
HAL Id: hal-01252770
https://hal.inria.fr/hal-01252770

Submitted on 8 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Column generation integer programming for allocating
jobs with periodic demand variations

Ikbel Belaid, Lionel Eyraud-Dubois

To cite this version:
Ikbel Belaid, Lionel Eyraud-Dubois. Column generation integer programming for allocating jobs with
periodic demand variations. International Workshop on Algorithmic Aspects of Cloud Computing,
Sep 2015, Patras, Greece. �hal-01252770�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49438059?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01252770
https://hal.archives-ouvertes.fr


Column generation integer programming for
allocating jobs with periodic demand variations

Ikbel Belaid and Lionel Eyraud-Dubois

1 Inria Bordeaux – Sud-Ouest
2 University of Bordeaux

Ikbel.Belaid@inria.fr, Lionel.Eyraud-Dubois@inria.fr

Abstract. In the context of service hosting in large-scale datacenters,
we consider the problem faced by a provider for allocating services to
machines. An analysis of a public Google trace corresponding to the use
of a production cluster over a long period shows that long-running ser-
vices experience demand variations with a periodic (daily) pattern, and
that services with such a pattern account for most of the overall CPU
demand. This leads to an allocation problem where the classical Bin-
Packing issue is augmented with the possibility to co-locate jobs whose
peaks occur at different times of the day, which is bound to be more
efficient than the usual approach that consist in over-provisioning for
the maximum demand. In this paper, we propose a column-generation
approach to solving this problem, where the subproblem uses a sophis-
ticated SOCP (Second Order Cone Program) formulation. This allows
to explicitely select jobs which benefit from being co-allocated together.
Experimental results comparing with theoretical lower bounds and with
standard packing heuristics shows that this approach is able to provide
very efficient assignments in reasonable time.

1 Introduction

The Cloud paradigm provides an illusion of infinite elasticity and seamless provi-
sioning of IT resources. However, as providers keep scaling their infrastructures
year after year, the efficient allocation of services in Platform-as-a-Service (PaaS)
becomes crucial.

We concentrate on the case of a Cloud platform in which several independent
services, typically virtualized as Virtual Machines (VMs) or lightweight contain-
ers, are serving user queries and need to be allocated onto physical machines
(PMs) [19,1]. We consider the static case where a set of dominant services de-
fine the overall resource usage of the physical platform, which has proved to be
commonplace in large datacenters[3]. In this context, mapping services with het-
erogeneous computing demands onto PMs is amenable to a multi-dimensional
Bin-Packing problem (each dimension corresponding to a different kind of re-
source, memory, CPU, disk, bandwidth,. . . ). Indeed, on the infrastructure side,
each physical machine presents a given computing capacity (i.e. the number of
Flops it can process during one time-unit), a memory capacity and a failure rate



(i.e. the probability that the machine will fail during the next time period). On
the client side, each service has a set of requirements along the same dimen-
sions (memory and CPU footprints) and a reliability requirement that has been
negotiated typically through an SLA [9].

In this work, we consider a specific feature of CPU demand that arises in the
context of service allocation. Previous work on the subject [4] argues that many
services representing most of the overall CPU demand exhibit daily patterns and
their demand can be modeled as a set of sinusoids, each comprising a constant
component, an amplitude and a phase. This premise gives rise to a model for
jobs with time-varying resource demands and to the associated packing problem.
Such a model can be used to aggregate onto the same physical machines more
resources than it would be possible based on their maximal demands only, taking
advantage of the fact that different phases for different services imply that peak
demands do not occur simultaneously. In this paper, we propose an algorithm
based on column generation for packing jobs with periodic demands on the
hosting platform. This algorithm provides very efficient allocations, compared
to state-of-the-art greedy packing heuristics.

The remaining of this paper is organized as follows. We discuss some related
works in Section 2. In Section 3, we present the formulation of the optimization
problem as a Second Order Cone Program (SOCP). In Section 4, we propose
our efficient packing algorithm based on column generation, whose performance
is analyzed and validated on realistic and simulated data in Section 5. Finally,
conclusions are drawn in Section 6.

