Clustering categorical functional data Application to medical discharge letters

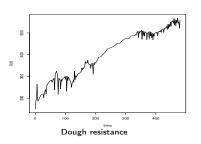
Vincent Vandewalle, Cristina Cozma, Cristian Preda MODAL Team /Inria Lille Nord Europe

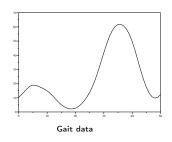
> December 14, 2015 ERCIM 2015, London

Functional data

Definition [Ferraty and Vieu (2006)] A random variable X is called *functional* if it takes values in some infinite dimensional space. An observation of X is called a *functional data*.

In the literature, most of the fd is scalar (univariate/ multivariate) :





Model : Stochastic process, $X = \{X_t, t \in \mathcal{T}\}$,

$$X_t \in \mathbb{R}^p, p \geq 1,$$

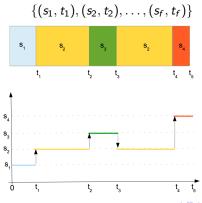
for some index set ${\mathcal T}$

Categorical functional data

Set of states : $\mathbf{S} = \{s_1, s_2, \dots, s_m\}, m \geq 2$

$$\mathbf{X} = \{X_t : t \in [0, T]\}, (\Omega, A, P), X_t : \Omega \rightarrow \mathbf{S}.$$

A path of **X** on [0, T] is a sequence of states $\mathbf{s_i}$ and times points $\mathbf{t_i}$ of transitions from one state to another :



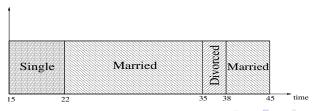
Categorical functional data

Saporta et Deville (1982,1983) :

- Analyse de données chronologiques qualitatives : comment analyser des calendriers ?, Annales de l'INSEE, No. 45, p. 45-104.
- Correspondence analysis with an extension towards nominal time series, Journal of Econometrics, 22, p. 169-189.

X = marital status of women from 15 to 45

$$X_t \in \{\text{"Single"}, \text{"Maried"}, \text{"Divorced"}, \text{"Widowed"}\}$$



Categorical functional data

Model:

$$S = \{s_1, s_2, \dots s_m\}, (\Omega, \mathcal{A}, P),$$

 $\mathbf{X} = \{X_t : t > 0\}, \quad X_t : \Omega \to \mathbf{S}$, a continuous-time jump process

Markov jump process and categorical functional data:

Harmonic qualitative analysis (extension of the multiple correspondance analysis towards categorical fd)

- Richard (1988), Heijden et al (1997), Preda (1998).

The absorbing states

X can have one or several absorbing states :

$$\mathbb{P}(X_{t+s}=s|X_t=s)=1, \forall s>0$$

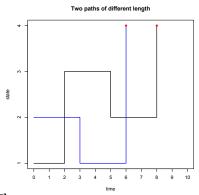
Two situations:

X is observed:

until an absorbant state is reached

Remark:

functional data with different lengths!



on a predefined period [0, T]
 (classical framework of functional data)

The aim

The data : n sample paths of $X : \{x_1, x_2, ... x_n\}$. The ith path :

$$x_i = (s_{i0}, t_{i0}, s_{i1}, t_{i1} \dots, t_{i(d_i-1)}, s_{id_i})$$

- d_i = the number of jumps of the path i,
- s_{ij} = the length of time spent in the j visited state of path i

It is supposed that the paths are uncensured, i.e. the paths are observed until they have reached the absorbing state.

Objective: Clustering $\{x_1, x_2, \dots x_n\}$.

Clustering categorical functional data

Notations

- m the number of states
- $ightharpoonup \mathcal{S} = \{1, \ldots, m\}$ the state space, (m is the absorbing state)
- n is the number of observed paths
- ▶ d_i is the length of the i^{th} observed path
- ▶ s_{ijh} equals to 1 if the j^{th} state of the path i is h and 0 otherwise.
- $\mathbf{s}_{ij} = (s_{ijh}, \dots, s_{ijm})$ the binary coding of the j^{th} state from the path i
- ▶ t_{ij} the length of time in the j^{th} of the path i,
- $x_i = (s_{i0}, t_{i0}, s_{i1}, t_{i1}, \dots, t_{i(d_i-1)}, s_{id_i})$ is the data from the path i,
- $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$ the whole dataset

Mixture of Markov processes

- ▶ The *n* paths come from *K* different processes (*K* to be determined) caracterized by parameters θ_k .
- ▶ The likelihood function for the path *i* coming from cluster *k*,

$$p(\mathbf{x}_i; \boldsymbol{\theta}_k) = p(\mathbf{s}_{i0}; \boldsymbol{\theta}_k) p(t_{i0}, \mathbf{s}_{i1} | \mathbf{s}_{i0}; \boldsymbol{\theta}_k) \prod_{j=1}^{d_i-1} p(t_{ij}, \mathbf{s}_{i(j+1)} | \mathbf{s}_{ij}, t_{i(j-1)}, \dots, \mathbf{s}_{i1}, t_{i0}, \mathbf{s}_{i0}; \boldsymbol{\theta}_k)$$

Estimate from the data the parameters $\theta_1, \ldots, \theta_K$ and then determine the class membership for each sample paths.

