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Abstract

Active flow control strategies, such as oscillatory blowing / suction, have
proved their efficiency to modify flow characteristics for various purposes
(e.g. skin friction reduction, separation delay, etc) in case of rather simple
configurations. To extend this approach to industrial cases, the simulation
of a large number of devices at real scale and the optimization of parameters
are required. In this perspective, numerical simulations based on Reynolds-
Averaged Navier-Stokes (RANS) equations seem to be the most appropriate
framework, despite the well known limitations of turbulence closures in the
context of unsteady separated flows. Thus, the objective of this work is to
evaluate the ability of RANS models for the optimization of control devices
and compare the results obtained using different turbulence closures. In this
perspective, an incompressible RANS solver for unstructured grids is coupled
with a surrogate-based global optimizer. The resulting tool is applied to
derive an optimal actuation, based on an oscillatory blowing / suction device,
for a set of turbulence closures including two-equation eddy-viscosity models
and an explicit algebraic Reynolds stress model. As test-case, the reduction
of the separation length for a backward facing step is targeted. Results are
finally compared and analyzed, in terms of flow characteristics and optimal
actuation parameters found.
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Introduction

Active flow control has been a growing research area for the last decades,
since this approach demonstrated its ability to improve aerodynamic perfor-
mance [13]. It is especially appealing in case of separated flows, for which
natural instability phenomena can be efficiently exploited to manipulate flow
characteristics. Among the possible active control strategies, periodic flow ex-
citation has been particularly studied. Thus, several investigations have been
carried out, experimentally as well as numerically, to apply this technology to
various purposes, like separation delay [6, 12, 34], mixing enhancement [30],
flow vectorization [36], etc.

Simulation has a critical role to play regarding the emergence of this ap-
proach for real-life applications, because the excitation parameters, such as
actuator location, frequency, amplitude, should be set precisely to determine
a flow control strategy, that is efficient and as inexpensive as possible. This
task is usually problem dependent and setting a priori values for these pa-
rameters could be non-trivial, despite of the intuition of practitioners. To
overcome this issue, the simulation of actuated flows can be used to determine
optimal control parameters, or at least a range of efficient parameters. This
task can be carried out by a systematic and parametric way [12], or by the use
of an automated optimization procedure [3, 9, 10, 17, 38]. However, simulat-
ing actuated flows is also a difficult exercise. It has been shown, in particular
during the CFDVAL Workshop [32], that the prediction of actuator-induced
flows is still tedious, because of the difficulty to model the flow in the vicinity
of the actuator and in the separated regions. Even if Large Eddy Simulation
(LES) methods usually outclass Reynolds-Averaged Navier-Stokes (RANS)
models for such problems, LES methods are still unable to predict actuated
flows in a computational time that would be reasonable in an industrial con-
text. In a recent study [14], four RANS and one LES models have been
compared in the case of a separated flow including a synthetic jet actuator,
for a set of thirteen frequencies. It has been found that RANS models are
not able to predict the correct characteristics of the separation, but some of
them are able to identify the best actuation frequency, among those tested,
to reduce the separation length. The decrease of the recirculation length is
under-estimated by RANS models, but the ranking of the actuation param-
eters has been correctly established.
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This encouraging result indicates that RANS models could possibly be
used in a design phase to select control parameters. Therefore, we propose
in the current work a similar study, in which a full optimization of actuation
parameters is performed, for a set of RANS models, in a separated flow con-
text. The objective is to assess the ability of RANS models to be used in
an optimization framework for active flow control. We underline that, unfor-
tunately, it is not possible presently to carry out an optimization campaign
using LES for high Reynolds numbers, for reference purpose. It is even not
possible to confirm that a given actuation is optimal on the basis of such
models, because it would require several neighboring results. Finally, opti-
mality conditions are difficult to establish experimentally. This explains why
our optimization study is restricted to RANS models, after comparison with
experimental results for the baseline flow.

