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Abstract. Finding the shortest path in a directed graph is one of the
most important combinatorial optimization problems, having applica-
tions in a wide range of fields. In its basic version, however, the problem
fails to represent situations in which the value of the objective func-
tion is determined not only by the choice of each single arc, but also
by the combined presence of pairs of arcs in the solution. In this paper
we model these situations as a Quadratic Shortest Path Problem, which
calls for the minimization of a quadratic objective function subject to
shortest-path constraints. We prove strong NP-hardness of the problem
and analyze polynomially solvable special cases, obtained by restricting
the distance of arc pairs in the graph that appear jointly in a quadratic
monomial of the objective function. Based on this special case and prob-
lem structure, we devise fast lower bounding procedures for the general
problem and show computationally that they clearly outperform other
approaches proposed in the literature in terms of its strength.

Keywords: Shortest Path Problem, Quadratic 0–1 optimization, Lower
bounds

1 Introduction

The Shortest Path Problem (SPP) is among the best studied combinatorial
optimization problems on graphs. It arises frequently in practice in a variety of
settings and often appears as a subproblem in algorithms for other combinatorial
optimization problems. In a directed network with arbitrary given lengths, the
SPP is the problem of finding a directed path from an origin node s to a target
node t with shortest total length. Many classical algorithms such as Dijkstra’s
labeling algorithm [7] and Bellman-Ford’s successive approximation algorithm [2]
have been developed to solve the problem.

The basic SPP fails to model situations in which the value of a linear objec-
tive function is not the only interesting parameter in the choice of the optimal
solution. Such problems include situations in which the choice of the shortest
path is constrained by parameters such as the variance of the cost of the path,
or cases in which the objective function takes into account not only the cost
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of each selected arc but also the cost of the interactions among the arcs in the
solution. We call such a problem Quadratic Shortest Path Problem (QSPP).

The first variant of the SPP studied in the literature that is directly related to
QSPP is probably that of Variance Constrained Shortest Path [13]. The prob-
lem seeks to locate the path with the minimum expected cost subject to the
constraint that the variance of the cost is less than a specified threshold. The
problem arises for example in the transportation of hazardous materials. In such
cases a path must be short but it must also be subject to a constraint that the
variance of the risk associated with the route is less than a specified threshold.
More generally, this problem may arise in all situations in which the costs associ-
ated with each arc consist of stochastic variables. Possible approaches to solving
the Variance Constrained Shortest Path problem involve a relaxation in which
the quadratic variance constraint is incorporated into the objective function,
thus yielding a QSPP problem. In this case, the quadratic part of the objective
function is determined by the covariance matrix of the coefficient’s probability
distributions. In [12] the authors develop a multi-objective model to minimize
both the expected travel time of a path and its variance. Then they solve the
multi-objective optimization problem by combining the linear and quadratic ob-
jective functions into a single quadratic shortest path problem.

A different type of applications arises from research on network protocols.
In [10], the authors study different restoration schemes for self-healing ATM
networks. In particular, the authors examine line and end-to-end restoration
schemes. In the former, link failures are addressed by routing traffic around the
failed link, in the latter, instead, traffic is rerouted by computing an alternative
path between source and target. Within their analysis, the authors point out the
need to solve a QSPP to address rerouting in the latter scheme. Nevertheless,
they do not provide details about the algorithm used to obtain a QSPP solution.

Recently, Amaldi et al. [1] introduced new combinatorial optimization prob-
lems called reload cost paths, tours, and flows which have several applications in
transportation networks, energy distribution networks, and telecommunication
networks. In the reload cost problems, one is given a graph whose every edge
is assigned a color and there is a reload cost when passing through a node on
two edges that have different colors. Therefore, the reload cost path problem is
a special case of the QSPP in which the objective function takes into account
only the reload cost of consecutive arcs with different colors. The authors proved
that the reload cost path problem is polynomially solvable.

