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ABSTRACT

In this paper, we consider a new discriminative approach
to the problem of audio-to-score alignment. We consider the
two distinct informations provided by the music scores: (i) an
exact ordered list of musical events and (ii) an approximate
prior information about relative duration of events. We extend
the basic dynamic time warping algorithm to a convex prob-
lem that learns optimal classifiers for all events while jointly
aligning files, using this weak supervision only. We show that
the relative duration between events can be easily used as a
penalization of our cost function and allows us to drastically
improve performances of our approach. We demonstrate the
validity of our approach on a large and realistic dataset. Key-
words: weakly supervised learning, score-following, audio-
to-score

1. INTRODUCTION

This paper deals with aligning a temporal signal to its associ-
ated sequence of symbolic events. Given an audio recording
of a musical piece and its music score, the goal is to retrieve
the actual duration of each musical event, which may differs
from the one provided by the score.

Beyond the interest in itself of tracking live performances,
it is also a front-end for many applications in music such as
automatic accompaniment [5], audio editing [2], and auto-
matic turning of score pages [4]. This task also called score-
following [6, 7] when performed in real-time.

Many state-of-the-art alignment algorithms are elabora-
tions of the standard dynamic time warping (DTW) proce-
dure [8, 9, 4]. Alignment algorithms use the duration in-
formation provided by scores together with models for each
event, that are pre-designed before running alignments. This
step usually involves some ad hoc knowledge, like acousti-
cal models [8, 9, 10, 11], and/or supervised training on fully-
labeled databases which are expensive to gather. For instance,
[12] trains a conditional random field, [13] builds classifiers
for each possible musical event using a support vector ma-
chine. Our work cannot be compared directly to those, as (i)
it only relies on weakly-supervised data, i.e., pairs of one au-

dio recording and its score; (ii) it performs both learning and
alignment steps simultaneously. To do so, we propose to learn
an optimal alignment function by minimizing a discriminative
square loss criterion.

This work shares deep links with discriminative cluster-
ing methods [14, 15]. This has recently attracted interest
for further applicative domains beyond music, e.g., action
localization [16], image co-segmentation [17], video co-
localization [18], named entity classification [19], or video-
to-text alignment [20]. Discriminative cost functions are usu-
ally prone to degenerate solutions. To get rid of them, [20]
arbitrarily suggests two penalizations, whereas we motivate
their use with the prior information encoded in music scores.
We show that these priors can be seamlessly expressed using
a proper representation of alignments.

Contributions The contributions of the paper are four-fold:
(i) We cast the set of alignments on a matrix space Y , for
which we interpret the dynamic time warping (DTW) algo-
rithm as a linear program solver. (ii) We propose a discrimi-
native approach to the alignment problem. It learns an optimal
DTW-based alignment function while jointly aligning the in-
puts. We relax the obtained problem into a convex program,
and solve it efficiently with the Frank-Wolfe algorithm. (iii)
We cast the information about relative duration of events pro-
vided by music scores as two different priors. (iv) We eval-
uate our model on a monophonic dataset, prove the benefits
of the priors on performances, and show the discriminative
approach is robust to intense white noise.

2. DISCRIMINATIVE APPROACH

2.1. Alignment task

Notations. Let us consider an audio recording X that is sam-
pled in T timestamps, thus X ∈ RT×p. We assume that X
is given with its score. Every score consists of an ordered list
of E events in a dictionary of individual notes or chords (su-
perposition of notes). Assuming there are K base notes, an
event is a subset of {1, . . . ,K}. We represent each event e
by a binary indicator vector Φe ∈ {0, 1}K , that we concate-



nate in a matrix Φ ∈ {0, 1}E×K . Such a matrix is called a
template. If the template sums to one along rows, it corre-
sponds to a monophonic score. Otherwise it corresponds to
a polyphonic one, but please note that we don’t impose any
restriction. In this paper, we call alignment the task of classi-
fying timestamps of a series of features X on its template Φ.
The goal is to find an alignment mapping (or path) m from
the timestamps {1, . . . , T} to its list of events {1, . . . , E}.
Parametrization of alignments. In audio-to-score align-
ment, we assume that all events occur in order and no event
is skipped; so the path constraints are as follows: m is a
non-decreasing mapping from {1, . . . , T} to {1, . . . E} such
that (i) m(1) = 1, (ii) m(T ) = E, (iii) m(t+ 1) = m(t) + 1
or m(t+ 1) = m(t). An alignment mapping m can be repre-
sented through an alignment matrix Y of dimension T × E,
such that Yt,e is equal to 1 if m(t) = e and 0 otherwise.
The set of all these alignment matrices between an input of
length T and a template of length E is denoted by Y(T,E),
or simply Y in the sequel.

