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Abstract

This contribution presents derivative-based methods for local sensitivity analysis, called

Variational Sensitivity Analysis (VSA). If one defines an output called the response

function, its sensitivity to inputs variations around a nominal value can be studied

using derivative (gradient) information. The main issue of VSA is then to provide an

efficient way of computing gradients.

This contribution first presents the theoretical grounds of VSA: framework and prob-

lem statement, tangent and adjoint methods. Then it covers pratical means to com-

pute derivatives, from naive to more sophisticated approaches, discussing their various
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merits. Finally, applications of VSA are reviewed and some examples are presented,

covering various applications fields: oceanography, glaciology, meteorology.

Introduction

This contribution presents derivative-based methods for local sensitivity analysis, gath-

ered under the name Variational Sensitivity Analysis (VSA). The aim of VSA is to

provide sensitivity information using derivatives. This is indeed a valuable informa-

tion, as the derivative of a function at a given point gives the growth rate at that

point, in other words the tendency of the function to grow (or not) when the input

varies. Approximately one could say the larger the derivative, the more sensitive the

parameter.

Note that VSA can be extended to global analysis (GSA) and the reader is ref-

ered to contribution (see Derivative-based Global sensitivity measure). Here the focus

will be solely on local derivative-based sensitivity analysis. Contrary to GSA, LSA aims

to compute sensitivities when the parameters vary locally around their nominal values,

and not globally over a potentially large subset.

VSA is closely related to the research domain called Data Assimilation. This

one consists in adjusting input parameters of a model so that the system state fits a

given set of observations (data). Variational data assimilation translates this into an

optimal control problem whose aim is to minimise the model-observation misfit. This

minimisation is performed using descent methods and the gradient is computed using

the so-called adjoint method, which is also at the core of VSA. Moreover, improving

parameters and models through data assimilation assumes that the most sensitive

parameters are known, which in turn creates the need to perform VSA beforehand.

This contribution is divided in two parts. First it will cover the methods of local

VSA: the derivative is first defined, then the adjoint method is shown to provide a
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powerful way to compute it, then a brief overview about practical derivatives compu-

tation is given, and finally stability analysis is mentioned, which is closely related to

sensitivity analysis.

In a second part some applications are presented. VSA has been used in a wide

range of domains: e.g. meteorology [1; 5; 8; 23; 33; 34], cyclones tracking [14; 22; 32],

air quality [26; 25], oceanography [2; 30; 27; 31], surface hydrology [4], groundwater

modelling [28], glaciology [13], agronomy [15], chemistry [24], ... Historically the adjoint

method was first applied to numerical weather prediction, so that meteorology is a

primary application domain, with many references on VSA. As in other geophysical

domains, meteorological models are in general of very large dimension, so that GSA

is mostly out of reach, which motivates the introduction of the adjoint method and

VSA. This contribution chose to focus on a small number of example applications in

geophysics.

Methods

Problem statement

In this section, the sensitivity of the output vector y with respect to the input vector

x is considered. This output is often called the response function, since it represent

the response of the system to variation on the input. In the variational framework,

practitioners are generally interested in studying sensitivities of given numerical models

M coming from various application domains (physics, geosciences, biology, ...), so that

the output is a function of a state vector u(x; t) ∈ Rp, which depends on the input

x ∈ Rd and on time t and represents the state of a given system of interest:




du

dt
=M(u;x), t ∈ [0, T ]

u(t = 0) = u0(x)

(1)
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As u lies in Rp, the model M is a (possibly non linear) operator from Rp × Rd to Rp.

In that case, the dependency between the input and the output reads:

y = G(x) = G(u(x)) (2)

where G is the response function and G maps the state space into the output space.

Remark 1. In the definition of the response function G lies all the art of sensitivity anal-

ysis. It should be designed carefully depending on the aim of the study (model valida-

tion, physical phenomenon study, etc.). This is discussed in depth in the contributions

Sensitivity analysis of spatial and/or temporal phenomena and Variables Weights and

Importance in Arithmetic Averages: Two Stories to Tell.

Remark 2. A more general case would be y = G(u(x),x). The theory easily extends to

that case, but for readability only this simpler case will be presented here.

In order to simplify the notations and clarify the reading, scalar outputs will

be considered in this chapter, i.e. y ∈ R, but vector-valued outputs can of course be

considered as well.