All problems described above involve variants of the shortest-path problem in
which the cost associated with each arc is integrated by a contribution associated
with the presence of pairs of arcs in the solution. Such a contribution can be
expressed by a quadratic objective function on binary variables associated with
each arc, and leads to the definition of a QSPP. To best of our knowledge, there
is no previous research dealing directly with solution methods nor complexity
studies of the QSPP. Buchheim and Traversi [4] proposed a generic framework for
solving binary quadratic programming problems by computing quadratic global
underestimators of the objective function that are separable but not necessarily
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convex. In their computational experiments, they solve some special classes of
quadratic 0− 1 problems including the QSPP.

In this paper we analyze the complexity of the QSPP and study different
special cases of the problem which can be solved in polynomial time. We then
develop efficient lower bounding schemes which build a classical SPP or a new
special QSPP from the original problem in order to obtain lower bounds. It turns
out that the new bounds outperform all lower bounding schemes proposed in the
literature so far [4].

2 Problem formulation and complexity

Given a directed graph G(V,A), a source node s ∈ V , a target node t ∈ V , a
cost function c : A → R+, which maps every arc to a non-negative cost, and a
cost function q : A×A→ R+ that maps every pair of arcs to a non-negative real
cost, we denote by δ−(i) = {j ∈ V | (j, i) ∈ A} and δ+(i) = {j ∈ V | (i, j) ∈ A}
the set of predecessor and successor nodes for any given i ∈ V . Defining a binary
variable xij indicating the presence of arc (i, j) on the optimal path, the QSPP
is represented as:

QSPP: z∗ = min
∑

(i,j),(k,l)∈A

qijklxijxkl +
∑

(i,j)∈A

cijxij

s.t. x ∈ Xst, x binary.

(1)

Here the feasible region, Xst, is exactly the same as that associated with the
standard shortest-path problem, i.e.,

Xst =
{

0 ≤ x ≤ 1 :
∑

j∈δ+(i)

xij +
∑

j∈δ−(i)

xji = b(i) ∀i ∈ V
}
.

Note that b(i) = 1 for i = s, b(i) = −1 for i = t, and b(i) = 0 for i ∈ V \ {s, t}.

Theorem 1. QSPP is strongly NP-hard.

Proof. Let us consider the general form of the Quadratic Assignment Problem
(QAP) on a complete bipartite graph G = (U, V,E) with nodes U∪V , undirected
arcs E, a linear cost c, and a quadratic cost q. We may assume that nodes in U
and V are both numbered 1, . . . ,m. We show that this generic instance of the
QAP can be reduced to a corresponding instance of QSPP in polynomial time.
To this end, we define an QSPP instance on a graph G̃ = (Ṽ , Ã) and map each
feasible QAP assignment onto a feasible path in G̃, where Ṽ and Ã are defined
as follows:

Ṽ = (U × V ) ∪ {s, t}, and Ã = As ∪A+ ∪At,

where

As = {(s, (1, i)) : i ∈ V }, At = {((m, i), t) : i ∈ V }, and

A+ = {((i, j), (i+ 1, k)) : i ∈ U \ {m}, j, k ∈ V, j 6= k}.
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Fig. 1: Graph G and G̃. Bold lines in Graph G and G̃ illustrate a feasible as-
signment for the QAP and its corresponding unique feasible path for QSPP,
respectively.

Each node (i, j) ∈ U × V corresponds to an edge in the original QAP instance,
we will use the notation u((i, j)) := i and v((i, j)) := j in the following.

Figure 1 shows the graphs G and G̃ with m = 4. With reference to this figure,
u((i, j)) represents the column of node (i, j) when the graph G̃ is arranged on
a grid as shown. Moreover, it represents the index of the first of the two QAP
nodes corresponding to (i, j) in the bipartite graph on the left. Analogously,
v((i, j)) represents the row in the grid and the index of the second QAP node
in the bipartite graph.

The graph structure resulting from the above transformation has a number
of nodes equal to m2 + 2 and a number of arcs equal to m3 − 2m2 + 3m, which
makes the reduction polynomial.