The paper is organized in five main parts: in a first section, the numerical
models employed for the flow and the actuation are described. In a second
section, we present the surrogate-based global optimizer used to determine
optimal control parameters. In a third section, the backward facing step
test-case considered here, with an oscillatory actuation, is described. The
baseline flow without actuation is presented in section four, including a grid
refinement study and comparisons between experimental data and different
RANS models. Finally, in the sections five and six, the results of the opti-
mization procedure are analyzed and discussed.

1. Numerical models

1.1. Flow model

This work is restricted to incompressible flow studies, carried out using
the ISIS-CFD solver, developed at LHEEA and available as a part of the
FINE/Marine computing suite. It solves incompressible Unsteady Reynolds-
Averaged Navier-Stokes (URANS) equations. The solver is based on a finite-
volume method to build the spatial discretization, the conservation equations
being solved by a face-based cell-centered approach.

Within this framework, the incompressible conservation laws under isother-
mal conditions are written as:

∂

∂t

∫
V

ρdV +

∫
S

ρ~U · ~ndS = 0, (1)
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∂

∂t

∫
V

ρUidV +

∫
S

ρUi
~U · ~ndS =

∫
S

(τijIj − pIi) · ~ndS, (2)

where V is the domain of interest or control volume, bounded by the closed
surface S with a unit normal vector ~n directed outward. ~U and p represent,
respectively, the velocity and pressure fields. τij are the components of the
viscous stress tensor, whereas Ij is a vector whose components are zero,
except for the jth component which is equal to unity.

All flow variables are stored at geometric centers of the arbitrary shaped
cells. Surface and volume integrals are evaluated according to second-order
accurate approximations by using the values of integrand that prevail at the
center of the face f , or cell C , and neighbor cells Cnb. The various fluxes
appearing in the discretized equations (1) and (2) are built using the AVLS-
MART scheme [27] in the Normalized Variable Diagram (NVD) context [28].
More details can be found in [11] and more recently in [28]. A pressure equa-
tion is obtained in the spirit of the Rhie and Chow SIMPLE (Semi-Implicit
Method for Pressure Linked Equations) algorithm [29]. Unsteady terms are
solved using a second-order dual-time stepping approach [18].

In the case of turbulent flows, additional transport equations for modeled
variables are discretized and solved using the same principles.

1.2. Turbulence closures

In this work, we study the ability of RANS models to predict meaning-
ful information for the optimization of control devices in industrial context.
Therefore, turbulence closure is restricted to classical linear eddy-viscosity
or non-linear algebraic stress models. More specifically, we consider the two-
equation k-ε model from Launder-Spalding [22], the SST (Shear-Stress Trans-
port) k-ω model from Menter [25], and finally the algebraic stress model based
on a k-ω closure from Gatski & Speziale [15] with a near-wall formulation [5].
All the above mentioned models are implemented according to their standard
version and we refer to the bibliography for additional details.

1.3. Actuator model

We consider in this study a zero-mass net oscillatory actuation. Our main
objective is to determine the optimal actuated flow and its dependency with
respect to turbulence closures, independently from the actuation process it-
self. Therefore, the detailed modeling of the actuator is not targeted here and
we restrict the actuator model to an imposed velocity boundary condition:

~U = UjA(x) sin(2πfj t) ~dj (3)
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with A(x) a unitary profile (squared sine function), Uj the amplitude, fj
the frequency and ~dj a unit vector normal to the boundary. For turbulent
variables, a zero-Neumann boundary condition is prescribed. Obviously, this
actuation corresponds to a simplified model of synthetic jet, for which an
oscillatory cavity generates the suction / blowing effect[16, 36]. As shown
in several studies[6, 20, 31, 32, 35, 37], the accurate prediction of the flow
characteristics at the exit slot is a difficult task, beyond the objectives of the
present work.