Variational sensitivity consists in finding the sensitivity of G with respect to the

variations of x, in other words the derivative of G with respect to the vector x:

dG

dx
(x)

In this framework, G is differentiable from Rd to R, with continuous derivative, i.e. G

is of class C1. Then the derivative can be identified (using the Euclidean scalar product

in Rd) with the gradient

∇xG(x) =

(
∂G

∂x1
(x),

∂G

∂x2
(x), ...,

∂G

∂xd
(x)

)T

The partial derivatives of G are particular cases of the directional derivative,

also called the Gâteau derivative, which is defined by G′(x)[h] such that:
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G′(x)[h] = lim
α→0

G(x + αh)−G(x)

α

where the direction h is a vector of Rd. The partial derivative is simply the directional

derivative in the direction of a basis vector, it is given by:

G′(x)[ei] =
∂G

∂xi
(x)

As G is a continuously differentiable function, the link between the directional deriva-

tive and the gradient is immediate:

G′(x)[h] = ∇xG(x).h

where “.” represents the Euclidean scalar product in Rd.

Tangent and adjoint models

The most naive approach to track sensitive variables consists in fixing all parameters

except one, increasing it by a given percentage (of its standard deviation or its absolute

value) and then evaluate its impact on the output. This type of analysis can allow for

a quick ranking of the variables if there are not too many of them. The reader can refer

to [11] for a brief review on this subject.

A more refined approach would be to obtain a numerical approximation of the

gradient using finite differences, i.e. computing the gradient as a limit of a growth

rate (see [11] and next paragraph about practical aspects). This method is very simple

but has two main drawbacks. First, its computational cost increases rapidly with the

dimension d of x. Second, the choice of δxi is critical: if too large, the truncation error

becomes large, if too small rounding error occurs.

To address this last point, one can obtain an exact calculation for the Gâteaux

derivatives (FSAP, Forward Sensitivity Analysis Procedure in [3]’s terminology). As-

suming the output is given by equations (1,2):
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G′(x)[h] = ∇uG(u(x)).u′(x)[h] = G ′(u(x))[u′(x)[h]]

where u′(x)[h] is the Gâteau derivative of u at x in the direction h. If v denotes

u′(x)[h], then v is given by the following equations, called the Tangent Linear Model

(TLM): 



dv

dt
=
∂M
∂u

(u(x);x).v +
∂M
∂x

(u(x);x).h, t ∈ [0, T ]

v(t = 0) = u′0(x)[h] = ∇xu0.h

(3)

where ∂M
∂u

and ∂M
∂x

are the Jacobian matrices of the model with respect to the state u

and the parameters x. The Tangent Linear Model allows to compute exactly the direc-

tional derivative of the response function G, for a given direction h. To get the entire

gradient, all the partial derivatives need to be computed, therefore d integrations of the

TLM are required. The accuracy problem may be solved, but for a large-dimensional

set of parameters the computing cost of the FSAP method remains prohibitive.

In large-dimensional cases however, an adjoint method can be used to compute

the gradient (ASAP, Adjoint Sensitivity Analysis Procedure in [3]’s terminology). As the

derivation of the adjoint model is tedious in the general abstract case, this contribution

will focus on common examples.

One will first consider the case where G and G are given by:

G(x) = G(u(x)) =

∫ t=T

t=0

H(u(x; t)) dt (4)

where H is the single time output function, from Rp to R.

Then the Gâteau derivative of G with respect to x in the direction h is given by

G′(x)[h] = ∇xG(x).h =

∫ t=T

t=0

∇uH(u(x; t)).v dt (5)

where v is as before u′(x)[h].

Now the adjoint method consists in introducing a wisely chosen so-called adjoint

variable so that the previous gradient can be formulated without the tangent variable
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v. To do so, the tangent model (3) is multiplied by a variable p(t) and an integration

by parts is performed in order to obtain a formula
∫ t=T
t=0

(...).v dt, which will later be

identified with (5). So first a multiplication by p is performed and then an integration:

0 = −
∫ T

0

p
dv

dt
dt+

∫ T

0

p

(
∂M
∂u

(u(x);x).v +
∂M
∂x

(u(x);x).h

)
dt

Then the integration by parts gives:

0 = −p(T )v(T ) + p(0)v(0) +

∫ T

0

(
dp

dt
+
∂M
∂u

(u(x);x)Tp

)
.v dt

+

∫ T

0

((
∂M
∂x

(u(x);x)

)T
p

)
.h dt

Using the initial condition (3) on v, it becomes:

p(T )v(T )−
∫ T

0

(
dp

dt
+
∂M
∂u

(u(x);x)Tp

)
.v dt

= p(0)∇xu0.h +

∫ T

0

((
∂M
∂x

(u(x);x)

)T
p

)
.h dt

=

(
p(0)∇xu0 +

∫ T

0

(
∂M
∂x

(u(x);x)

)T
p dt

)
.h

(6)