Moreover, this construction maps each feasible assignment π : U → V in G
to a unique feasible path in G̃ as follows: the first arc of the path is (s, (1, π(1))),
the next arcs are ((i, π(i)), (i+1, π(i+1))) for i = 1, . . . ,m−1, and the final arc
is ((m,π(m)), t). By construction and since π(i) 6= π(i+1) for all i = 1, . . . ,m−1,
all arcs in this path exist in G̃. Vice versa, every path in G̃ uniquely determines
a function π : U → V by setting π(u(w)) = v(w) for all w ∈ U × V belonging to
the path. However, this function is not necessarily a feasible QAP assignment,
as different nodes of U may be mapped to the same node of V . This problem is
easily addressed by appropriately generating the cost matrix as we show next.

The linear cost vector is defined in Equation (2). The cost for any arc pointing
to node e is given by the cost of the arc from u(e) to v(e) in the QAP.

c̃fe =

{
cu(e)v(e) e 6= t

0 e = t.
(2)

The assignment of quadratic costs to pairs of arcs in G̃ is defined according to
Equation (3). In general, the cost q̃fehw corresponding to the pair (f, e), (h,w) ∈
Ã is equal to the cost qu(e)v(e)u(w)v(w) in the original problem. However, Equa-
tion (3) includes an additional constraint to prevent the creation of paths corre-
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sponding to infeasible QAP solutions, where two distinct nodes in U are assigned
to the same node in V .

q̃fehw =


qu(e)v(e)u(w)v(w) e 6= t ∧ w 6= t ∧ v(e) 6= v(w)

0 e = t ∨ w = t

∞ otherwise.

(3)

The last case in Equation (3) thus makes sure that any optimal solution of
QSPP in graph G̃ defines a feasible assignment π in graph G, so that there
is a one-to-one correspondence between the feasible assignments in G and the
directed paths in G̃ with finite weight, as explained above. It is easy to verify
that by construction the cost remains the same under this transformation.

As the QAP problem is strongly NP-hard [11] and the numbers defined in
the transformation all have polynomial values (infinite costs can be replaced by
an appropriate polynomial value M), the result follows. ut

3 The adjacent quadratic shortest path problem

In this section, we consider special cases of the QSPP where the quadratic part
of the cost function has a local structure, meaning that each pair of variables
appearing jointly in a quadratic term in the objective function corresponds to
a pair of arcs lying close to each other. We start with the Adjacent QSPP
(AQSPP), where interaction costs of all non-adjacent pair of arcs are assumed
to be zero. Therefore, only the quadratic terms of the form xijxkl with j = k and
i 6= l or with j 6= k and i = l have nonzero objective function coefficients. The
AQSPP can be viewed as a generalization of the Reload Cost path introduced
by Amaldi et al. [1].

In order to solve the AQSPP, we propose a polynomial-time algorithm based
on a transformation that reduces the original problem on graph G = (V,A) to
the classical shortest path problem in an auxiliary directed graph G′ = (V ′, A′).
For this, we may assume w.l.o.g. that there is no direct arc from s to t in G.
Now define

V ′ = {〈s, s〉} ∪ {〈i, j〉 : (i, j) ∈ A} ∪ {〈t, t〉},
A′ = {(〈i, j〉, 〈j, k〉) : 〈i, j〉, 〈j, k〉 ∈ V ′},

where 〈s, s〉 and 〈t, t〉 represent nodes s and t, respectively, while all the other
nodes in G′ correspond to the arcs in the original graph G. Next, we associate
each arc (〈i, j〉, 〈j, k〉) ∈ A′ with a weight w defined as:

w(i, j, k) =


cjk + qijjk 〈i, j〉 6= 〈s, s〉 ∧ 〈j, k〉 6= 〈t, t〉
cjk 〈i, j〉 = 〈s, s〉
0 〈j, k〉 = 〈t, t〉

Since G′ contains |A|+ 2 nodes and δ+(s) + δ−(t) +
∑
i 6=s,t(δ

−(i)δ+(i)) arcs, it
can be constructed in polynomial time. In Figure 2 we present an example of a
graph G and the corresponding auxiliary graph G′.
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Fig. 2: Graph G = (V,A) and its auxiliary graph G′ = (V ′, A′).