DTW algorithm as a LP solver. An alignment procedure
usually starts by building a local cost matrix A ∈ RT×E

whose elementsAt,e measures the dissimilarity between each
pair of features Xt,. – the t-th row of X – and event e. Then,
the cost of an alignment m is defined as the sum of local
costs along the path:

∑T
t=1At,m(t) = Tr(Y >A). Given

any affinity matrixA, the dynamic time warping (DTW) algo-
rithm [21] uses dynamic programming to find the minimum
cost path argminY ∈Y Tr(Y >A) in O(TE) operations. Thus,
DTW is an efficient linear program (LP) solver over Y .

DTW cost function with Euclidian local distance. A com-
mon choice [11] of local distance At,e is the squared Eu-
clidian norm between some transform of the input features
Ψ(Xt,.) ∈ RK and some template features τe ∈ RK that
represent the event e: At,e = ‖τe − Ψ(Xt,.)‖22. With our
notations, τe is the e-th column of Φ, so an alignment cost
equals:

T∑
t=1

At,m(t) =

T∑
t=1

‖e>m(t)Φ−Ψ(Xt,.)‖22,

where ek denotes the k-th standard basis vector of RE .
Let ‖.‖F denote the Frobenius norm. If we define ψ :
RT×p 7→ RT×K such that ψ(X) is the concatenation of
vectors Ψ(Xt,.), the DTW alignment cost reads:

min
Y ∈Y

‖Y Φ− ψ(X)‖2F . (1)

2.2. Weakly-supervised discriminative learning

Before any alignment is performed, templates Φ are usu-
ally designed with prior knowledge such as a synthesized
signal [4], or learned with supervision and annotated data
[13]. We rather want to perform alignment while optimiz-
ing our cost function (1) without supervision. To do so, we

follow the DIFFRAC framework [15] and learn an optimal
linear transform1 of the input features ψ(X) = WX , where
W ∈ RK×p, while keeping the templates Φ fixed. The
criterion we choose on W is to minimize the DTW cost func-
tion (1) plus a Tikhonov regularization with some λ ≥ 0. So
the joint estimation of Y and W reads:

min
W∈RK×p

min
Y ∈Y
‖Y Φ−XW‖2F +

λ

2
‖W‖2F . (2)

This problem leads to tractable convex relaxation thanks to
the joint convexity in W and Y of the objective function.
Beforehand, the unconstrained optimization in W is solved
using first order condition. Following [15, 17], this yields
the explicit expression: W = (X>X + TλIdT )−1X>Y Φ.
Plugging it back in Eq. (2) provides the following minimiza-
tion problem: min Y ∈Y Tr(Φ>Y >BY Φ) where B = IdT −
X(X>X+TλIdp)−1X>. This objective function is still con-
vex in Y but the set Y is discrete. To make the obtained
problem convex, we relax Y into its convex hull Y , and get a
quadratic program (QP):

min
Y ∈Y

Tr(Φ>Y >BY Φ). (3)

This relaxation is attracted to two kind of degenerate solu-
tions: the constant solution, which is a minimizer of any con-
vex relaxation invariant by column permutation [15, 14]; so-
lutions Y that assign all timestamps to the same class, as
noted by [16]. In our case, the constraints on Y linked to
the sequential structure get rid of some degenerate solutions.
However, as shown in the experimental section, as the number
of events E grows, the supervision gets weaker and Eq. (3)
gets plagued by solutions that are almost equal to the trivial
ones. To overcome this drawback, one needs to get rid of the
symmetries of our objective function. We propose to do so by
plugging the prior knowledge given by the score into the cost
function.

3. USING ADDITIONAL PRIOR KNOWLEDGE

Expected alignment. A music score induces a prior about
relative duration of each event e. Such information can be
encoded through an expected alignment Ȳ ∈ Y , that would
be obtained if the actual duration of every event was equal to
the duration in the score.