As equation (5) needs to be re-written, the following backward equation for p is set

and called the adjoint model:




−dp
dt

=

[
∂M
∂u

(u(x);x)

]T
.p +∇uH(u(x; t)), t ∈ [0, T ]

p(t = T ) = 0

(7)

Combining (5), (6) and (7) the following formula for the Gâteau derivative is obtained:

G′(x)[h] = ∇xG(x).h =

(
p(0)∇xu0 +

∫ T

0

(
∂M
∂x

(u(x);x)

)T
p dt

)
.h

leading to the gradient:

∇xG(x) = [∇xu0]
T p(t = 0) +

∫ t=T

t=0

[
∂M
∂x

(u(x);x)

]T
p(t) dt (8)

which does not involve variable v anymore. Thus the computing cost is independent

from the number of parameters and ∇xG(x) can be computed exactly using one inte-

gration of the direct model and one backward integration of the adjoint model. Note

that if the model is linear, only the adjoint integration is needed.
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Similarly the Adjoint Model can be computed for the following type of output:

G(x) = G(u(x; t1)) (9)

for t1 ∈]0;T [, by noticing that it can be written as

G(x) =

∫ t=T

t=0

H(u(x; t))δt=t1(t) dt

where δt=t1(t) is the Dirac function of t at point t1. The Adjoint Model is then:





−dp
dt

=

[
∂M
∂u

(u(x);x)

]T
.p +∇uH(u(x; t))δt=t1(t), t ∈ [0, T ]

p(t = T ) = 0

(10)

Notice here that the adjoint variable is equal to zero up to time t1. Computationally

speaking, it is therefore sufficient to run the adjoint model from t1 to 0..

Then the gradient is unchanged:

∇xG(x) = [∇xu0]
T p(t = 0) +

∫ t=T

t=0

[
∂M
∂x

(u(x);x)

]T
p(t) dt (11)

One can also be interested in an output at final time:

G(x) = G(u(x;T )), G′(x)[h] = ∇uH(u(x;T )).v(T )

Then the adjoint model writes:





−dp
dt

=

[
∂M
∂u

(u(x);x)

]T
.p, t ∈ [0, T ]

p(t = T ) =∇uH(u(x;T ))

(12)

and the gradient is unchanged:

∇xG(x) = [∇xu0]
T p(t = 0) +

∫ t=T

t=0

[
∂M
∂x

(u(x);x)

]T
p(t) dt (13)

Note here that this adjoint method allows to obtain directly every component

of the gradient vector with a single run of the adjoint model, thus avoiding the curse

of dimensionality on the parameter set dimension.



9

Practical gradient computation

Practical aspects are an important incentive for the choice of either of gradient compu-

tations methods presented above. For a small dimension problem, the finite difference

approximation route is pretty straightforward and unless a high precision is required, it

is probably the better choice. For larger dimension problems however either choice will

require some efforts in term of computing cost and/or code developments. This section

presents practical aspects of such developments, as well as a further approximation of

the finite differences method tailored for high dimension problems.

Finite differences approximation

By definition, one has:

∂G

∂xi
(x) = lim

αi→0

G(x + (0, ..., αi, ..., 0)T )−G(x)

αi

Thus the partial derivative (and therefore the gradient) can be numerically approxi-

mated by

∂G

∂xi
(x) ≈ G(x + (0, ..., δxi, ..., 0)T )−G(x)

δxi
where δxi is “small”, see e.g. [11]. As it has been mentioned before, this method,

although very simple, has two main drawbacks (computational cost, rounding issues),

which motivates the need for the adjoint code.

Discrete vs. continuous adjoint

There are two approaches to obtain an adjoint code:

• discretize the continuous direct model, and then write the adjoint of the discrete

direct model. This is generally called the discrete adjoint approach, see e.g. [17].

• write the continuous adjoint from the continuous direct model (as explained

before), then discretize the continuous adjoint equations. This is called the con-

tinuous adjoint approach.
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The two approaches are not equivalent. As an example, a simple ordinary dif-

ferential equation can be considered:

c′(t) = F (t).c(t)

where F is a time dependant linear operator acting on the vector c(t). If this model is

discretized using a forward Euler scheme, a typical time step writes as

cn+1 = (I +∆tFn)cn

where I is the identity matrix and n the time index. Then the adjoint of this discrete

equation would give the following typical time step (discrete adjoint)

c∗n = (I +∆tFn)T c∗n+1

where ∗ denotes the adjoint variable. On the other hand, the continuous adjoint equa-

tion is

−c∗′(t) = F (t)T .c∗(t)

If the same forward Euler explicit scheme is chosen, one obtains for the continuous

adjoint :

c∗n = (I +∆tFn+1)
T c∗n+1

and the time dependency on F then implies that both approaches are not identical.