2 Related works

In order to deal with resource allocation problems arising in the context of
Clouds, several sophisticated techniques have been developed in order to opti-
mally allocate user services onto PMs, either to achieve good load-balancing [8,5]
or to minimize energy consumption [6]. Most of the approaches in this domain
are based on offline [10] and online [11] variants of Bin-Packing strategies.

In this paper, we concentrate on the allocation of jobs that last for a long
time and whose CPU demands exhibit periodic patterns. Some other work deal
with allocating jobs whose demands varies over time, either with predictable
(static) or unknown (dynamic) behavior. In the static case which is the focus of
this present work, historical average resource utilization is typically used as input
to an algorithm that maps services to physical machines. Therefore, the map-
ping is done off-line. In contrast, dynamic allocation schemes are implemented
on shorter timescales. Dynamic allocation leverages the ability to perform run-
time migrations of jobs and to recompute resource allocation amongst services.
A dynamic migration algorithm Measure Forecast Remap is introduced in [7],
where highly variable workloads are forecast over intervals shorter than the time
scale of demand variability to ensure dynamic execution minimization of the
number of required machines. Based on stochastic vector packing model, the
static scheme proposed in [15] makes use of customers’ periodic access patterns



in web server farms to assign each customer to a server so as to minimize the
total number of required servers. In this latter work, the variable demand is
analyzed at a different time scale to extract probability distributions that are
independent of time. Then, stream-packing heuristics are employed to select the
most complementary jobs to be packed in the same server. Urgaonkar et al. [16]
rely on on-line application profiling to demonstrate the feasibility and benefits
of overbooking resources in shared platforms to guide the application placement
onto dedicated resources while providing performance guarantees at runtime.
A new mechanism for dynamic resource management in cluster-based network
servers [2], called cluster reserve, allows performance isolation between service
classes and provides a minimal amount of resources, irrespective of the load im-
posed by other requests. In contrast to these other directions, our work focuses
on a part of the workload which exhibits deterministic periodic variability. In
this context, dynamic resource management is unnecessary: the migration cost
can be avoided by using periodicity-aware static approaches for service alloca-
tion. By focusing on long-running services with high workloads, it is possible to
apply sophisticated techniques to provide efficient packing policies, which results
in increased resource usage. Smaller or short-lived jobs, which are much more
numerous but represent a smaller part of the resource usage, can be handled
with usual greedy allocation schemes.

This paper is a followup to [4], which analyzes the performance of several
standard packing heuristics in the context of packing jobs with periodic demand
variation. In this paper, we propose the use of the Dantzig-Wolfe decomposi-
tion [17] to solve very efficiently the corresponding packing problem. In fact,
mathematical programs featured by a large space of integer variables are par-
ticularly suited for Dantzig-Wolfe decomposition that reformulates the original
compact problem to provide a tighter linear programming relaxation bound.
This decomposition relies on delayed column generation algorithm. The over-
arching idea of this algorithm is that many programs are too large to consider
all the variables explicitly. Since most of the variables will be neglected in the
optimal solution, only a subset of variables need to be considered in theory when
solving the problem. Column generation leverages this idea to generate only the
variables which have the potential to improve the objective function, that is,
to find variables with negative reduced costs. Section 4 details the utilisation
of Dantzig-Wolfe decomposition to reformulate the packing of jobs with vari-
able demands on hosted parallel machines based on the original formulation and
employing the column generation algorithm.

The Dantzig-Wolfe reformulation gives rise to a master problem and sub-
problems, whose typically large number of variables is dealt with implicitly
by using an integer programming column generation procedure, also known as
branch-and-price algorithm. Solving the master problem does not require an ex-
plicit enumeration of all its columns because the column generation algorithm
allows one to generate columns if and when needed. In many cases, this allows
huge integer programs that had been previously considered intractable to be
solved. The technique of Dantzig-Wolfe using the approach of column genera-



tion has been applied successfully in many classical problems as: cutting stock,
vehicle routing, crew scheduling, etc.

3 Packing of jobs with periodic demands

An analysis of a publicly available Google trace [14,13] has shown that about two-
thirds of the dominant, normal production jobs in that trace exhibit significant
daily pattern [3]. Based on this analysis, and following [4], we consider a packing
problem for those long running jobs, which account for a large portion of the
workload.