Let c(P ) =
∑

(i,j)∈P cij +
∑

(i,j),(j,k)∈P qijjk be the cost of any s− t path P

in G, and w(P ′) =
∑
e∈P ′ we be the cost of any 〈s, s〉 − 〈t, t〉 path P ′ in G′. The

following lemma is a straightforward result implied by the construction of G′.

Lemma 1. For any s− t path P in G there exists an 〈s, s〉−〈t, t〉 path P ′ in G′

with c(P ) = w(P ′), and vice versa.

Proof. For a given s− t path P ⊆ A in G, the path P ′ ⊆ A′ is defined as follows:
an arc (〈i, j〉, 〈j, k〉) belongs to P ′ if and only if (i, j), (j, k) ∈ P ∪ {(s, s), (t, t)}.
The path P can be computed from P ′ accordingly. ut

This immediately implies the following

Theorem 2. An optimal solution for AQSPP in graph G can be obtained by
solving a classical shortest path over G′.

Corollary 1. For any given source node s and target node t, the AQSPP on
graph G can be solved in O(min{|A|2, |V |3}+ |A| log |A|) time.

Proof. Using Dijkstra’s algorithm, the running time is O(|A′| + |V ′| log |V ′|),
where |A′| can be both restricted by |A|2, as each edge in G′ corresponds to a
pair of edges in G, and by |V |3, as it is defined by three nodes in G. ut

If the vertex degrees in G are bounded by ∆, a bound of O(∆2|V |+ |A| log |A|)
on the running time can be obtained.

These results hold for the case of a fixed source s and target t. Let us now
consider the single-source AQSPP which finds the minimum AQSPP from a
given source s to each vertex v ∈ V . To solve the problem we again consider the
graph G′, but since t is not specified, we do not add node 〈t, t〉, nodes 〈k, t〉∀k,
and the arcs incident to these nodes. Then we use Dijkstra’s algorithm to find
the shortest path P ∗〈s,s〉〈i,j〉 from the source node 〈s, s〉 to all the other nodes

〈i, j〉 of G′. For any target node t ∈ V , the solution of AQSPP can then be
obtained by computing

min{w(P ∗〈s,s〉〈i,t〉) : 〈i, t〉 ∈ A′}. (4)
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The total running time for solving the single-source AQSPP is thus again given
by O((min{|A|2, |V |3} + |A| log |A|)), since the additional total running time
needed to solve (4) for all t ∈ V is O(|A′|) and thus dominated but the running
time of the first phase.

Motivated by the results of Theorem 2, we can generalize the Adjacent QSPP
to an r-Adjacent QSPP by defining the concept of r-adjacency.

Definition 1. Given a fixed positive integer r, the graph G = (V,A) and two
arcs (i, j) and (k, l) in A, we say that (i, j) and (k, l) are r-adjacent in G if there
exists a directed path of length at most r containing both arcs.

We can now define the r-Adjacent QSPP (r-AQSPP) as a more general case of
the AQSPP where objective function coefficients of the quadratic terms xijxkl of
non-r-adjacent arcs (i, j), (k, l) ∈ A are assumed to be zero. With this definition,
the AQSPP agrees with the 2-Adjacent QSPP.

Therefore, for any fixed positive integer number r ≥ 2, we can apply the
aforementioned graph construction to transform an r-AQSPP to an (r − 1)-
AQSPP, where the 1-AQSPP is equivalent to the classical shortest path problem.
For fixed r, this leads to a polynomial time algorithm for the r-AQSPP. However,
the running time increases exponentially with r. Clearly, for large enough r, the
r-AQSPP agrees with the general QSPP and is thus NP-hard by Theorem 1.

4 Lower bounding schemes

In this section, we propose lower bounding schemes for the general case of QSPP
based on a simple observation on the structure of the problem combined with the
polynomial solvability of the AQSPP. The methods are based on the Gilmore-
Lawler (GL) procedure. The GL procedure is one of the most popular approaches
to find a lower bound for the QAP proposed by Gilmore [8] and Lawler [9] and
has been adapted to many other quadratic 0–1 problems in the meantime [5].