This illustrates the fact that discretisation and transposition (the word “adjointization”

does not exist, the process of obtaining an adjoint code is called “transposition” or

“derivation”) do not, in general, commute.

The choice of the discrete adjoint approach should be immediate for two main reasons:

1. The response function G(x) is computed through the discrete direct model, its

gradient is therefore given by the discrete adjoint. The continuous adjoint gives

only an approximation of this gradient.
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2. The discrete adjoint approach allows for the use of automatic adjoint compilers

(software that takes in input the direct model code and produces as output the

tangent and adjoint codes, e.g. Tapenade [12]).

However, it must be noted here that, for large complex systems, obtaining the discrete

adjoint can be a time- and expertise-demanding task. Therefore, if one has limited time

and experience in adjoint coding, and if one can be satisfied with just an approximation

of the gradient, the continuous adjoint approach can be considered. Moreover, for

complex non-linear or non differentiable equations, the discrete adjoint has been shown

in [29] to present problems to compute the sensitivities, so that other approaches may

be considered. Similarly [18] presents an application with adaptive mesh, where it is

preferable to go through the continuous adjoint route. In any case, the validation of the

gradient (see below) should give a good idea about the quality of the chosen gradient.

Adjoint code derivation

As it has been mentioned above, obtaining a discrete adjoint code is a complex task.

A numerical code is ultimately a sequence of single-line instructions. In other words,

a code can be seen as a composition of a (large) number of function, each line code

representing one function in this composition. To obtain the tangent code (and then

the adjoint code, by transposition), it is necessary to apply the chain rule to this func-

tion composition. Because of non-linearities, dependencies, inputs/outputs, applying

the chain rule to a large code is very complex. There exist recipes for adjoint code

construction, explaining in details how to get the adjoint for various instruction type

(assignment, loop, conditional statements, inputs/outputs, and so on), see e.g. [9; 10].

Code differentiation can be done by hand following these recipes.

An alternative to adjoint hand-writing is to use specially designed softwares

that automate the writing of the adjoint code, called automatic differentiation tools,
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such as the software Tapenade [12]. These tools are powerful, always improving, and

can now derive large computer codes in various programming languages. It should be

mentioned, however, that these tools can not be used completely in black box mode

and may require some preparatory work on the direct code. Despite these difficulties,

some large-scale usages of automatic differentiation have been performed, e.g. for the

ocean model of the MIT (MITgcm, see [20]) or a Greenland ice model (see below the

Applications section and [13]).

Monte-Carlo approximation

Monte-Carlo approximation allows to obtain an approximate gradient using a reason-

able number of response function evaluations. Here the approximation proposed in [1]

is presented.

Assume that h is small enough, so that the following approximation holds:

δG = G(x + h)−G(x) ≈ G′(x)[h] = ∇xG(x).h (14)

By right-multiplying by hT both sides of equation (14) one gets

δGhT ≈ (∇xG(x).h)hT

Considering that h is a stochastic perturbation, one can take the expectation

E(δGhT ) ≈ E([∇xG(x).h]hT ) = ∇xG(x).A

where A = E(hhT ) is the covariance matrix of h. Therefore

∇xG(x) ≈ E(δGhT )A−1 (15)

In practice A is a large matrix and may be difficult to inverse, therefore the authors

propose to replace A by its diagonal. In the end, an approximate gradient is given by

the formula:
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∇̃xG(x) = E(δGhT ) (Diag(A))−1 (16)

where the expectation is computed using a Monte-Carlo method, requiring a certain

number of model runs. This formula is simple enough, but should be handled with

care, indeed it holds three successive approximations: finite differences instead of true

gradient, Monte-Carlo approximation (usually carried over with a small sample size),

and A replaced by Diag(A). However, this kind of approach has been successfully used

in data assimilation, to obtain gradient-like information without resorting to adjoint

code construction, see e.g. [19] [7].