3.1 Notations and problem formulation

Let us assume that the cloud platform we consider consists of M homogeneous
nodes M1, . . . ,Mk, . . . ,MM and let us denote the processing capacity of a node
by C. For the sake of simplicity and in order to focus on issues related to the
aggregation of periodic demands, we will concentrate on CPU demands only.
The tasks of a job (corresponding to a service in the trace) can run on any node,
and job Jj is split into Nj tasks denoted by Tj,1, . . . , Tj,l, . . . , Tj,Nj

, who share
the same characteristics in terms of CPU demand.

In turn, platform nodes are allowed to run several tasks, provided that at any
time, their capacity is not exceeded. We assume that the set of tasks running on
a node does not change over time, what is a realistic assumption for dominant
Normal Production jobs, and we model the instantaneous demand at time t of
task Tj,l, which does not depend on l, as

Wj(t) = Cj + ρj sin

(
2π

t

Pj
+ φj

)
where Cj denotes the average of CPU demand of Task Tj,l, ρj denotes its

maximal amplitude with respect to Cj , Pj denotes its period and which is com-
mon for all the jobs. In the remainder of the paper, job period will be named P .
φj denotes its phase.

In this context, our aim is to provide a static packing for the set of tasks Tj,l
such that at any step and on any resource, capacity constraints are not exceeded
and such that the number of required nodes is minimized. More specifically, this
model allows to take advantage of daily variations in order to obtain an efficient
packing of tasks. Indeed, most packing strategies are based on the maximal
demand of each task, what corresponds to Cj + ρj for a task of job j. Taking
advantage of the fact that all tasks do not achieve their peak demand at the
same time in the day, it is possible to pack more tasks, and therefore to use
fewer nodes whilst packing statically all the tasks.

The corresponding capacity constraint for a given machine Mk is thus

∀t,
∑

j,l: Tj,l∈Mk

Wj(t) ≤ C,



and it can be rewritten [4] as an expression which does not depend on t:

∀k,
∑

j,l: Tj,l∈Mk

Cj +

√
(

∑
j,l: Tj,l∈Mk

ρj cos(φj))2 + (
∑

j,l: Tj,l∈Mk

ρj sin(φj))2 ≤ C

(1)
This modified packing constraint yields a quadratically constrained program-

ming (QCP) formulation of the problem. This formulation uses two types of
variables: integer variables Xj,k representing the number of tasks of job j allo-
cated on the node Mk, and boolean variables Yk representing whether node Nk
is used. With these variables, the formulation is the following:

Minimize
∑
k

Yk

∀j ∈ J,
∑
k∈M

Xj,k = Nj (2)

∀k ∈M, (
∑
j∈J

Xj,k ρj cos(φj))
2 + (

∑
j∈J

Xj,k ρj sin(φj))
2

≤ (C Yk −
∑
j∈J

Xj,k Cj)
2 (3)

∀k ∈M, C Yk −
∑
j∈J

Xj,k Cj ≥ 0 (4)

In this formulation, constraint (2) ensures that all instances of all jobs are
allocated. Tasks belonging to the same job could co-exist in the same node.
Constraints (3) and (4) are a quadratic reformulation of Equation (1), ensuring
that an unused node does not contribute any resource to the platform. Due to
the nature of this constraint, this formulation can be expressed as a Second
Order Cone Program (SOCP) [12], and can thus benefit from efficient general
purpose solvers [12] for convex optimization. However, as noticed in [4], on real-
size instances with thousands of machines, this formulation can not be solved
in reasonable time with integer and boolean values. Relaxing the problem by
allowing rational variables makes it possible to obtain a lower bound on the
necessary number of resources in reasonable time.

In the next Section, we describe how to reformulate this problem with a
Dantzig-Wolfe decomposition, which allows to quickly obtain very good solutions
to the packing problem.

4 Integer programming Column generation

Dantzig-Wolfe decomposition has been an important tool to solve large struc-
tured models that could not be solved using standard algorithms as they ex-
ceeded the capacity of solvers. The main idea behind this technique is to de-
compose the original problem into a number of independent subproblems, whose
solutions are then assembled by solving a so-called master problem. This master



problem is then solved iteratively. In our case, we can identify the natural de-
composition of the problem: for two different values of k (i.e. for each machine),
the corresponding sets of constraints (3) and (4) are independent, because they
contain disjoint sets of variables. Since we assume that machines are homoge-
neous, all those subproblems are actually identical, and we obtain a special case
where solving it only once is enough.