For each arc e = (i, j) ∈ A, potentially in the solution, we consider the
minimum interaction cost of e in a path from s to t. In other words, we compute
the shortest among the paths from s to t which contain arc e, using the ij-
th column of the quadratic cost matrix as the cost vector. Let Pe be such a
subproblem for a given arc e ∈ A:

Pe : ze = min
{∑
f∈A

qefxf : x ∈ Xst, xe = 1
}
∀e ∈ A. (5)

The value ze is the best quadratic contribution to the QSPP objective function
where arc e is in the solution. One possible way to solve Pe is to consider it as
a minimum cost flow problem with two origins s and j and two destinations i
and t in a network without arc e. Thus a solution to Pe can be found by solving
a minimum-cost-flow problem with two units of cost to be transferred between
two sources s and j and two destinations i and t in a graph Ḡ = (V,A \ {e}).
However, this represents a relaxation of Pe: in particular, it admits solutions
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Fig. 3: Possible solutions to Pe when e = (3, 5), s = 1 and t = 9.

that consist of the union of a path from s to t that does not contain arc e and a
cycle containing e. The resulting solution will then have either of the two forms
depicted in Figure 3.

To avoid the situations presented in Figure 3, one can modify the shortest
path algorithms to include any given fixed arc e = (i, j). The main idea is to
compute the shortest path from s to i, add arc e to the path, and compute the
shortest path from j to t. In addition we set to infinity the weights of all the
arcs incident to t when computing the path from s to i. This prevents node t
from being included in this path.

Once ze has been computed for each e ∈ A, the GL bound is given by the
solution to the following shortest path problem:

LBGLT = min

{∑
e∈A

(ze + ce)xe : x ∈ Xst

}
.

The popularity of the GL approach for computing lower bounds stems from
its low computational cost. However, for some quadratic 0–1 problems the ob-
tained bounds deteriorate quickly as the size of the problem increases [6]. In the
following subsections we propose two novel approaches to improve the GL lower
bound for the QSPP.

4.1 A generalized Gilmore-Lawler type bound

We consider a generalization of the GL (GGL) procedure which considers the
minimum interaction cost not only of one arc but of two consecutive arcs. More
precisely, for each two consecutive arcs e = (i, j), f = (j, k) ∈ A, potentially in
the solution, we consider a subproblem Pef to compute the shortest among the
paths from s to t which contains these two arcs, i.e.,

Pef : zef = min

{∑
h∈A

q̂hefxh : x ∈ Xst, xe = xf = 1

}
∀e, f ∈ S2A,
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where S2A is the set of all 2-adjacent arcs in G, and q̂ is defined as follows:

q̂hef =


1
2 (qeh + qfh) i 6= s, k 6= t

qeh + 1
2qfh i = s, k 6= t

1
2qeh + qfh i 6= s, k = t.

Similar to problem Pe, the solution to Pef can be easily found by either solving a
minimum-cost-flow problem or applying a modified version of the shortest path
algorithms. Then the GGL bound is defined to be the solution of the following
AQSPP:

LBGGL = min

∑
e∈A

cexe +
∑

e,f∈S2A

zefxexf : x ∈ Xst

 .

By the results of Section 3, the value of LBGGL can be computed in polynomial
time. It is now easy to show

Theorem 3. LBGGL is a lower bound for QSPP; that is LBGGL ≤ z∗.

Proof. Let P be any s − t path in G, consisting of edges e1, . . . , ek. Then the
cost of P is

c(P ) =

k∑
i=1

cei +

k∑
i,j=1

qeiej =

k∑
i=1

cei +

k−1∑
i=1

k∑
j=1

q̂ejeiei+1
≥

k∑
i=1

cei +

k−1∑
i=1

zeiei+1
.