Gradient code validation

First order test

The first order test is very simple, the idea is just to check the following approximation

at the first order in α→ 0:

G(x + α.h)−G(x)

α
=
(
∇G,h

)
+ o(1)

The principle of the test is then to compute, for various perturbation directions h and

various values of α (with α→ 0, e.g. α = 10−n, n = 1..8), the two following quantities:

first one computes

τ(α,h) =
G(x + α.h)−G(x)

α

with the direct code, and then one computes δ(h) =
(
∇G,h

)
, where ∇G is given by

the adjoint code. Then one just has to measure the relative error

ε(α,h) =
|τ(α,h)− δ(h)|

|δ(h)|

and check that ε(α,h) tends to 0 with α for various directions h.
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Second order test

For this test the Taylor expansion at second order is written:

G(x + αh) = G(x) + α
(
∇G,h

)
+
α2

2

(
h,∇2Gh

)
+ o(α2)

When h is given, the last term is therefore a constant: G(x+αh) = G(x)+α
(
∇G,h

)
+

α2

2
C(h) + o(α2). In that case, the second order test writes as follows. Let τ(α,h) be

defined as previously:

τ(α,h) =
G(x + α.h)−G(x)

α
and δ(h) =

(
∇G,h

)

The taylor expansion gives τ(α,h)−δ(h)
α

= 1
2
C(h) + o(1). The test consists in computing

the quantity r(α,h):

r(α,h) =
τ(α,h)− δ(h)

α

for various directions h and various α and check that it tends to a constant (depending

on h) when α→ 0.

Stability analysis

Stability analysis is the study of how perturbations on the system will grow. Such tools,

and in particular the so-called singular vectors, can be used for sensitivity analysis.

Indeed looking at extremal perturbations gives an input on sensitivities of the system

(see [22; 27; 23] for application examples).

The growth rate of a given perturbation h0 of, say, the initial condition u0 of

the model is classically defined by

ρ (h0) =
‖M (u0 + h0, T )−M (u0, T ) ‖

‖h0‖
(17)

where ‖.‖ is a given norm.

One can then define the optimal perturbation h1
0 so that ρ

(
h1
0

)
= max

h0

ρ (h0)

and then deduce a family of maximum growth vectors:
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ρ
(
hi0
)

= max
h0⊥Span(h1

0,...,h
i−1
0 )

ρ (h0) , i ≥ 2 (18)

By restricting the study to the linear part of the perturbation behaviour, the growth

rate becomes (denoting L = ∂M
∂u

for clarity):

ρ2 (h0) =
‖Lh0‖2
‖h0‖2

=
< Lh0,Lh0 >

< h0,h0 >

=
< h0,L

∗Lh0 >

< h0,h0 >

(19)

L∗L being a symmetric positive definite matrix, its eigenvalues are non-negative real

and its eigenvectors are (or can be chosen) orthonormal. The strongest growth vectors

are the eigenvectors of L∗L which correspond to the greatest eigenvalues. They are

called forward singular vectors and denoted f+
i :

L∗Lf+
i = µif

+
i (20)

One can notice then that Lf+
i is an eigenvector of LL∗, which allows to define the

backward singular vectors, noted f−i , as:

Lf+
i =

√
µi f

−
i

the eigenvalue corresponding to f−i is µi as well. Forward singular vectors represent

the directions of perturbation that will grow fastest, while backward singular vector

represent the directions of perturbation that have grown the most.

The computation of the f+
i and f−i generally requires numerous matrix-vector

multiplications, i.e. direct integrations of the model and backward adjoint integrations.

The result of these calculations depends on the norm used, the time window and the

initial state if the model is nonlinear. For an infinite time window, singular vectors

converge toward Llyapunov vectors. The full non linear model can be retained in equa-

tion (17) leading to the computation of so called non-linear singular vectors. They are

obtained by optimising directly equation (17). However due to non-linear dissipation,
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they tend to converge toward infinitesimal perturbations as the time window lengthen,

this can be sorted out by adding some constraints on the norm of the perturbation

[21].

Applications

Applications of VSA can be generally divided into two classes: sensitivity to initial

or boundary conditions changes and sensitivity to parameter changes. However one

can extend the notion of sensitivity analysis to second order sensitivity and stability

analysis. This section is organised following this classification. Even though VSA has

been used extensively in a wide range of problems, examples given here come from

geophysical applications. Indeed, in that case the control vector is generally of very

large dimension therefore global SA techniques are out of reach. Moreover quite often

tangent and/or adjoint models are already available since used for data assimilation.

Sensitivity to initial or boundary conditions changes

Sensitivity to initial conditions changes (x = u0) is routinely used in Numerical

Weather Prediction systems. In that case the model (1) describes the evolution of

the atmosphere, initialised with u0. The parameter vector x = u0 represents the full

state of the atmosphere. In modern atmospheric models that amounts to 109 − 1010

unknowns that are correlated.

The response function follows the form of (4), with

H(u(u0)) =‖ zobs(t)−H[u(u0; t)] ‖2O

where zobs are observations of the system, H maps the state vector to the observation

space and ‖ . ‖O is typically a weighted L2 norm. Following (4), the response function

is then
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G(u0) =
1

2

∫ T

0

‖ zobs(t)−H[u(u0; t)] ‖2O dt (21)

Local sensitivities of such functions can be very useful to understand the be-

haviour of a system and has been extensively used in geosciences (see for instance [28],

[8], [34] or [2]).

