
HAL Id: hal-01251228
https://hal.inria.fr/hal-01251228

Submitted on 5 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DiG: Data centers in the Grid
Hardik Soni, Damien Saucez, Thierry Turletti

To cite this version:
Hardik Soni, Damien Saucez, Thierry Turletti. DiG: Data centers in the Grid. 2015, pp.3. �hal-
01251228�

https://hal.inria.fr/hal-01251228
https://hal.archives-ouvertes.fr


DiG: Data centers in the Grid

Hardik Soni
Inria

Sophia Antipolis, France
Email: hardik.soni@inria.fr

Damien Saucez
Inria

Sophia Antipolis, France
Email: damien.saucez@inria.fr

Thierry Turletti
Inria

Sophia Antipolis, France
Email: thierry.turletti@inria.fr

Abstract—We are witnessing a considerable amount of re-
search work related to data center and cloud infrastructures
but evaluations are often limited to small-scale scenarios as very
few researchers have access to a real infrastructure to confront
their ideas to reality. In this demo we will reveal our experiment
automation tool, DiG (Data centers in the Grid), which explicitly
allocates physical resources in grids to emulate data center and
cloud networks. DiG allows one to utilize grid infrastructures
to evaluate research ideas pertaining to data centers and cloud
environments at massive scale and with real traffic workload.
We have automated the procedure of building target network
topologies while respecting available physical resources in the
grid against the demand of links and hosts in the experiment. We
will present a showcase where DiG automatically builds a large
data center topology composed of hundreds of servers executing
various Hadoop intensive workloads.

I. INTRODUCTION

Most SDN experiments having data center and cloud sce-
narios are performed with traffic traces using emulators (e.g.,
Mininet [1], Maxinet [2]) or simulators (e.g. ns-3 [3]) due to
restricted access to real production environments of companies
like Amazon, Google, or Facebook. Therefore, experiment
results may be biased or noisy due to modeling techniques
of simulators or unaccounted and excessive usage of physical
resources in case of emulation.

Many tools exist like Mininet [1] and Maxinet [2] for
running SDN experimentations. Among them, Maxinet is the
closest to our work. However, it targets scalable emulation
to create SDN enabled data center environments and relies
on synthetic traffic generation models. Maxinet is built using
Mininet, which has the capability to run real world applications
to generate traffic. However, at the scale of hundreds of
hosts, running such applications on emulated hosts consume
computing resources and hinders emulation’s scaling capability
of network experiments. Neither Maxinet nor Mininet provides
guarantee on allocation of computing power (i.e., CPU cores)
for emulated hosts to scale the entire experiment with a
minimum amount of physical resources.

In this work, we aim (1) to create data center topologies
while respecting computing and network resource constraints
and (2) to run real world data center applications on top of
it. Since very few researchers have access to production data
center environments and the majority of them has access to
grid computing environments like Grid5000 [4], the primary
goal of our system is to build test environments for SDN
enabled data center and cloud networks in grid physical
infrastructures. With DiG (Data centers in the Grid) we can
build overlay experimental networks by explicitly allocating
available physical resources, like CPU and link capacity, to the

requirements of experimental network topologies, allowing to
run real world data center applications on top of a grid with
performance guarantees.

II. SYSTEM DESCRIPTION

A. Overlay Experimental Network with Resource Guarantee

The DiG system is able to create experimental networks
that carry real traffic between nodes running protocol stacks
as in real world data center networks. To achieve this, DiG
implements a layer 2 overlay network on a grid infrastructure.
Having a layer 2 overlay network as an experimental network
provides a bare-metal network environment to the SDN con-
trollers and switches.

DiG instantiates data center servers and switches by run-
ning virtual machines (VMs) and OpenFlow enabled switches
on grid nodes. While creating an overlay network, it is im-
portant to take into account the available computing power of
the grid nodes and the physical link capacity between each
pair of grid nodes. In most of the cases, the physical network
connectivity along with the computing power of the grid nodes
are known by the experimenters.

B. DiG Technical Description

DiG maps the experimental network on a physical grid
network while satisfying the computing power requirements of
all the nodes in the experimental network and not exceeding
the computing capacity of grid nodes. Similarly, layer 2 overlay
links are mapped by satisfying the demand of all the links in
experimental topology while not overloading physical links.
So, the problem is reduced to the resolution of a Virtual
Network Embedding (VNE) [5] problem with constraints on
nodes computing power and links capacity.

DiG runs in three phases to implement experimental net-
works on grid infrastructures. Each phase generates an output
in the form of text files and these files are used in the next
phase as an input. This makes the system more flexible and
facilitates modifications and integration of different phases
implementations. The names of the three phases are Exper-
imental Network Embedding, Configuration Generation, and
Deployment. Note that each phase can be run in an independent
way with appropriate input files, without the need of executing
other phases.