In the Dantzig-Wolfe reformulation, we obtain a master problem which con-
tains one variable for each solution to this subproblem. In our case, such a solu-
tion is simply a valid packing configuration for a machine, i.e. a set of jobs which
can be allocated together on a single machine while respecting the capacity con-
straint. One configuration Zi can be represented as a J-uplet (X1,i, X2,i, . . . , XJ,i),
where Xj,i is the number of tasks of job j in configuration i. As discussed pre-
viously, this configuration is valid if it satisfies equation (1).

In the following, we will denote as K the set of all valid configurations.
The master problem contains one variable Yi for each configuration Zi ∈ K,
which represents the number of machines which use the configuration Zi, i.e.
the number of machines to which Xj,i tasks of job j are allocated. The packing
problem can now be formulated as follows:

Master Problem : Minimize
∑
i∈K Yi s.t

∀j ∈ J,
∑
i∈K

Xj,i Yi ≥ Nj (5)

Yi ∈ N (6)

This master problem cannot be solved directly due to an exponential number
of variables. However, the column generation approach consists in considering
variables only from a subset K ′ ⊂ K, and to solve the resulting restricted master
problem (RMP) on this set of variables.

This restricted problem may provide a sub-optimal solution, since there might
exist a configuration in K\K ′ which improves the solution. In order to find this
configuration, one can write the dual of the master problem, in which there is
one variable πj for each job, and one constraint for each configuration:

Dual Master Problem : Maximize
∑
j∈J Njπj s.t

∀i ∈ K,
∑
j∈J

Xj,i πj ≤ 1 (7)

πj ≥ 0 (8)

The sub-optimal solution obtained from the restricted master problem pro-
vides a solution π∗j of the dual master problem which is possibly infeasible, since
not all constraints are included in the dual of the RMP. From this solution π∗j ,
we can identify a variable to add to the problem by searching for a violated
constraint in the dual, i.e. a configuration Zi ∈ K such that

∑
j∈J Xj,i π

∗
j > 1.

This gives rise to the following subproblem, with one variable Uj for each job:



Subproblem: Periodic Knapsack : Minimize 1−
∑
j∈J π

∗
jUj s.t

∀j ∈ J, (
∑
j∈J

Uj ρj cos(φj))
2 + (

∑
j∈J

Uj ρj sin(φj))
2 ≤ (C −

∑
j∈J

Uj Cj)
2 (9)

Uj ∈ N (10)

If the optimal solution of this subproblem has a negative value, then we have
identified a configuration to add to the RMP. On the other hand, if this problem
has no solution with negative value, it means that all constraints in the dual of
the master problem are satisfied with the current solution, which implies that
this current solution of the RMP is actually optimal for the master problem.

This subproblem can be seen as a knapsack problem: given profits π∗j for
each job, we search for the set of tasks with maximal profit which can fit in a
single machine. The strong point of the Dantzig-Wolfe reformulation in this case
is that we have isolated the quadratic constraint in the subproblem, which is of
much smaller scale than the original problem, with only one variable per job.
This problem can now be solved (quite efficiently as we will see in Section 5)
with a general integer SOCP solver.

The column generation algorithm is summarized in Algorithm 1: starting
from an initial set of configurations (which we describe below), the algorithm
iteratively solves the RMP, and then uses the values of the dual variables as
prices in the knapsack subproblem. The solution to this subproblem yields a
new configuration which is added to the set, and a new iteration is performed.
The process ends when no solution to the subproblem has a negative cost. The
obtained RMP is then solved with integer constraints to obtain a feasible solution
to the original problem. In practice, this last step is often too time consuming
for the solver to obtain an optimal solution in reasonable time, so in our exper-
imental evaluation, we included a 5 minute time limit and use the best feasible
solution obtained by the solver in that time.

The initial set of configurations can be chosen arbitrarily, as long as the first
RMP is feasible, i.e. all jobs are represented in at least one configuration. For
simplicity, we build the initial set K0 with one configuration per job, where the

configuration for job j contains
⌊

C
Cj+ρj

⌋
tasks of job j (as many as can fit on

one machine), and 0 tasks of all other jobs.