One can find an example of application of such methods on the Mercator-ocean’s

1/4◦ global ocean model in [31]. The initial objective was to try to estimate the in-

fluences of geographical areas to reduce the forecast error using an adjoint method to

compute the sensitivities. A preliminary study has been conducted by considering the

misfit to observations as a proxy of the forecast error and sought to determine the

sensitivity of this misfit to regional changes in the initial condition and/or to forcing.

That should give an indication about the important phenomena to consider to improve

this system.

The most easily interpreted case in this study is to consider a sensitivity criterion

coming from the difference in sea surface temperature (SST) maps at the final instant

of the assimilation cycle, because of its dense coverage in space. The response function

(21) is a discrete version of the time integral, in which the operator H (mapping the

state vector u to the observation space) simply extracts the SST of the state vector.

This can be translated into computing the gradient:

G(u0,q) =
1

2

NSST∑

n=1

‖ HSST (un)− SST obs ‖2R−1 (22)

with a parameter vector x = (u0,q) made of u0 = (u0, v0, T0, S0, η0)
T the initial

state vector (current velocity components, temperature, salinity and sea level) and of

q = (qsr, qns, emp)
T (radiative fluxes, total heat fluxes, fresh water fluxes) and SST obs

observations of SST.

One can see an example of sensitivity to initial temperature (surface and 100m)

as shown in the two bottom panels of Figure 1. High sensitivity will give a signal similar
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to the gap in observations (top left), while low sensitivity will show a white area. In this

example it is clear that the SST misfit is highly sensitive to changes in surface temper-

ature where the initial mixed layer depth (top right) is low and insensitive elsewhere.

The opposite conclusion can be drawn from the sensitivity to the initial temperature

at 100m. This is obviously not a surprise, and corresponds more to the purpose of

verification of the model rather than system improvement. However it highlights the

importance of having a good estimate of the vertical mixing. Other components of the

gradient show the important role of atmospheric forcing (again this could have been

anticipated) and ways to improve the system also appear to point to that direction.

6 Vidard et al.: NEMOTAM

echoes the fact they this vertical mixing is often perturbed
by data assimilation. Other components of the gradient show
the important role of atmospheric forcing (again we could
have guessed) and ways to improve the system also appear
to point to that direction. With the objective of improving
the data assimilation system, this approach is obviously not
completely satisfactory because, strictly speaking, the assim-
ilation system should be included in the optimality system.
In theory, this assimilation system being linear and made of
matrix multiplication, to derive its adjoint should be easy,
in practice it’s a different story, manipulating an operational
system is never easy.

Fig. 1. Top: misfit between forecast and observed SST (left) and
mixed layer depth (right). Bottom: sensitivity to one week lead
time SST error respect to variations in initial surface (left) and 100m
(right) temperature (courtesy E. Rémy, Mercator-Océan)

The sensitivities are of interest by themselves, but they can
also be used for optimising the system. In particular this
way of computing gradient is extensively used in variational
data assimilation for the minimisation of similar cost func-
tion (4D-Var). For ocean application, historically the pre-
ferred choice of data assimilation technique has been (and
still is for many cases) that of Optimal Interpolation or 3D-
Var types schemes. These algorithms make the assumptions
that the system state (or the increment in their FGAT formu-
lation) is stationary over a given time window (typically 1 to
10 days) which can be a crude approximation. 4D-Var does
not make this assumption and uses the adjoint model to com-
pute the gradient of a cost function of the form:

J(x0) =
1

2
kx0�xbk2

B�1 +
1

2

TX

t=1

kHt(M(x0,t))�yobs
t k2

R�1 (16)

where kzk2
C = hz,Czi and B (resp R) is the background

(resp observation) error covariance matrix. xb its the back-

ground state, and yobs are the observations. The gradient rJ
of this cost function can be computed using relation (14):

rJ =B�1(x0�xb)+
TX

t=1

L⇤H⇤
t R

�1(Ht(M(x0,t))�yobs
t )(17)

To illustrate the application of 3D-Var and 4D-Var type
schemes, one can perform single observation experiments,
where only one observation at the end of the assimilation
window is assimilated. In that case, after a bit of algebra
and assuming M(x0 + �x,T ) = M(x0,T )+L.�x one can
write the optimal state xa that minimises J as:

xa = xb

+ BL⇤H⇤(R+HLBL⇤H⇤)�1
(HT (M(x0,T ))�yobs

T )

For a single observation experiment, it is easy to see that
(R+HLBL⇤H⇤)�1

(HT (M(x0,T )) � yobs
T ) is a scalar,

and when multiplied by H⇤ it becomes a vector in the state
space, with only one non-zero value (assuming the observa-
tion is at a grid point). In 3D-Var formulation, L⇤ is approxi-
mated by the identity operator, so the correction to the initial
condition outside the observed grid point is solely driven by
the prescribed background error statistics in B, while in 4D-
Var the model dynamics is accounted for through the adjoint
model L⇤.