Markovian hypotheses

H1 The distribution of $(t_{ij}, s_{i(j+1)})$ is independent of the past given s_{ij}

$$p(t_{ij}, s_{i(j+1)}|s_{ij}, t_{i(j-1)}, \dots, s_{i1}, t_{i0}, s_{i0}; \theta_k) = p(t_{ij}, s_{i(j+1)}|s_{ij}; \theta_k)$$

H2 The distributions of t_{ij} and $s_{i(j+1)}$ are independent given s_{ij}

$$p(t_{ij}, s_{i(j+1)}|s_{ij}; \theta_k) = p(t_{ij}|s_{ij}; \theta_k)p(s_{i(j+1)}|s_{ij}; \theta_k)$$

- H3 The distribution of t_{ij} given e_{ij} is an exponential distribution
- H4 The distribution of the initial state does not depends on the cluster

$$p(\mathbf{s}_{i0};\boldsymbol{\theta}_k) = p(\mathbf{s}_{i0})$$

Then,

$$p(\mathbf{x}_i; \boldsymbol{\theta}_k) = p(\mathbf{s}_{i0}) \prod_{j=0}^{d_i-1} \underbrace{p(t_{ij}|\mathbf{s}_{ij}; \boldsymbol{\theta}_k)}_{\text{time}} \underbrace{p(\mathbf{s}_{i(j+1)}|\mathbf{s}_{ij}; \boldsymbol{\theta}_k)}_{\text{transition}}$$

Model parameters

Cluster $k: \theta_k$

- lacktriangle transition probability matrix $lpha_k$
 - $\alpha_{khh'}$: the probability to move from state h to state h', $\alpha_k = (\alpha_{khh'})_{1 < h < m-1, 1 < h' < m}$
- ightharpoonup time distribution λ_k
 - λ_{kh} : parameter of the time distribution in state h of cluster k $\lambda_k = (\lambda_{k1}, \dots, \lambda_{k(m-1)})$

$$\boldsymbol{\theta}_k = (\boldsymbol{\alpha}_k, \boldsymbol{\lambda}_k)$$

All data:

 π_k prior weight for cluster k $\pi = (\pi_k, \dots, \pi_K)$

$$\theta = (\pi, \theta_1, \dots, \theta_K)$$

The likelihood

The pdf for the path i given the parameter θ is

$$p(x_i; \theta) = \sum_{k=1}^K \pi_k p(x_i; \theta_k).$$

The log-likelihood $\ell(\theta; x)$,

$$\ell(\boldsymbol{\theta}; \mathbf{x}) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_k p(\mathbf{x}_i; \boldsymbol{\theta}_k) \right).$$

Estimation : $\hat{m{ heta}}$

$$\hat{oldsymbol{ heta}} = \mathop{\mathsf{argmax}}_{oldsymbol{ heta}} \ell(oldsymbol{ heta}; \mathbf{x}).$$

12/21

The EM algorithm

The completed log-likelihood:

$$\ell(\boldsymbol{\theta}; \mathbf{x}, \mathbf{z}) = \sum_{i=1}^{n} \sum_{k=1}^{K} z_{ik} \log (\pi_k p(\mathbf{x}_i; \boldsymbol{\theta}_k))$$

where z_{ik} equals 1 if path i comes from the k^{th} Markov process.

E step:

$$t_{ik}^{(r+1)} = E[Z_{ik}|x_i;\theta^{(r)}] = P(Z_{ik} = 1|x_i;\theta^{(r)}) = \frac{\pi_k^{(r)}p(x_i;\theta_k^{(r)})}{\sum_{k'=1}^{K} \pi_{k'}^{(r)}p(x_i;\theta_{k'}^{(r)})}$$

M step : Let

$$n_{khh'}^{(r+1)} = \sum_{i=1}^{n} \sum_{i=0}^{d_i-1} t_{ik}^{(r+1)} s_{ijh} s_{i(j+1)h'}, \qquad n_{kh}^{(r+1)} = \sum_{i=1}^{n} \sum_{i=0}^{d_i-1} t_{ik}^{(r+1)} s_{ijh}, \qquad n_{k}^{(r+1)} = \sum_{i=1}^{n} t_{ik}^{(r+1)}$$