Data: Job characteristics: Cj , ρj , φj and Nj

Result: Feasible solution: a set Kt of configurations and values (Yi)i∈Kt stating
how many machines use each configuration

t← 0
Kt ← K0

repeat
Solve RMP with variables in Kt

Generate dual values π∗j from the RMP solution
Solve the subproblem with prices π∗j
if strictly negative reduced cost then

Col← new column with the coefficients of the subproblem solution
t← t+ 1
Kt ← Kt−1 ∪ Col

end

until no negative reduced cost solution;
Solve RMP with variables in Kt as an integer program

Algorithm 1: Column generation algorithm

5 Experimental evaluation

In this section, we present the results of synthetic and realistic experiments pro-
vided by column-generation algorithm and best-effort heuristics. We investigate
the performance of each in reducing the number of used nodes as well as their
margin towards the lower bound. We show that our column generation algorithm
delivers good results in reducing the number of iterations and computation time.

5.1 Complexity and Lower Bound

The optimization problem that consists in packing tasks with periodic demands
into nodes is clearly NP-Complete, since it is amenable to classical Bin-Packing
problems [10,11] in its most simplified setting where ∀j, ρj = 0, i.e. the case
when demands do not change over time. Indeed, in many cases the last step
of our column generation algorithm (where we look for an integer solution) is
unable to obtain an optimal solution in the alloted time. In order to asses the
performance of the obtained results, we rely on a simple but powerful lower
bound: the total workload at time t is

∑
j∈JWj(t), whose peak can be computed

like in Section 3 as W =
∑
j∈J Cj +

√
(
∑
j∈J ρj cos(φj))2 + (

∑
j∈J ρj sin(φj))2.

Since in any solution, the sum of the capacity used on each machine is not
lower than P , we know that any solution must use at least

⌈
W
C

⌉
machines. This

solution is not feasible in general but it provides a lower bound on the number
of necessary nodes.

5.2 Heuristics

In this Section, we present some heuristics introduced in [4], adapted from clas-
sical efficient greedy Bin-Packing algorithms to the case of tasks exhibiting daily



patterns. In the following, we denote by L(Mk, Tj,l) the peak load on machine
Mk after adding one task Tj,l of job Jj to Mk.

– Best-Fit Decreasing BFD is a greedy algorithm in which tasks are considered
by decreasing values of Cj . At any step, task Tj,l (from job Jj) is allocated
to the node Mk such that L(Mk, Tj,l) is maximized (while remaining below
C). Note that contrarily to what happens in classical BFD, the size that is
considered is the size after the allocation. If no such node exists, then a new
node is added to the system to hold the task.

– In Min-Max MM(M), the target number of nodes is fixed to M a priori.
Then, MM is a greedy algorithm where tasks are considered by decreasing
values of Cj . At any step, task Tj,l (from job Jj) is allocated to the node
Mk such that L(Mk, Tj,l) is minimized, in order to balance the load between
the different nodes. The allocation may fail if M is too small. We thus use
dichotomic search to find the smallest value of M which allows to obtain a
solution.

– Min-Max-Module MMM is similar to MM, except that tasks are repre-
sented using their maximal demand over time Cj + ρj only. This is typically
what happens when one neglects the possibility to take advantage of the fact
that peak demands do not occur at the same time for all jobs.

5.3 Simulated synthetic Data

First, we perform a set of experiments with synthetic data in order to assess
the influence of the parameters on the performance of the different proposed
methods. In all the experiments, we set the capacity of the nodes to 20, and we
display the ratio between the number of nodes provided by the corresponding
method against the lower bound on the number of necessary nodes described in
Section 5.1.

For synthetic jobs, we consider the following parameters:

– CPU footprint of the tasks: we consider the case of Large Tasks, Medium
Tasks and Small Tasks where Cj is chosen uniformly at random respectively
in [0, 10], [0, 5] and [0, 1]. To keep the total workload constant, we set the
number of tasks Nj in each job to 50 for Large Tasks, 100 for Medium Tasks,
and 500 for Small Tasks.

– Daytime amplitude: we consider the case of Large Daytime Amplitude (where
ρj is chosen uniformly at random in [0, Cj ]) and Small Daytime Amplitude

(where ρj is chosen uniformly at random in [0,
Cj

2 ]).