2. Optimization method

To determine optimal actuation parameters, the flow solver is coupled to
an optimization algorithm that seeks the minimization of a cost functional.
In the context of unsteady turbulent flows, optimization is not an easy task.
In particular, the unsteadiness makes the use of classical descent methods
based on the adjoint system tedious. Moreover, the computational time
makes the use of alternate ”black-box” optimizers like genetic algorithms
practically impossible. Therefore, we adopt here an optimization strategy
based on an adaptive statistical learning approach. The method has already
been described and validated for flow problems in [8], and used by other
authors in [1, 23]. Nevertheless, we describe below its main features, since
some of them will impact the results regarding the optimization of control
devices.

This method is based on the construction of Gaussian Process models [33]
(also known as kriging models). Such models allow to predict a function
value f at a given point x, on the basis of a set of observed values FN =
{f1, f2, . . . , fN} corresponding to the points XN = {x1, x2, . . . , xN}. Since
the function is not known, a statistical framework is adopted and FN is
assumed to be a realization of a multivariate Gaussian process, which has a
joint Gaussian distribution:

p(FN |XN) =
exp

(
−1

2
F>NC

−1
N FN

)√
(2π)N det(CN)

, (4)

for any inputs XN . CN is the N ×N covariance matrix, whose elements Cmn

describe the correlation between the function values fm and fn obtained at
points xm and xn. This is expressed in terms of a correlation function k, i.e.,
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Cmn = cov(fm, fn) = k(xm, xn; Θ) with Θ a set of hyper-parameters used for
model calibration.

Using conditional probabilities, it can be shown [33] that the function
value fN+1 at a new point xN+1 has a joint probability density:

p(fN+1|(XN , FN), xN+1) ∝ exp

[
−(fN+1 − f̂N+1)

2

2σ2
fN+1

]
,

where
f̂N+1 = K>N+1C

−1
N FN , σ̂2

fN+1
= κ−K>N+1C

−1
N KN+1, (5)

with κ = k(xN+1, xN+1; Θ) and KN+1 = [k(x1, xN+1; Θ), ..., k(xN , xN+1; Θ)]T .
Thus, the probability density for the function value at the new point xN+1 is
Gaussian with mean f̂N+1 and standard deviation σ̂fN+1

. Therefore, the most

likely value at the new point xN+1 is f̂N+1. This value will be considered as
the prediction of the Gaussian process model. The variance σ̂2

fN+1
can be

interpreted as a measure of uncertainty in the value prediction.
The choice of the correlation function k is critical for the model, as it

contains all the prior hypotheses, including for example regularity, symmetry,
periodicity, etc. More specifically, a classical anisotropic multidimensional
correlation function is employed here:

k(x, x′; Θ) = θ1

d∏
i=1

e
−
(

xi−x′i
ri

)2

+ θ2, (6)

with d the number of design variables, Θ = {θ1, θ2, r1, r2, ..., rd} a set of
hyper-parameters, which is determined by maximizing the probability density
function of the observed data, given by equation (4).

A first Design Of Experiments (DOE) phase is carried out to construct
an initial model. Then, an iterative and adaptive strategy is used to enrich
the model and locate the most interesting values of the cost functional [19].
In this perspective, an internal optimization problem is solved to determine
a set of new points to be evaluated, by minimizing or maximizing a so-called
merit function, which is based on both model value and variance. A com-
prehensive review of the different merit functions to locate the optimum of
deterministic functions is provided in [19]. In the present study, the model
enrichment is based on the lower bound criterion, which consists in minimiz-
ing the quantity f̂ − ρσ̂f , the parameter ρ = 0, 1, 2 being used to balance the
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search for the minimum and the exploration of uncertain regions. The new
cost functional evaluations are then employed to update the model. This en-
richment procedure is conducted until convergence. Implementation details
can be found in [4, 8]. Note that this optimization approach allows to filter a
possible noise, arising in the evaluation process, by considering the simulation
outputs as noisy observations [21, 26]. In this perspective, the cost function
value at xi is considered as an observation including a noise fi = f(xi) + ε,
where ε represents the noise characterized by its variance τ 2i and f(xi) the
”true” unknown function value. Consequently, the diagonal terms of the
covariance matrix are modified to CN + ∆ with ∆ = diag([τ 21 , τ

2
2 , . . . , τ

2
N ]).

Thus, the Gaussian model is updated to:

f̂N+1 = K>N+1(CN + ∆)−1FN , σ̂2
fN+1

= κ−K>N+1(CN + ∆)−1KN+1. (7)

As will be shown in the following sections, the introduction of noisy obser-
vations is necessary to achieve a satisfactory convergence of an optimization
procedure based on an error-prone cost function.