Global prior. We penalize the distance between a candidate
alignment Y and the expected one Y , using the squared sum
of absolute differences between the start times (onsets) of cor-
responding events. This distance turns out to be used as an
evaluation metric of music-to-score alignment [7]. One can
show it equals ‖Y L− Y L‖2F , with L the strictly lower trian-
gular matrix of sizeE×E with ones, it is a version of the area

1The extension to affine transforms ψ(X) = WX + 1b> where b ∈
RK , is straightforward and has been used in experiments.



loss introduced by [22], which turns out to be exactly the area
between the two warpings seen as binary matrices. We call
this term the global prior, as its promotes alignments where
the local distortions compensate themselves and the actual in-
terpretation has globally the same shape as the score (rubato
in musical terminology).

Local prior. Another idea is to penalize individually the dis-
crepancy between the actual duration and the expected dura-
tion of each event:

∑E
e=1(1>T Y.,e − 1>T Y .,e)

2 = ‖1>T Y −
1>T Y ‖22 where 1T ∈ RT is the vector with ones. This loss
could be interpreted as a Gaussian prior on individual dura-
tion. This local penalization promotes alignments where the
relative durations are correct for almost all events, except for a
few ones. In musicology, such events are called fermata [23],
where the interpret can unpredictably wait a very long time.

Complete cost function. Adding these two priors to the cost
function of Eq. (3) yields the following relaxed problem on Y
(µ, ν > 0 are arbitrary):

min
Y ∈Y

Tr(ΦY >BY Φ) +
λ

2
‖W‖22

+ µ‖(Y − Y )L‖2F + ν‖1>T (Y − Y )‖22.
(4)

Note that the priors do not increase the complexity as
Eq. (4) is still a QP. Such a problem cannot be solved in closed
form. But the DTW algorithm provides an efficient LP solver
max Y ∈Y Tr(AY ) on the set Y , hence on its hull Y . Con-
sequently, the QP can be efficiently solved with the Frank-
Wolfe algorithm [24, 25], a.k.a. conditional gradient descent
– refer to [16, Algorithm 1] for all implementation details. As
the problem is relaxed into Y , its solution Y ∗ might not be
a valid alignment in Y . From Y ∗, we can always deduce the
optimal classifiers W ∗ (see equation above). But rounding
the solution Y ∗ is needed to get a valid alignment Y .

Rounding with DTW. The first way to round, is to perform a
DTW alignment with the optimal classifiers W ∗. This con-
sists in solving the DTW problem of Eq. (1), which boils
down to the following LP: max

Y ∈Y
Tr(Φ>Y >XW ∗).

Rounding in ΦY . Following [16], a natural idea is to round
ΦY ∗ to the closest assignment matrix ΦY , in the sense of
the Euclidean norm. It amounts to solve: min Y ∈Y ‖Y ∗Φ −
Y Φ‖2F . Expanding the squared norm proves it also boils down
to an LP, in both monophonic and polyphonic settings.

4. EXPERIMENTS

Dataset and features. Our experiments are run on the
Finnish folk song dataset [26]. It is made of ∼ 48 hours
of music available in MIDI format (8614 songs). Our K
classes are the 44 notes appearing in the dataset, plus an ad-
ditional “silence” class. Audio files are synthesized from the
available MIDI files, after having randomly modified the local

E 10 15 20 30 50

mean length 64 93 124 174 224
delay (s) 0.42 0.59 0.68 0.93 1.09

Table 1: Average onset delay for different song lengths k,
without priors (µ = ν = 0).

tempo, using the MIR toolbox [27]. That way, we know the
exact groundtruth alignment. A MIDI file encodes the score
and provides the expected alignment Y , which is different
from the groundtruth Ygt. We consider four different setups:
(1) Non-stretched data: Y = Ygt. (2) Rubato: tempo is alter-
natively sped up and slowed down. (3) Fermata: most notes
are played with the original duration except for a few whose
duration is increased. (4) A combination of (2) and (3). We
compute a 1200-dimensional spectrogram of the audio sig-
nal using half-overlapping windows of length 160ms. Then,
we bin it in 40 dimensions using the mel-scale filterbank,
as implemented in the MIR toolbox. Note that our method
similar results on the full spectrogram. Songs are split into a
train, validation and test sets. We use between 100 and 300
songs for training and between 200 and 500 songs for both
validation and testing.