In all cases, the phase of each job is chosen uniformly at random in [0, 2π[,
and the number of jobs is set to 100. We performed other experiments with
different number of jobs and tasks, but the results showed very little sensitivity
to these parameters and were excluded from the paper in order to save space.
For each scenario, we have performed 20 experiments, and the results are shown
on Figure 1, where the 20 experiments for each scenario and each algorithm are



●●

●

●●

●●

●

●

●

●

●

●

●

1.0

1.2

1.4

1.6

1.0

1.2

1.4

1.6

Large A
m

plitude
S

m
all A

m
plitude

Large Tasks Medium Tasks Small Tasks

R
at

io
 to

 lo
w

er
 b

ou
nd

Algorithm ColGen BestFit MinMax MinMaxModule

●

●

●
●

●●

●
●

●

1.00

1.05

1.10

1.15

1.00

1.05

1.10

1.15

Large A
m

plitude
S

m
all A

m
plitude

Large Medium Small

Algorithm ColGen MinMax

Fig. 1: Performance of all algorithms on synthetic data. The right plot is a focus
on the most efficient algorithms.

grouped together in a boxplot showing the mean, the first and third quantiles,
and minimum and maximum values.

The figure shows that the column generation algorithm is able to consistently
provide solutions with a number of required nodes very close to the lower bound,
in all of the scenarios. Actually, for some of the Large Tasks scenarios , the solver
is able to obtain a provably optimal integer solution in the final step of the
algorithm, meaning that the column generation algorithm actually provides an
optimal solution in these cases. This also shows that the lower bound is actually
very precise, since it is possible to exhibit a feasible solution with very close
performance.

In the Small Tasks scenarios, in which each node can hold a few tens of tasks,
Min-MaxMM performs extremely well and is always at most within 1% of the
lower bound. This behaviour is usual in Bin-Packing problems: the presence of
very small objects makes the packing easier since they can be used to fill the
wasted space in the bins. Indeed, the results of Min-Max MM degrade when
tasks get larger: in this case, the number of tasks per node is relatively small
(a few units) and greedy heuristics fail to achieve close to optimal performance.
On the other hand, in the Small Tasks scenarios, the solution provided by the
column generation algorithm is not as good. This comes from the fact that the
integer problem of the final step is very difficult to solve in that case.

Nevertheless, the number of nodes required by the column generation algo-
rithm is always within 1% of the lower bound. It is worth noting that in the



context which we consider in this work (long-running services with heavy work-
load), the task sizes are not small, and the medium-large task sizes are the most
realistic cases (see Section 5.4 for a comparison on a real trace).

The BestFit heuristc BFD represents the standard packing algorithm used in
such Cloud systems. We can see that its performance is consistently 10% above
the lower bound , and even worse in the case of small tasks. This advocates
strongly in favor of more sophisticated algorithms like the one we propose. Fi-
nally, we can also see that failing to take periodic demand variations leads to a
large waste of resources. Indeed, the performance of Min-Max-Module MMM
is consistently far from the lower bound, by 50% in the case of Big Amplitudes
and by 25% in the case of Small Amplitudes.

●

●

Large Amplitude

Small Amplitude

0

100

200

300

0

100

200

300

Large Medium Small
Task Size

T
im

e 
pe

r 
ite

ra
tio

n 
(m

s)

●

●

● ●

●

Large Amplitude

Small Amplitude

0

100

200

300

0

100

200

300

Large Medium Small
Task Size

N
um

be
r 

of
 it

er
at

io
ns

●

●

●

●

Large Amplitude

Small Amplitude

0

20

40

60

0

20

40

60

Large Medium Small
Task Size

To
ta

l T
im

e 
(s

ec
on

ds
)

Fig. 2: Running time of column generation algorithm.

Figure 2 analyses the computation time for the first phase of the column-
generation algorithm, which solves the rational relaxation of the problem (the
second phase is the final step where we obtain an integer feasible solution, whose
time is limited to 5 minutes in our experiments). We observe that the number
of iterations remains below 300, and the time per iteration is very low (around
200ms), showing that the SOCP formulation for the subproblem is very efficient.
This allows the column generation algorithm to complete its first phase in about
40 seconds in all scenarios.