3. Test-case description

The test-case proposed here corresponds to a classical case of detached
flow: we consider the two-dimensional flow over a backwards facing step, in
the conditions described in the experiments carried out by Driver & Seeg-
miller [7]. Reference computations can be found in [24]. The objective of the
actuation is the reduction of the separation length.

The geometry of the computational domain, including the actuator, is
represented on figure 1. Computational parameters are set according to
the experimental data: h = 0.0127m, U∞ = 44.2m/s, the boundary layer
thickness at the inlet is δBL = 0.019m. The Reynolds number based on
this reference length is Re = 5000. As boundary conditions, we impose at
inlet a turbulent velocity profile corresponding to experiments, and a uniform
pressure condition at outlet.

Three meshes are generated to assess grid convergence, counting respec-
tively 29778, 45805, 77064 nodes, and 29923, 45953 and 77198 cells. All grids
include a refined area between the step and the location 9h, as illustrated in
figure 2. The distance between the wall and the first node is set to fulfill the
condition y+ ≤ 1 at all locations, for all closures.
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The actuator has a width of value h/10 and is introduced at a location
very close to the step corner (h/50), generating a vertical suction / blowing
actuation according to equation (3).

Figure 1: Geometry of the backward facing step case.

4. Baseline flow

Firstly, the characteristics of the flow without actuation are compared for
the different turbulence closures considered in this study. In this context,
the computations converge towards stationary solutions, without Kelvin-
Helmholtz type shear layer instabilities or flapping motions which can be
observed experimentally or using LES simulations for instance. A grid con-
vergence study is carried out for all closures, as illustrated in figure 3, in
terms of separation length. As seen, the discretization error is far lower than
the modeling error.

Streamlines are depicted on figure 4 and velocity profiles on figure 5, for
the finest grid. A comparison of the separation length is provided by table 1.
Although it deals with a simple test-case, without actuation, turbulence clo-
sure plays already a critical role in the flow prediction. In particular, EASM
closure overestimates the separation length, while Launder-Sharma k− ε one
predicts a too small recirculation region, with respect to experiental measure-
ments. Actually, the discrepancy between the different closures was expected.
In the next sections, we quantify the effects of the actuation and observe if
some common trends can be established, despite of this initial discrepancy.

8



(a) Coarse grid.

(b) Medium grid.

(c) Fine grid.

Figure 2: Grids used for mesh convergence study.

Exp. LS k-ε SST k-ω EASM
6.26 5.41 6.37 7.56

Table 1: Comparison of separation length l/h without actuation.

5. Controlled flow validation

Each simulation of actuated flow is performed starting from the steady
state flow found without actuation. Unsteady computations are carried out
until transient effects have vanished. The time step employed is scaled on the
actuation frequency, so that all configurations count the same number of time
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Figure 3: Grid convergence study without actuation.

steps per actuation period. For each time step, a reduction of three orders
of non-linear residuals is used as stopping criterion. The separation length
is computed afterwards, from the time-averaged flow, on the basis of a four-
period integration. The separation length is estimated by locating the point
where the skin friction vanishes. The parameters of the actuation are the
frequency fj and the amplitude Uj in equation (3). They are allowed to vary
in the following intervals: 4m/s ≤ Uj ≤ 50m/s and 50Hz ≤ fj ≤ 1000Hz.