1) Experimental Network Embedding: DiG solves a VNE
problem using the ALEVIN [6] framework, which is used
to generate the mapping between the experimental network
and the grid physical infrastructure. ALEVIN is fed with the



Fig. 1. DiG Module interaction

experimental and grid networks described in DOT language [7]
in a text file. The experimental network is annotated with
CPU cores requests for nodes, link capacity requests and
other application-specific attributes like Hadoop node type
for automation usage. The grid network is annotated with
CPU core capacity for grid nodes, link bandwidth capacity
for physical links and IP addresses for automation purpose.
ALEVIN uses CPU cores and link bandwidth attributes for
both experimental and grid networks and it generates a node
mapping file as shown in Fig. 1. The node mapping file is a
text file that identifies the set of experimental network nodes
mapped on each physical node.

2) Configuration Generator for Experimental Network:
The Configuration Generator phase takes as input the mappings
generated from the Experimental Network Embedding phase
along with the descriptions of the experimental and grid
networks in DOT format. However, the mapping file can be
generated by any means, and not necessarily with the technique
presented in Sec. II-B1. This allows (1) running different
tools and algorithms for the network embedding step and
(2) relaxing the strong dependency on the performance of
embedding algorithms.

The Configuration Generator phase prepares the config-
uration files for each physical host based on the mapping.
It contains the meta-data to instantiate the mapped part of
the experimental network on physical hosts. The meta-data
contains the appropriate commands and the parameters to
instantiate the virtual machines and to map the virtual hosts to
the physical nodes. It also contains the necessary information
(e.g., source-destination UDP port numbers, IPs of grid nodes,
tunnel unique IDs etc.) to create layer 2 tunneling protocol (i.e.,
L2TPv3) endpoints and links capacity information satisfying
the experimental network bandwidth demand based on the
mapping. Along with the experimental network configuration
files, this phase generates files to bring up basic network utility
(e.g., assigning IP to experimental network interface, routing
etc.) in the hosts.

3) Deployment of Experimental Network: The last phase
consists of the deployment of the experimental network using
configuration files on the physical machines. DiG instantiates
the virtual hosts in the experimental network on grid nodes,
creates OpenFlow [8] switches interconnected with L2TPv3
tunnels and controls the link bandwidth according to the
requirements of the experimental network to emulate. It is
also responsible to launch applications on virtual hosts of the
experimental network. The Linux Traffic Control utility (tc) is
used to control the bandwidth at the tunnel interfaces according
to the links capacity requirements of the experimental network.

C. Management Network

As mentioned above, the deployment phase launches ap-
plications in virtual hosts. DiG uses a designated node called
Manager node in the grid infrastructure to launch the de-
ployment phase in a centralized way. All the communications
required for deployment purpose and management of experi-
mental network are carried out on a dedicated management
network isolated by experimental networks, as depicted in
Fig. 2.

Fig. 2. Experimental Overlay Network with Management Network

Each virtual host in the experimental network includes
a management network interface. A management bridge is
created on all the grid nodes including the manager node, as
shown in Fig. 2. The virtual hosts of the experimental network
running on a grid node are connected to the management
bridge on the grid node through their management interface.
The management bridge on each grid node is connected to the
management bridge on the manager node. The Deployment
tool is executed on the manager node; it uses the management
network to dispatch the commands to launch applications on
different VMs in the experimental network. This approach
prevents any possible management traffic interfering in the
experimental network that could distort experimental results.

III. SHOWCASE

The primary goal of DiG is to create experimental network
environments with resource guarantee to imitate real world
SDN-based data center and ISP topologies with high level of
realism. Such network environments can be used for instance
to test and evaluate performance of SDN controllers or routing
algorithms with different real time traffic or topologies.



In this demo, we will showcase how to automatically emu-
late an OpenFlow data center composed of hundreds of servers
in Grid5000. The second phase of the demonstration will
deploy and run Hadoop benchmark programs. Hadoop is used
in many real world data centers and many benchmark suites
exist (e.g., HiBench [9]). Interestingly, Hadoop MapReduce
applications generate a substantial amount of traffic during
the data shuffling phase and particularly the TestDFSIO and
TeraSort are MapReduce benchmark applications. Hence, they
can be a primary choice for data-center workload generation
to demonstrate the effectiveness of DiG.

IV. EXPERIMENTAL REQUIREMENT

1) Stable high speed Internet connection without block-
ing SSH traffic.

2) Power supply plug.
3) Large monitor for better visuals (to be provided,

possibly by the organizers).

V. CONCLUSION

In this paper, we present the DiG tool to create easily SDN
data center and ISP networks on a Grid infrastructure. DiG
runs network embedding algorithms to emulate data center
infrastructures in a Grid with performance guarantees. DiG
automatically creates L2 overlay experimental networks and
hosts based on the output of the embedding algorithms and can
launch any off-the-shelf application on the experimental hosts
to generate workload on the data center to evaluate. We demon-
strate DiG by automatically running Hadoop benchmarks in an
emulated data center of hundreds of nodes. DiG is available
to the community at URL http://team.inria.fr/diana/software/.