By definition, the latter expression is bounded from below by LBGGL. ut

Note that this approach can be easily generalized by using the r-Adjacent QSPP
in order to obtain lower bounds. Clearly, as r is increased, the resulting bound
will converge towards the optimal solution. However, the running time for com-
puting the bound grows exponentially in r. Parameter r can thus be used to
balance running time and quality of the bound.

4.2 An iterated Gilmore-Lawler type bound

Next, we present Iterated GL (IGL), an iterative bounding procedure inspired
by the one proposed in [6] for the QAP. We start by defining a new cost matrix
using the reduced costs associated with the dual problem of Pe.

qef = qef + (λe)k − (λe)l − (µe)f ∀f = (k, l) ∈ A (6)

where λe is the optimal dual-solution vector associated with Xst, and µe is the
one associated with constraint x ≤ 1. Using this matrix, and (5), we reformulate
the QSPP by shifting some of the quadratic costs to the linear part.

RQSPP: z∗ = min
∑
e,f∈A

qefxexf +
∑
e∈A

(ce + ze)xe

s.t. x ∈ Xst, x binary.

(7)
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The use of the reduced costs as the quadratic-cost matrix balances the increased
linear costs making RQSPP equivalent to QSPP as shown by the following
theorem. The proof is omitted due to space restrictions.

Theorem 4. Problems QSPP and RQSPP are equivalent. ut

The theorem allows us to iterate the procedure by applying (6) to the reformu-
lated problem and by repeating the reformulation. This results in a sequence
of equivalent QSPP instances (Q0, Q1, . . . , Qk with Q0 = QSPP), each charac-
terized by a stronger impact of linear costs than the previous ones, and thus
providing a better bound. Note that the GL bound is obtained by considering
only the linear portion of the objective function in the first iteration.

5 Computational results

In this section, we present our computational experiments to evaluate the strength
of the lower bounds for the QSPP presented in Section 4. We compare the re-
sults of the GLT, GGL, and IGL procedures with three other methods consid-
ered in [4]: the first is the root bound calculated by Cplex 12.4 when applied to
the problem formulation (1). The other approaches, called QCR and OSU, are
general approaches for solving quadratic 0-1 programming problems. The QCR
(quadratic convex relaxation) method reformulates quadratic 0-1 programming
with linear constraints into an equivalent 0-1 program with a convex quadratic
objective function, where the reformulation is chosen such that the resulting
lower bound is maximized. For this, an appropriate semidefinite program is
solved [3]. The OSU (optimal separable underestimators) approach computes
quadratic global underestimators of the objective function that are separable
but not necessarily convex [4]. To evaluate and compare all methods, we use the
random instances with |V | = 100, 121, 144, 169, 196, 225 on grid graphs gener-
ated in [4]. The linear and quadratic costs are generated uniformly at random in
{1, . . . , 10}. Given a pair of arcs (i, j) and (k, l), their associated quadratic costs
is equal to q = qijkl + qklij . Since in each subproblem of our lower bounding
schemes, each of these two values are processed separately, we consider a redis-
tribution of the quadratic cost qijkl = qklij = q/2—for IGL, we redistribute the
costs at each iteration. Table 1 presents the results. The first two columns give
the problem sizes and the optimal objective values. Columns three to eight give
the lower bound values obtained by Cplex, QCR, OSU, GLT, GGL, and IGL
respectively. The last five columns of the table present the percentage gap closed
by QCR, OSU, GLT, GGL, and IGL over Cplex with respect to the optimum.
The formula we used to compute the relative gap closed by a lower bound LB
over the lower bound of Cplex (LBc) is 100× (LB − LBc)/(OPT − LBc).