A convergence study, in terms of grid size and time step, is first per-
formed to assess the computations. Since the optimization criterion is the
separation length, this quantity is used for the comparisons. In the perspec-
tive of optimization, the grid and the time step should be selected in such
a way that the variations of the separation length, due to a change of ac-
tuation parameters, are accurately quantified. Therefore, a set of actuation
configurations are compared. This study is conducted for the EASM closure
only, which is expected to be the most demanding one. Figure 6 presents
the evolution of the separation length as the grid size increases, for a fixed
fine time step. Figure 7 shows the evolution as the time step is reduced,
for the finest grid. Eight actuation configurations are selected randomly in
the admissible domain. As can be seen, the medium grid provides satisfac-
tory results: for all configurations except one, the separation length values
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(a) Launder-Sharma k-ε closure.

(b) Menter SST k-ω closure.

(c) EASM closure.

Figure 4: Comparison of velocity streamlines for different turbulence closures for the flow
without actuation.

evolve similarly, as the grid size is refined from the medium mesh to the fine
mesh. Even if a full convergence of the value is not achieved, the ranking
is correctly predicted. Regarding the time step selection, 64, 128 and 256
time steps per actuation period are tested. As observed, the recirculation
length values vary also similarly, as the time step is refined from 128 to 256
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Figure 5: Velocity profiles at x = −4, 1, 4, 6, 10 for different turbulence closures without
actuation.

time steps per period, except for two configurations, generating a switch of
two neighboring values. On this basis, the medium grid size and 128 time
steps per period are chosen for the optimization exercises. As shown below,
this choice is validated a posteriori : the improvement obtained during the
optimization, as well as the discrepancy observed between the closures, are
far larger than the discretization error reported here.

6. Optimization of actuation parameters

The objective of the optimization is the reduction of the separation length,
by choosing efficient frequency and amplitude parameters. As described
above, the evaluation of the separation length is achieved with great care.
However, the estimation of this quantity cannot be more accurate than the
local grid size. The resulting noise in the functional evaluation may affect
the Gaussian process model [21]. Therefore, we introduce in the model a
uniform observation variance of value τ 2.

As explained above, the optimization procedure starts from a DOE phase,
composed of only six points, that are selected according to a Latin Hypercube
Sampling (LHS) [33]. Then, additional points are inserted in the Gaussian
process model, according to the lower bound merit function. Three points are
considered at each step, corresponding to ρ = 0, 1 and 2. About 12 enrich-
ment steps are performed before convergence of the optimization procedure,
corresponding to a total of about 40 simulations per optimization exercise.
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At first, we illustrate the impact of the noisy observation approach: we
consider the database collected during the whole optimization procedure,
using the k − ε closure, and we construct a Gaussian process model for
different values of the observation standard deviation, ranging from τ =
10−4h to τ = 10−1h, as shown in figure 8. If the cost function evaluations
are supposed to be exact, or if the observation standard deviation is below
a given threshold, the model generated is highly oscillating and stretched.
This results from the presence of errors in the database values. On the
contrary, for an observation standard deviation above 10−2h, the model is
more regular and does not evolve significantly as the standard deviation is
increased. In [21], we established that this threshold value corresponds to the
cell size at the reattachment location, which makes sense for a cost function
based on the separation length. Note that the noise level is far lower than
the separation length and, therefore, does not influence the results presented
below, although filtering is a key ingredient to obtain a correct Gaussian
Process model and a satisfactory convergence to the optimum.

Figure 9 shows the Gaussian process models obtained using the differ-
ent turbulence closures, as well as the configurations computed. As can be
seen, the initial set of simulations covers the whole admissible domain, while
the next evaluations converge towards the optimal parameters. The results
obtained with the three closures exhibit some similarities. In particular, a
single minimum is identified by the Gaussian process models and the shapes
of these models look close to each other. For Launder-Sharma k − ε and
EASM closures, the optimum is located in the same region corresponding to
medium actuation parameters. However, for the Menter SST k − ω closure,
the minimum corresponds to higher frequency and amplitude. One can un-
derline that, for these three closures, the Gaussian process model exhibits a
large flat region for which the actuation is efficient. Nevertheless, the pre-
cise values of the optimized control parameters are significantly different, as
shown in table 2. Obviously, the ”true” optimal actuation value is unknown.