The update formulas are

$$\pi_k^{(r+1)} = \frac{n_k^{(r+1)}}{n}, \qquad \alpha_{khh'}^{(r+1)} = \frac{n_{khh'}^{(r+1)}}{n_{kh}^{(r+1)}}, \qquad \lambda_{kh}^{(r+1)} = \frac{n_k^{(r+1)}}{\sum_{i=1}^n \sum_{j=1}^{d_i} t_{ik}^{(r+1)} s_{ijh} t_{ij}}.$$

Clustering

$$\hat{m{ heta}} = \{\hat{m{\pi}}_k, \hat{m{\lambda}}_k, \hat{m{lpha}}_k\}_{k=1,\ldots,K}.$$
 $\hat{z}_{ik} = \left\{egin{array}{l} 1 ext{ if } k = ext{argmax} P(Z_{ik'} = 1 | m{x}_i; \hat{m{ heta}}), \\ 0 ext{ otherwise}. \end{array}
ight.$

$$P(Z_{ik} = 1 | \mathbf{x}_i; \boldsymbol{\theta}) = \frac{\pi_k p(\mathbf{x}_i; \hat{\boldsymbol{\theta}}_k)}{\sum_{k'=1}^K \pi_{k'} p(\mathbf{x}_i; \hat{\boldsymbol{\theta}}_{k'})}$$

Choice of the number of clusters K

The BIC criterion for K clusters noted BIC(K) is

$$BIC(K) = L(\hat{\theta}^K; \mathbf{x}) - \frac{\nu_K}{2} \log n$$

where $\hat{\theta}^K$ is the maximum likelihood parameter estimated when considering K clusters, and ν_K are the number of estimated parameters when considering K clusters.

$$\nu_K = K(m-1)^2 + K - 1$$

The chosen number of clusters:

$$\hat{K} = \underset{K \in \{1, \dots, K_{\mathsf{max}}\}}{\mathsf{argmax}} \mathit{BIC}(K)$$

Application to medical discharge letters status.

Definition of the states:

- 1. the doctor is dictating the letter.
- the letter is "waiting" to be type-writing by an assistant (queue)
- 3. the letter is type-writing by the assistant
- 4. the letter is "waiting" for doctor validation (queue)
- 5. the letter is in validation process by the doctor
- 6. the letter is "waiting" to be affected to an assistant (queue)
- 7. the letter is treated by the assistant
- 8. the letter is sent to the patient (end).

Data description :

A state is caracterised by 4 values :

- 1. date of the beginnig of the state
- the day number (into a week) of the beginning date (1=Monday, 7=Sunday)
- 3. length of time spent into the state
- 4. the name of the state (1 to 8)

beginning date	day	length	state
10/01/2012 02 :39 :19	2	0h0m0s	1
10/01/2012 02 :42 :38	2	0h7m20s	2
10/01/2012 02 :49 :58	2	18h29m34s	3
11/01/2012 09 :19 :42	3	4h43m59s	4
11/01/2012 02 :14 :08	3	3h13m13s	6
11/01/2012 05 :27 :21	3	0h0m7s	7
11/01/2012 05 :30 :44	3		8

Summary of data:

▶ 443 325 letters

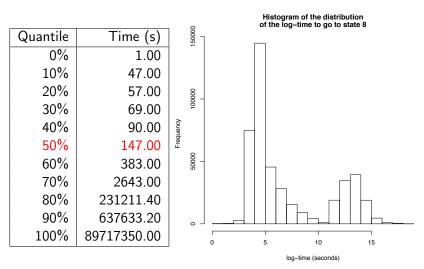
Number of jumps (length of the path) :

Length	2	3	4	5	6	7	8
Frequence	336181	1118	2752	8157	23688	8541	62888

Number of transitions from one state to another state :

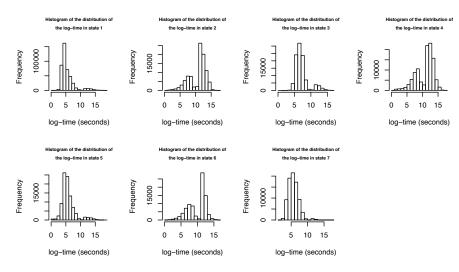
from \ to	1	2	3	4	5	6	7	8
1	0	93042	201	0	0	0	0	335306
2	0	0	90453	2849	32	0	0	317
3	0	0	0	100452	113	974	1	73
4	0	0	0	0	92351	6629	191	6694
5	0	0	0	0	0	76523	887	15353
6	0	0	0	0	0	0	81180	3184
7	0	0	0	0	0	0	0	82398

Time length of the paths :



Distribution of log(length), cut-off at exp(10) seconds $\simeq 6$ hours.

Distribution of the length of time for each state



All distributions are bimodal.

Classification

K = 4 clusters:

Cluster	1	2	3	4
Size	37783	23159	358498	23844

Average time by state :