5.4 Jobs and Tasks of Google Trace

Then, we concentrate on the set of realistic periodically variable jobs in the
trace released by Google [18] and corresponding to one production center. In [4],



Column generation Best-Fit Min-Max Min-Max-Module
CG BFD MM MMM

Number of Nodes 2103 2182 2114 2226

Table 1: Number of nodes required per heuristic.

a instance has been extracted from this trace with 89 jobs corresponding to a
total of 22600 tasks. The largest job in terms of tasks consists of 1608 tasks
and the largest job in terms of CPU demand corresponds to the capacity of
184 nodes at its peak demand. A capacity equivalent to 2198 nodes would be
required if all jobs reached their peak demand at the same instant. The overall
peak demand for the whole set of jobs is equivalent to the capacity of 2090 nodes.
Therefore, there exists a potential improvement on the number of required nodes
of 5%, what should be considered as large in the context of an actual production
center. We have applied our column-generation algorithm on this instance, and
the results achieved are displayed in Table 1.

The results of MM are deemed extremely good in [4], because the number
of required machines is only 1.1% higher than the lower bound. Our column-
generation algorithm CG is able to provide an even more efficient solution, with
a number of nodes only 0.6% higher than the lower bound, effectively halving
the gap between the best solution and the lower bound. As shown previously, the
time complexity of our algorithm is very reasonable, showing that our column
generation algorithm can really make an impact for improving resource usage in
actual production centers.

6 Conclusions

Allocating computing resources for multiple time-varying job workloads is an at-
tractive yet challenging target for many providers of large-scale infrastructures
of cloud computing. Towards this end, we address in this paper a resource al-
location problem for jobs that exhibit daily periodic sinusoidal patterns. Such
jobs have been shown to represent a significant part of the workload of large
production clusters, as exemplified by a trace from a Google center. Taking the
periodic pattern into account allows to coallocate jobs which reach their peaks
at different times, and this allows to to significantly increase the resource usage
on these platforms.

In this paper, we present a novel packing technique relying on job aggrega-
tion mechanism by employing an exact method using column generation integer
programming. The Dantzig-Wolfe reformulation allows to isolate the quadratic
constraint in a small size subproblem, which can be solved very efficiently. Solv-
ing iteratively this subproblem and the reformulated packing problem allows to
efficiently identify the relevant machine configurations, i.e. the set of jobs which
should be allocated together. This technique is then compared to best-effort
heuristics inspired from the standard bin-packing methods, on both simulated
and realistic data. Experimental results show that this algorithm obtains good



results very consistently, even in difficult cases in which task sizes are large and
few tasks can fit together on the same machine. In the most realistic cases,
the column generation improves over the best heuristic by up to 5%, effectively
halving the gap between the best known solutions and the lower bound.

As future work, we plan to extend job aggregation strategies to provide per-
formance guarantees for other resources like memory, disk, network bandwidth,
etc. Improving the column generation algorithm could focus on two different
directions: using a more efficient routine to solve the subproblem could lower
further the running time of the first phase, and more efficient branching schemes
could improve the efficiency of the last step of the algorithm. Besides, we target to
address the problem of resource allocation and sharing for dynamically arriving
jobs while considering the already assigned static ones. This problem is challeng-
ing and attractive computing paradigm in cloud computing for a wide variety
of applications. This dynamic co-allocation for unpredictable jobs presents new
challenges to resource management in multicluster systems, such as locating suffi-
cient resources for these dynamic jobs in distributed sites, managing temporarily
the job assignment and coordinating their executions with the processing of the
static jobs.

References

1. M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A. Konwinski, G. Lee,
D.A. Patterson, A. Rabkin, I. Stoica, et al. Above the clouds: A berkeley view of
cloud computing. University of California, Berkeley, 2009.

2. Mohit Aron, Peter Druschel, and Willy Zwaenepoel. Cluster reserves: A mechanism
for resource management in cluster-based network servers. In In Proceedings of the
ACM SIGMETRICS Conference, pages 90–101, 2000.

3. O. Beaumont, L. Eyraud-Dubois, and J.-A. Lorenzo-del Castillo. Analyzing real
cluster data for formulating allocation algorithms in cloud platforms. In Computer
Architecture and High Performance Computing (SBAC-PAD), 2014 IEEE 26th
International Symposium on, pages 302–309, Oct 2014.