An example of such differences is given in Figure 2 where
a single synthetic SSH observation, close to the middle of the
regional model, at the end of DA time window, is assimilated
using both 3D-FGAT and incremental 4D-Var algorithms
from the NEMOVAR system with NEMO’s SEABASS con-
figuration (see appendix A). The observation misfit value is
0.5 m.

The 3D-Var increment (top figure) shows a perfect gaus-
sian shape, centred around the observation location, with an
maximum amplitude close to the observation value. This
gaussian shape is exactly what is prescribed in the back-
ground error covariance matrix B, and the computed incre-
ment is independent of the length of the assimilation win-
dow. On the other hand, 4D-Var increment is sensitive to the
assimilation window length. Two examples are given, first
with a 5 day window (bottom left) and second with a 30 days
window. In the first case, the 3D-Var approximation is not
that bad, so both 3D- and 4D-Var are similar, even though
the latter is slightly deformed and displaced to account for
the short term dynamics. For the longer assimilation win-
dow (bottom right) however, the effect of the dynamics is
more complex, in particular the non linearities are more de-
veloped. As a consequence the 3D-Var approximation is no
longer valid and the shape of the optimal correction is com-
pletely different.

4.2 Singular vectors

Another application of tangent and adjoint models is the sta-
bility analysis, that is the study of perturbations on the sys-

Fig. 1. Top: misfit between forecast and observed SST (left) and mixed layer depth (right). Bottom:

sensitivity to one week lead time SST error with respect to variations in initial surface (left) and 100m

(right) temperature (from [31]).
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This kind of study is also routinely used to target observations. For example, in

order to be able to track tropical cyclones it is possible to use the so-called Adjoint-

Derived Sensitivity Steering Vectors (ADSSV, [32; 14; 5]). In that case, the model

equation (1) represents the evolution of the atmosphere, starting from an initial state

vector u0. Some technicalities allow to choose the parameter vector x equal to the

vorticity at initial time x = ξ0 = ∂v0
∂x
− ∂u0

∂y
. Then the response function follows the

form (9), it is a two-criteria functional at a given verification time t1:

G(ξ0) =

(
1

|A|

∫

A

u(t1) dx,
1

|A|

∫

A

v(t1) dx

)T
(23)

where 1
|A|

∫
A
u dx and 1

|A|

∫
A
v dx are the zonal and meridional averaged wind velocities

over a given area of interest A. By looking at the sensitivities to ξ0:
∂Gu

∂ξ0
and ∂Gv

∂ξ0
one

will get information about the way the tropical cyclone is likely to go. For example, if at

a given forecast time at one particular grid point the ADSSV vector points to the east,

an increase in the vorticity at this very point at the observing time would be associated

with an increase in the eastward steering flow of the storm at the verifying time [32].

This information, in turn, helps to decide where to launch useful observations.

Parameter sensitivity

The previous section focuses on variable input quantities (initial/boundary conditions

or forcings), however most of numerical models also rely on a set of physical param-

eters. They are generally only approximatively known and their settings depend on

the studied case. Methods to measure sensitivities to parameter changes are the same

as before, differences mostly lie in the parameter set nature: it is generally of small

to medium size and elements are mostly uncorrelated. To both respect, they may be

better suited for GSA. However in some cases these parameters can for instance vary

spatially and therefore be out of reach of global analysis.
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Examples of spatially varying parameters are quite common in geophysics, and

an example in glaciology will be given here. In the framework of global change and in

particular sea-level change, the volume evolution of the two main ice caps (Antarctica

and Greenland) is of crucial interest. In ice-cap modelling, experts consider that the

basal characteristics of the ice cap are particularly important: basal melt rate and

basal sliding coefficient (linked to the sliding velocity). These basal characteritics can

be considered as parameters (they are intrinsic to the modelled system) while being

spatially varying, and their influence on the ice cap volume must be quantified in order

to better understand and predict the future volume evolution.