A cross-validation exercise is then performed: the optimal configuration
found by using a closure is simulated with other models. Results are shown
in table 3. We note that the minimum value for each closure is obtained for
the configuration optimized with the same closure. This is consistent, since
the latter value is supposed to be the optimal one.

Beyond these observations regarding the best actuation found by the dif-
ferent closures, we propose to compare the characteristics of the correspond-
ing flows, to try to draw some conclusions. In this perspective, the vorticity
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Figure 6: Grid convergence study for eight different actuations (EASM closure). From
top to bottom for the finest grid: (44.8 m/s , 303 Hz) (50.0 m/s , 810 Hz) (34.6 m/s ,
1000 Hz) (7.0 m/s , 493 Hz) (46.9 m/s , 683 Hz) (13.2 m/s , 936 Hz) (22.4 m/s , 873 Hz)
(31.6 m/s , 556 Hz).

k-ε LS k-ω SST k-ω EASM
Frequency (Hz) 492 828 653

Amplitude (m/s) 31 18 25
Length / Length ini 0.72 0.84 0.70

Table 2: Comparison of optimal parameters and recirculation length found.

k-ε LS k-ω SST k-ω EASM
Optimized with k-ε LS 3.92 5.73 5.33

Optimized with SST k-ω 4.03 5.35 5.34
Optimized with EASM 3.95 5.41 5.27

Table 3: Cross-comparison of recirculation lengths found for optimized configurations and
evaluated using different closures.

and turbulent viscosity fields are plotted for the best actuations found in
figures 10 to 12. In each case, four snapshots are proposed, corresponding
to the the zero blowing phase (Φ = 0), maximum blowing phase (Φ = Π/2),
zero suction phase (Φ = Π) and maximum suction phase (Φ = 3Π/2). For
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Figure 7: Time step convergence study for eight different actuations (EASM closure).
From top to bottom for the smallest time-step: (44.8 m/s , 303 Hz) (50.0 m/s , 810 Hz)
(34.6 m/s , 1000 Hz) (7.0 m/s , 493 Hz) (46.9 m/s , 683 Hz) (13.2 m/s , 936 Hz) (22.4 m/s
, 873 Hz) (31.6 m/s , 556 Hz).

the three closures considered here, the best actuation found yields the birth
of vortices at the step corner. Note that the resulting flows look similar
to Kelvin-Helmholtz instabilities in mixing layers. The three corresponding
flows exhibit similar patterns, although the excitation frequency is differ-
ent for each case. Especially, the most efficient flows predicted by the SST
k-ω and the EASM closures are close to each other. Nevertheless, the non-
linearities of the EASM closure generates a more vortical flow, with more
intense variations of the turbulent viscosity. The best configuration found
by using the Launder-Sharma k-ε closure has a lower actuation frequency.
The corresponding flow exhibits vortices with larger span and a far higher
turbulent viscosity level.

Finally, we represent in figure 13 the distribution of u′v′ at different x-
sections, for the three models, for the baseline and optimized configurations.
For URANS computations, these profiles include both modeled and resolved
parts. Experimental results are also provided for the baseline case [7]. The
analyse confirms that a similar control mechanism is exploited by the best
actuations found with the SST k-ω, the Launder-Sharma k-ε and the EASM
closures. One can especially notice the generation of turbulent shear stress in
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(a) τ = 10−4h (b) τ = 10−3h

(c) τ = 10−2h (d) τ = 10−1h

Figure 8: Influence of the observation variance τ2 on the Gaussian process model (nor-
malized variables).

the vicinity of the step (section x = h) and the bottom wall. At the first and
second sections the increase is especially noticeable for EASM closure. At
downstream section, the profiles are similar to the ones without actuation,
but with a slightly higher stress level.