In the future we plan to use DiG to study SDN con-
troller performance as carried out in [10] but with real ap-
plications and traffic. Similarly, DISCO [11], ElastiCon [12],
Hedera [13], DIFANE [14], DevoFlow [15], Kandoo [16],
Onix [17] or Beehive [18] could be tested and evaluated on
the DiG system with real network conditions and traffic.

ACKNOWLEDGMENTS

This work was partially supported by the ANR Reflexion
Project (ANR-14-CE28-0019). Experiments presented in this
paper were carried out using the Grid’5000 testbed, supported
by a scientific interest group hosted by Inria and including
CNRS, RENATER and several Universities as well as other
organizations (see https://www.grid5000.fr).

REFERENCES

[1] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop:
Rapid prototyping for software-defined networks,” in Proceedings of
the 9th ACM SIGCOMM Workshop on Hot Topics in Networks,
ser. Hotnets-IX. New York, NY, USA: ACM, 2010, pp. 19:1–19:6.
[Online]. Available: http://doi.acm.org/10.1145/1868447.1868466

[2] P. Wette, M. Draxler, A. Schwabe, F. Wallaschek, M. Zahraee, and
H. Karl, “Maxinet: Distributed emulation of software-defined net-
works,” in Networking Conference, 2014 IFIP, June 2014, pp. 1–9.

[3] “ns-3 Project page,” http://www.nsnam.org/, [Online; accessed 11-
August-2015].

[4] “Grid’5000 Project page,” http://www.grid5000.fr/, [Online; accessed
11-August-2015].

[5] A. Fischer, J. Botero, M. Till Beck, H. de Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” Communications Surveys Tu-
torials, IEEE, vol. 15, no. 4, pp. 1888–1906, Fourth 2013.

[6] M. Beck, C. Linnhoff-Popien, A. Fischer, F. Kokot, and H. de Meer,
“A simulation framework for virtual network embedding algorithms,”
in Telecommunications Network Strategy and Planning Symposium
(Networks), 2014 16th International, Sept 2014, pp. 1–6.

[7] “The DOT Language,” http://www.graphviz.org/doc/info/lang.html/,
[Online; accessed 11-August-2015].

[8] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling
innovation in campus networks,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 2, pp. 69–74, Mar. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1355734.1355746

[9] “HiBench,” https://github.com/intel-hadoop/HiBench, [Online; accessed
11-August-2015].

[10] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and
R. Sherwood, “On controller performance in software-defined
networks,” in Proceedings of the 2Nd USENIX Conference on
Hot Topics in Management of Internet, Cloud, and Enterprise
Networks and Services, ser. Hot-ICE’12. Berkeley, CA, USA:
USENIX Association, 2012, pp. 10–10. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2228283.2228297

[11] K. Phemius, M. Bouet, and J. Leguay, “Disco: Distributed sdn con-
trollers in a multi-domain environment,” in Network Operations and
Management Symposium (NOMS), 2014 IEEE, May 2014, pp. 1–2.

[12] A. A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella,
“Elasticon: An elastic distributed sdn controller,” in Proceedings of
the Tenth ACM/IEEE Symposium on Architectures for Networking and
Communications Systems, ser. ANCS ’14. New York, NY, USA:
ACM, 2014, pp. 17–28. [Online]. Available: http://doi.acm.org/10.
1145/2658260.2658261

[13] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat, “Hedera: Dynamic flow scheduling for data center
networks,” in Proceedings of the 7th USENIX Conference on
Networked Systems Design and Implementation, ser. NSDI’10.
Berkeley, CA, USA: USENIX Association, 2010, pp. 19–19. [Online].
Available: http://dl.acm.org/citation.cfm?id=1855711.1855730

[14] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable
flow-based networking with difane,” SIGCOMM Comput. Commun.
Rev., vol. 41, no. 4, pp. –, Aug. 2010. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2043164.1851224

[15] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “Devoflow: Scaling flow management for high-
performance networks,” SIGCOMM Comput. Commun. Rev., vol. 41,
no. 4, pp. 254–265, Aug. 2011. [Online]. Available: http://doi.acm.org/
10.1145/2043164.2018466

[16] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: A framework for efficient
and scalable offloading of control applications,” in Proceedings of
the First Workshop on Hot Topics in Software Defined Networks, ser.
HotSDN ’12. New York, NY, USA: ACM, 2012, pp. 19–24. [Online].
Available: http://doi.acm.org/10.1145/2342441.2342446

[17] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and
S. Shenker, “Onix: A distributed control platform for large-scale
production networks,” in Proceedings of the 9th USENIX Conference
on Operating Systems Design and Implementation, ser. OSDI’10.
Berkeley, CA, USA: USENIX Association, 2010, pp. 1–6. [Online].
Available: http://dl.acm.org/citation.cfm?id=1924943.1924968

[18] S. H. Yeganeh and Y. Ganjali, “Beehive: Towards a simple abstraction
for scalable software-defined networking,” in Proceedings of the 13th
ACM Workshop on Hot Topics in Networks, ser. HotNets-XIII. New
York, NY, USA: ACM, 2014, pp. 13:1–13:7. [Online]. Available:
http://doi.acm.org/10.1145/2670518.2673864