The results show that Cplex provides by far the worst lower bounds. The
GLT lower bound is better than the OUS bound, but both are outperformed by
QCR, GGL, and IGL. GGL and IGL provide very similar bounds and clearly
outperform QCR. Moreover, our purely combinatorial approach allows us to
compute the GLT, GGL, and IGL bounds quickly, while the QCR bound requires
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Table 1: Lower bound comparison for QSPP

Instance Lower bound Impv. vs. Cplex (%)

n Opt. Cplex QCR OSU GLT GGL IGL QCR OSU GLT GGL IGL

100 621 200 489 357 434 528 511 68.8 37.2 55.5 77.9 73.8
100 635 211 501 323 419 511 512 68.3 26.4 49.1 70.7 70.9
100 636 217 498 367 449 532 530 56.4 35.7 55.3 75.1 74.7
100 661 209 491 359 447 537 534 62.3 33.1 52.6 72.5 71.9
100 665 233 504 367 453 549 545 62.7 31.1 50.9 73.1 73.2
Ave. 63.7 32.7 52.7 73.9 72.7

121 813 253 609 420 531 658 663 63.5 29.8 49.6 72.3 73.2
121 788 251 593 417 518 630 631 63.6 30.9 49.7 70.5 70.7
121 795 225 592 384 530 643 645 64.3 27.8 53.5 73.4 73.6
121 782 236 619 402 518 629 648 70.1 30.4 51.6 71.9 75.4
121 767 228 582 404 536 650 644 65.6 32.6 57.1 78.2 77.1
Ave. 65.4 30.3 52.3 73.2 74.0

144 959 271 714 479 623 767 775 64.3 30.2 51.1 72.1 73.2
144 963 282 707 524 627 768 764 62.4 35.3 50.6 71.3 70.7
144 900 259 687 491 592 730 735 66.7 36.1 51.9 73.4 74.2
144 960 236 698 481 625 758 766 63.8 33.8 53.7 72.1 73.2
144 976 289 701 479 632 773 772 59.9 27.6 49.9 70.4 70.3
Ave. 63.4 32.6 51.4 71.9 72.3

169 1159 335 805 586 730 899 891 57.0 30.4 47.9 68.4 67.4
169 1178 333 821 590 759 940 920 57.7 30.4 50.4 71.8 69.4
169 1164 325 822 558 733 883 876 59.2 27.7 48.6 66.5 65.6
169 1110 301 805 568 729 887 875 62.2 33.0 52.9 72.4 70.9
169 1115 322 842 567 737 918 897 65.5 30.8 52.3 75.1 72.5
Ave. 60.3 30.5 50.4 70.1 69.2

196 1363 364 959 680 841 1055 1064 59.5 31.6 47.7 69.1 70.1
196 1367 357 963 669 859 1058 1056 60.0 30.8 49.7 69.4 69.2
196 1320 334 934 651 820 1040 1009 60.8 32.1 50.0 72.6 69.4
196 1347 348 982 661 862 1058 1062 63.4 31.3 51.4 71.1 71.4
196 1344 354 949 704 868 1070 1043 60.1 35.3 51.9 72.3 69.5
Ave. 60.8 32.2 50.1 70.9 69.9

225 1551 367 1094 729 965 1199 1200 61.4 30.5 50.5 70.2 70.3
225 1588 412 1099 806 987 1223 1211 58.4 33.5 48.8 68.9 67.9
225 1561 419 1067 762 937 1169 1168 56.7 30.0 45.3 65.6 65.5
225 1569 386 1061 744 938 1173 1146 57.1 30.2 46.6 66.5 64.2
225 1582 389 1084 791 978 1223 1203 58.2 33.6 49.3 69.9 68.2
Ave. 58.4 31.6 48.1 68.2 67.2

solving a semidefinite program, which is often time-consuming in practice even
if theoretically possible in polynomial time. Moreover, allowing a longer running
time for our GGL approach, we could also improve our bounds by using the
3-Adjacent QSPP.

6 Conclusion

In this paper, we have investigated the quadratic variant of the shortest path
problem. We have analyzed its complexity and studied polynomially solvable
cases of the problem obtained by allowing only products of adjacent arcs in the
objective function. We have proposed efficient procedures to compute strong
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lower bounds that are based on the well-known Gilmore-Lawler approach com-
bined with the polynomial solvability of the SPP and AQSPP. Our future re-
search will concentrate on combining the GGL procedure with some different
reformulation techniques to improve the lower bounds, and an integration of
these lower bounds into a branch-and-bound scheme.
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