7. Discussion

For the test-case studied here, the characteristics of the baseline flow
depend significantly on the turbulence closure. This is usual when separated
flows are considered. The quantity of interest (separation length), which is
also the optimization criterion for active control, exhibits variations of 25%
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when different closures are tested. This is obviously a difficult context for
optimization. However, we underline that optimization could be achieved
successfully, despite of these discrepancies, if the different closures provide
similar flow changes, as the control parameters are modified. If the same error
occurs during the whole optimization procedure, the different closures can
yield the same optimum parameters, although the flow predictions differ.
This has been already observed in shape optimization exercises related to
pressure drop for instance: the optimum shape can be found even if the
pressure field is not accurately predicted[2].

Unfortunately, the results presented above show that separated flows with
actuation are not a so friendly context. The discrepancies observed for base-
line flow yield different search directions and, finally, significantly different
optimum parameters. One can conclude that RANS models cannot be em-
ployed blindly in a design optimization procedure to determine actuation
parameters. Obviously, the ”true” optimum parameters are unknown. For
the baseline flow, the SST k − ω closure provides the best separation length
prediction, according to the experiments. Nevertheless, it is even not clear
if the best parameters predicted by this closure are close to the ”true” opti-
mum. The use of LES could provide some reference results, but optimization
based on LES is still unaffordable, for computational time reasons.

However, some similarities between the flows with optimal actuation have
been reported. This seems to indicate that the different optimization exer-
cises yield the same flow characteristics, whatever the closure. If this is
confirmed, RANS models can still be used in a first design step, to determine
the characteristics of efficient flow actuations.

8. Conclusion

The extension of active control methodologies to industrial cases will
require optimizing actuator parameters. Presently, RANS models are the
only admissible methods to achieve such objectives. In this perspective, we
have coupled a RANS solver with an optimization algorithm based on a
statistical learning and applied the resulting tool to the optimization of the
actuation frequency and amplitude, for a backward facing step. The cost
functional to minimize is the time-averaged separation length.
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Baseline and actuated flows have been carefully validated using a grid and
time step refinement study. Then, some optimization exercises have been car-
ried out, by using different turbulence closures. It has been found that the
different closures yield significantly different optimum parameters. However,
some similarities between the flows with optimum actuation have been re-
ported, indicating that RANS models could still be employed to determine
the characteristics of efficient flow actuation.

To overcome the limitation of RANS models, the development of opti-
mization strategies based on hybrid evaluations, mixing RANS and more
sophisticated closures like DES, seems to be a necessity in the perspective of
solving more complex active control problems.
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(a) Launder-Sharma k − ε closure.

(b) Menter SST k − ω closure.

(c) EASM closure.

Figure 9: Gaussian process models of the separation length w.r.t. actuation frequency
and amplitude (normalized variables), and simulated points. Green points correspond to
initial Latin Hypercube Sampling.
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(a) Φ = 0.

(b) Φ = Π/2.

(c) Φ = Π.

(d) Φ = 3Π/2.

Figure 10: Vorticity (left) and turbulent viscosity (right) fields for different actuation
phases for control parameters optimized with Launder-Sharma k − ε closure (492 Hz,
31 m/s).
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(a) Φ = 0.

(b) Φ = Π/2.

(c) Φ = Π.

(d) Φ = 3Π/2.

Figure 11: Vorticity (left) and turbulent viscosity (right) fields for different actuation
phases for control parameters optimized with Menter SST k−ω closure (828 Hz, 18 m/s).
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(a) Φ = 0.

(b) Φ = Π/2.

(c) Φ = Π.

(d) Φ = 3Π/2.

Figure 12: Vorticity (left) and turbulent viscosity (right) fields for different actuation
phases for control parameters optimized with EASM closure (653 Hz, 25 m/s).
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Figure 13: Distribution of u′v′ at different x-sections, for different closures.
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