2009).
By this definition, surprise is very closely related to visual salience
(contrast) – and is clearly distinct from the epistemic surprise we
examine here. Second, whereas previous investigations focused
on the reactive component of gaze – the propensity to look at a
novel or surprising item – our paradigm revealed a pro-active
response, whereby curiosity enhanced gaze anticipation before
the subjects saw the answer and could rate its ‘‘surprise”. This
anticipatory component – which preceded any effect of surprise
– was the basis for dissociating the effects of curiosity from those
of surprise both in the traditional analyses (Figs. 3 and 4) and in the
data mining approach (Fig. 7).

Based on these considerations, we suggest that curiosity can be
viewed as a pro-active process that anticipates, or motivates agents
to obtain new information, whereas surprise indicates a reactive
process after having processed the information. Together with
the information gap theory that suggests that curiosity peaks at
intermediate levels of knowledge (see Fig. 2A and (Kang et al.,
2009; Lowenstein, 1994)), this reinforces the view of curiosity as
a mechanism for active learning, which allows agents to proac-
tively choose which questions they wish to resolve, and specifically
seek out learnable tasks while steering away from unlearnable or
boring information (Gottlieb et al., 2013; Oudeyer et al., 2013).

The fact that curiosity influences eye movements is particularly
important because it provides a possible handle into its cellular
mechanisms. In humans and non-human primates, oculomotor
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decisions are thought to be mediated by ‘‘priority maps” – popula-
tions of neurons in the lateral intraparietal area and the frontal eye
fields that have visuospatial receptive fields and select targets for
attention or gaze, which are sensitive to multiple factors, including
bottom-up salience, task relevance and expected rewards (Bisley &
Goldberg, 2010; Thompson & Bichot, 2005). Our results suggest
that epistemic curiosity should be added to the list of factors that
determines priority and attention allocation. The finding that epis-
temic curiosity specifically affects gaze anticipation supports the
idea that it acts at the oculomotor decision stage rather than lower
levels of motor control. Thus, the mechanisms that generate
curiosity, including its individual variations, may be read out in
neurons involved in cognitive eye movement control.

Our demonstration that machine learning algorithms can read
out states of curiosity from eye movement patterns reinforces
the conclusion that curiosity produces an oculomotor signature
that is distinct from that of partially correlated constructs of confi-
dence and surprise. Of the large number of eye movement features
provided to algorithm, only a small subset was predictive of epis-
temic states, and this subset supported efficient classification
across individual observers (Fig. 6C), suggesting that the algorithm
is robust to changes in the precise features it receives (e.g., would
produce similar results if given a slightly different set of eye move-
ment features). This finding adds to the growing body of research
that applies data mining techniques to emotion recognition (e.g.,
based on facial expressions (Zeng, Pantic, Roisman, & Huang,
2009), speech intonation (Oudeyer, 2003) or skin conductance
(Jerritta, Murugappan, Nagarajan, & Wan, 2011)). The ability to
predict curiosity states has potential practical applications in sev-
eral domains, including the development of individualized educa-
tion software (Clement, Roy, Oudeyer, & Lopes, 2014) where
online readouts of curiosity could be used to customize the content
of instruction that is shown to the learner so as to maximize his/
her individual learning progress, and of recommender systems
(Rokach, Shapira, & Kantor, 2011) where tracking the curiosity of
customers may be used to offer personalized product recommen-
dations. Finally, curiosity is strongly related to early infant learning
and development (Oudeyer & Smith, in press) and the tracking of
curiosity could become an important tool in efforts to leverage
non-invasive techniques in research and diagnosis of developmen-
tal disorders such as attention deficit disorders and autism (Gliga,
Bedford, Charman, Johnson, & Team, in press).
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