This has been studied for example in [13], where the authors use adjoint methods

to compute the sensitivities of the ice volume V over Greenland to perturbations on

the basal sliding cb and the basal melt rate qbm. Let us note here that in this case

the adjoint model has been obtained using automatic differentiation tools. Figure 2

shows that sliding sensitivities exhibit significant regional variations and are mostly

located in the coastal areas whereas melt-rate sensitivities are either fairly uniform or

they completely vanish. This kind of information is of prime importance when tuning

the model parameter and/or designing an observation campaign for measuring said

parameters. For instance, in this particular system, there is no gain to be expected by

focusing on the interior of the domain.

Sensitivity of complex systems

Previously presented examples focus on looking for sensitivities of a given model to

perturbations. However these approaches can be extended to more complex problems

such as coupled models for instance, or even a forecasting system i.e. a modelling system

that also includes an initialisation scheme. Most of the time this initialisation is done

through the so called data assimilation techniques, where observations from the past are
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74 Heimbach and Bugnion: Greenland ice-sheet volume adjoint sensitivity

Fig. 4. Basal properties at equilibrium of the Greenland ice sheet from a 60 000 year spin-up: (a) temperature and (b) melt rate. These
properties are useful in interpreting elements of the adjoint sensitivities.

Fig. 5. Adjoint sensitivity maps related to (a) basal sliding and (b) basal melt rate. A unit perturbation δcb to cb location (i, j) will change the
cost function V by the amount δV = (∂V/∂cb)δcb. To infer useful quantities for δV , we consider physically reasonable perturbations of δcb
(e.g. representing typical standard deviations at this location, measurement uncertainties or model uncertainties). Qualitatively, melt-rate
sensitivities (b) are fairly uniform where they do not vanish, whereas sliding sensitivities (a) exhibit significant regional variations.

Fig. 2. Adjoint sensitivity maps of the total Greenland ice volume V related to (a) basal sliding cb

and (b) basal melt rate qbm. (from [13], copyright International Glaciological Society).

used to adjust the present state of the system. There are two kinds of such techniques,

either based on filtering approaches or variational methods. Filtering techniques aim at

bringing the model trajectory closer to observations through a sequence of prediction

and correction steps. i.e. the model is corrected as follows

du

dt
=M(u;x) + K

(
H(u(t))− yobs(t)

)
(24)

where K is a gain matrix. For the simplest versions of filtering data assimilation, K

does no depend on u(t), so computing sensitivities to such system can be done simi-

larly as before (see [33] for an example). However in more sophisticated approach, like

variational data assimilation, it is less straightforward. In that case the data assimi-

lation problem is solved through the minimisation of a cost function that is typically

equation (21). Looking for local sensitivities on the forecasting system would mean to

look for sensitivities to the optimal solution of the minimisation of (21), that is to say
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to compute the gradient of the whole optimality system (direct model, adjoint model,

cost function); doing so by adjoint method may require the second order adjoint model

[16; 6].

Another example of complex system is to perform a sensitivity analysis on a

stability analysis (i.e. how given perturbations will affect the stability of a system).

In [27] the authors use stability analysis to study the sensitivity of the thermo-

haline oceanic circulation (large scale circulation, mostly dominated by density vari-

ations, i.e. temperature and salinity variations). To do so, they look for the optimal

initial perturbation of the sea surface salinity that induces the largest variation of the

thermohaline circulation.

In [23] the authors are interested in the moist predictability in meteorological

models. Since this is a very non linear process they propose to use non-linear singular

vectors as response function G:

G(u0) = arg max
‖h0‖=E0

(‖M (u0 + h0, T )−M (u0, T ) ‖
‖h0‖

)
(25)

This tells which variation in the initial condition will affect the most the optimal

perturbations, and then the predictability. Note that in that case, computing∇u0G(u0)

also requires the second order adjoint.

Obviously, these are only a handful of possible applications among many; as long

as one defines a response function, one could be interested by studying its sensitivities.

Conclusion

Variational methods are local sensitivity analysis techniques, they gather a set of

methods from very basic to sophisticated as presented above. The main advantage

is that they can be used for very large dimension problems if using adjoint meth-

ods, the downside is that it may require some heavy developments. This burden
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can be reduced however by the use of automatic differentiation tools. They have

been used for a very wide range of applications, and even on a daily basis in op-

erational numerical weather prediction. Although they are local by essence adjoint

based-variational methods can be extended to global sensitivity analysis as will be

presented in Derivative-based Global sensitivity measure.

Methods presented here are dedicated to first order local sensitivity analysis.

This can be extended to interaction studies by using the second order derivatives

(Hessian), which can be computed similarly using so-called second order adjoint models.

Readers interested in going further could start with clearly written and easy to

read papers such as [4; 13; 17]. To go further, the book [3] and the application paper

[2] are recommended. And finally, about second order derivatives, [16] provides a nice

introduction, and [23] offers an advanced application.
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