Performance measure. The quality of a audio-to-score
alignment is usually quantified using the mean delay between
onsets [7], used in Sec. 3: 1

E ‖Y L − YgtL‖F , where E is the
number of events.

Need for priors. We first run experiments with no duration
prior and no tempo stretching like in [16], by setting µ =
ν = 0. We use 300 full songs that we split into shorter songs
of a fixed length k. Alignment results for various values of
k are presented in Table 1. Performances clearly deteriorate
as the length of series increases. Indeed, the set Y has more
and more symmetries: the objective is attracted by degenerate
solutions [16]. This situation calls for our additional priors so
as to work on typical real-world scores.

Rubato performance. We compare the separate effect of the
global and the local prior in Eq. (4) in the Rubato setting. We
consider 100 songs for training, 200 for testing and 200 for
validation. Dashed curves (train MS, val MS and test MS)
depict the onset loss ‖Ygt − Y ‖. In Fig. 1a (left), the round-
ing in Z has the same performance as the dashed curve for
large enough µ. In this case, Eq. (4) consists in minimiz-
ing a well-conditioned quadratic form; so Y ∗ is already in Y
and the rounding procedure has little effect. On the contrary,
Fig. 1a (right) shows that for large ν, our method gets above
the dashed baseline; indeed, the quadratic form it minimizes
is ill-conditioned (low rank). In Fig. 1a (left), for large µ,
the optimal Y ∗ is almost equal to the score Y , as explained
above. In that case, the DTW rounding procedure solves the
alignment problem with classifiers W learned on Y . In this
rubato setting, this method works better. We recall that rubato
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(a) Effects of local and global prior in the rubato setting.
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(b) Effects of local and global priors in the fermata setting.

Fig. 1: Evaluation of separate priors in the Rubato and Fermata settings.
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Fig. 2: Combined rubato and fermata setting. (a-b) Perf. as function of µ and ν on val. and test sets. (c) Robustness to noise
and comparison to change-point detection.

means tempo fluctuations around its average. As a result, the
average delay between the score and the input is low. There-
fore, learning a model on the slightly faulty alignment Y pro-
vides a good classifier. On the contrary, the local prior is not
very robust against rubato – as expected.

Fermata performance. In the fermata setting, the perfor-
mances of our approach are depicted in Fig. 1b. It features the
same baseline as Fig. 1a. We have also run experiments with
respectively µ = 0 and ν = 0 but these are off the charts. For
the ν parameter, a clear trade-off appears, and when properly
adjusted our method outperforms other baseline. Contrary to
the rubato experiment, the global prior does not help. The best
performance is for large µ, for which the predicted alignment
Y sticks to the expected one Y .

Combined performance. In the mixed setting depicted in
Fig. 2(a-b), we observe a trade-off between the local and
global priors. When properly adjusted, our method with the
joint priors outperforms all other baselines.

Robustness to noise. We consider data that have been
stretched both with Fermata and Rubato, and assess the
robustness of our approach against a white noise, up to a very
intense level. We add to the synthesized signals white noise
whose intensity is controlled through the ratio between the
standard deviation of the noise σ and the mean absolute value

of the signal. We use our approach on 300 training songs,
validate µ and ν on 250 and test on 250 others. Figure 2(c)
compares the performance of our method with a change-
point detection baseline (CPD). This basic algorithm detects
changes in the mean of a homoscedastic Gaussian process –
refer to [28] for details; it knows the number E of events but
is unaware of the redundancy of notes. Removing the class
information in our algorithm makes it equivalent to this CPD.
So this baseline shows our algorithm do benefits from class
redundancy.

5. CONCLUSION

This paper describes a discriminative and weakly-supervised
approach for audio-to-score alignment. Our method relies on
the estimation of individual classifiers for each of the possi-
ble notes, and corresponds to the optimization of the DTW
cost function. This step is achieved by the minimization of
a convex and quadratic objective function that can be solved
efficiently using a conditional gradient algorithm. The ex-
periments run in the mono-instrument monophononic setting
are very promising and show the robustness of the method to
tempo deformation as well as white noise. Our method can be
used in the polyphonic setting with no modifications. It could
also be extended to the polyphonic polyinstrumental setting
by considering separate classifiers for each instrument.
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