4. Olivier Beaumont, Ikbel Belaid, Lionel Eyraud-Dubois, and Juan-Angel Lorenzo-
Del-Castillo. Allocating jobs with periodic demand variations. Accepted to Eu-
roPar 2015, February 2015.

5. Olivier Beaumont, Lionel Eyraud-Dubois, Hejer Rejeb, and Christopher Thraves.
Heterogeneous Resource Allocation under Degree Constraints. IEEE Transactions
on Parallel and Distributed Systems, 2012.

6. A. Beloglazov and R. Buyya. Energy efficient allocation of virtual machines in
cloud data centers. In IEEE/ACM International Conference on Cluster, Cloud
and Grid Computing, pages 577–578. IEEE, 2010.

7. N. Bobroff, A. Kochut, and K. Beaty. Dynamic placement of virtual machines for
managing sla violations. In Integrated Network Management, 2007. IM ’07. 10th
IFIP/IEEE International Symposium on, pages 119–128, May 2007.

8. R.N. Calheiros, R. Buyya, and C.A.F. De Rose. A heuristic for mapping virtual
machines and links in emulation testbeds. In Proceedings of International Confer-
ence on Parallel Processing (ICPP), pages 518–525. IEEE, 2009.

9. Walfredo Cirne and Eitan Frachtenberg. Web-scale job scheduling. In Job Schedul-
ing Strategies for Parallel Processing, pages 1–15. Springer, 2013.



10. M. R. Garey and D. S. Johnson. Computers and Intractability, a Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, 1979.

11. D. Hochbaum. Approximation Algorithms for NP-hard Problems. PWS Publishing
Company, 1997.

12. Hans D Mittelmann. An independent benchmarking of sdp and socp solvers. Math-
ematical Programming, 95(2):407–430, 2003.

13. Charles Reiss, Alexey Tumanov, Gregory R. Ganger, Randy H. Katz, and
Michael A. Kozuch. Towards understanding heterogeneous clouds at scale:
Google trace analysis. Technical Report ISTC–CC–TR–12–101, Intel science and
technology center for cloud computing, Carnegie Mellon University, Pittsburgh,
PA, USA, April 2012. Posted at http://www.istc-cc.cmu.edu/publications/

papers/2012/ISTC-CC-TR-12-101.pdf.
14. Charles Reiss, John Wilkes, and Joseph L. Hellerstein. Google cluster-usage traces:

format + schema. Technical report, Google Inc., Mountain View, CA, USA,
November 2011. Revised 2012.03.20. Posted at URL http://code.google.com/p/

googleclusterdata/wiki/TraceVersion2.
15. Johara Shahabuddin, Abhay Chrungoo, Vishu Gupta, Sandeep Juneja, Sanjiv

Kapoor, and Arun Kumar. Stream-packing: Resource allocation in web server
farms with a qos guarantee. In High Performance Computing, HiPC 2001, pages
182–191. 2001.

16. Bhuvan Urgaonkar, Prashant Shenoy, and Timothy Roscoe. Resource overbooking
and application profiling in shared hosting platforms. SIGOPS Oper. Syst. Rev.,
36(SI):239–254, December 2002.

17. F. Vanderbeck. On dantzig-wolfe decomposition in integer programming and ways
to perform branching in a branch-and-price algorithm. Operations Research, pages
111–128, 2000.

18. John Wilkes. More Google cluster data. Google research blog,
November 2011. Posted at http://googleresearch.blogspot.com/2011/11/

more-google-cluster-data.html.
19. Q. Zhang, L. Cheng, and R. Boutaba. Cloud computing: state-of-the-art and

research challenges. Journal of Internet Services and Applications, 1(1):7–18, 2010.

http://www.istc-cc.cmu.edu/publications/papers/2012/ISTC-CC-TR-12-101.pdf
http://www.istc-cc.cmu.edu/publications/papers/2012/ISTC-CC-TR-12-101.pdf
http://code.google.com/p/googleclusterdata/wiki/TraceVersion2
http://code.google.com/p/googleclusterdata/wiki/TraceVersion2
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html

	Column generation integer programming for allocating jobs with periodic demand variations

