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Abstract

Following recent empirical evidence which indicates the importance of rank
for the determination of workers’ wellbeing, this paper introduces status seek-
ing preferences in the form of rank-dependent utility functions into a moral
hazard framework with one firm and multiple workers, but no correlation
in production. We show that workers’ concern for the rank of their wage
in the firm’s wage distribution induces the firm to offer discriminatory wage
contracts when its aim is to induce all workers to expend effort.
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‘...to understand what makes workers satisfied it is necessary to look at
the distribution of wages inside a workplace. We show that rank matters to
people. They care about where their remuneration lies within the hierarchy
of rewards in their office or factory. They want, in itself, to be high up the
pay ordering.’

Brown et al. (2003, p. 30)

1 Introduction

There is a wealth of experimental and empirical work that attests to the fact that
workers in an organisation care about their position among peers –one recent ex-
ample is Brown et al. (2003) which provides empirical and experimental evidence
on the importance of rank.1 Yet many of the theoretical results in the literature on
optimal incentives in organizations assume completely self interested workers. The
question of what happens to the nature of optimal contracts when agents can be
other-regarding has only recently started getting attention.2

In this paper we investigate the case of workers who are status-seeking, in the sense
that they care about their rank3 in the reference group. Our focus is on the question
of optimal wage contracts in a simple setting of moral hazard with identical status-
seeking agents. For simplicity, we follow the literature in making the assumption that
status derives only from one dimension, i.e. the order of realized wages although we
are aware (as pointed out by Shubik (1971)) that status is often multi-dimensional.

Our main contribution is to show that when risk neutral agents4 are conscious about
their rank, then when workers are not too averse to being behind, the firm finds it
worthwhile to use discriminatory contracts. This is a surprising result: the firms
offers different wage contracts to agents who are ex-ante identical! The intuition
behind this result is that firms can exploit the convexity (concavity) in preferences
on status so that by offering asymmetric contracts, the gain to the firm in terms of
the net savings in expected wages is higher. In particular, with linear preferences on
status, asymmetric contracts do no better than symmetric contracts. An implication
of our results is that if workers are not identical, i.e. if they have different attitudes

1Brown et al. (2003) also provide a comprehensive survey of this literature.
2There are some early exceptions e.g. Frank (1984). Itoh (2004) examines moral hazard in

incentive contracts when workers have other-regarding preferences, but the analysis is restricted
to symmetric contracts only. Neilson and Stowe (2004) studies optimal symmetric linear contracts
for workers with other-regarding preferences. Both sets of authors follow Fehr and Schmidt (1999)
in modelling other-regarding preferences. The utility functions allow for both inequality aversion
and status seeking (e.g Itoh (2004), Neilson and Stowe (2004)).

3Rank is based on the order of realised wages only.
4We assume Risk Neutrality in money for simplicity, it is not essential for our results. We only

need that utility is additively separable between monetary and status incentives. Workers can have
convex or concave preferences on status.
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to risk on the status dimension then it would pay firms to let workers self select
into different contracts: some with high status but higher probabilities of getting
fired, others that are more secure but low status. We also find, consistent with the
literature, that when agents are status-seeking, there is wage compression.

There are two distinguishing features in our modelling approach. First, we allow the
firm to offer asymmetric contracts5. A priori if the firm is interested in exploiting
incentives from status to reduce its wage cost then not allowing the firm to use
asymmetric contracts seems artificially restrictive. Second, differently from the ex-
isting literature on other-regarding preferences we do not follow Fehr and Schmidt
(1999) in allowing wage levels of other workers and wage differences between work-
ers to matter to workers. We only allow ordinal differences to matter. In this we
are motivated by two considerations: first there is empirical evidence (Brown et al.
(2003)) that employees really care about rank and not about the deviation from a
certain reference level, and second, that we would like these preferences to generalise
to the case of more than two workers6. Indeed, making preferences depend on the
whole vector of wages (rather than the order) when there are many co-workers in the
reference group requires a lot of information on the part of the worker and seems to
require strong assumptions about the specific way in which the wages of co-workers
enter the utility function.

Shubik (1971) on the other hand had in mind a much simpler notion of games of
status. In the conversion from a two player game to a game of status the set of
outcomes reduces to essentially three: Win, Lose or Draw. The natural extension
of this to many players suggests that what matters is the number of people below,
above or at the same rank. Dubey and Geanakoplos (2004) introduce exactly such
a utility function for status seeking students. In other words, rank seems to us to
be a more robust way to generalize how wage differences matter in the sense that
it is an ordinal measure of status and does not require very precise information
on the wage distribution7. Motivated both by our interest in exploring the role of
rank as an indicator of status and the simple and general way in which Dubey and
Geanakoplos (2004) allow status to matter through ranks, we use a modification of
their model of status seeking.

Winter (2004) shows that in an environment of complementarities in production
and unobservable efforts, optimal mechanisms may be fully discriminating, i.e. they
require unequal treatment of equals. The driving force in his story is the coordination

5The issue of asymmetric contracts has not been addressed in the literature to the best of our
knowledge.

6We conjecture that our results generalise for more than 2 workers if there is sufficient richness
in the distribution of the stochastic shocks.

7It might be argued of course that small changes in wage distribution lead to discontinuous
changes in rank, but we could, in principle, add some perceptions of changes in rank so that wages
would have to change by a significant amount for rank to change. This point is also addressed in
the Conclusion.
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problems between multiple agents. The more general point of his model is that when
peer effects are important we should observe more “hierarchy” in organizations when
this hierarchy is not related to different job descriptions. Our results stem from
different peer effects but the flavour is similar.

The paper is organized as follows: Section (2) introduces the model, Section (3)
discusses the complete information case, Section (4) contains our main result on
asymmetric contracts and finally Section (5) concludes.

2 The Model

In this section we extend the standard model of moral hazard with n agents to allow
for status seeking agents. The general model with n workers is presented in Dhillon
and Herzog-Stein (2006). Here we restrict ourselves to the special case of 2 workers,
two effort levels and two states of nature si ∈ H, L. Hence ei ∈ {eH , eL} where
eH > eL and ci(ei) = c(ei) = c̄ for ei = eH and 0 otherwise.

Let w = [w1, w2]. The rank dependent Utility function is:

u(w) = wi + βρ̂, if wi > wj

u(w) = wi + βρ̃, if wi = wj

u(w) = wi − βρ′, if wi < wj (1)

where β ≥ 0, denotes the degree to which workers care about rank. We assume
ρ̂ ≥ ρ̃, ρ′, i.e. the utility from being ahead of the other worker is higher than the
utility of being at the same level as well as the absolute value of the disutility from
being behind the other worker.

Definition: Convex preferences on status are those which satisfy ρ̂− ρ̃ > ρ̃+ρ′,
i.e.

ρ̂− ρ′ > 2ρ̃.

Concave preferences on status are those which satisfy ρ̂− ρ̃ < ρ̃ + ρ′, i.e.

ρ̂− ρ′ < 2ρ̃.

We assume that a worker who rejects the firm’s offered contract and therefore does
not enter the employment relationship receives a fixed income of zero. Following
Neilson and Stowe (2004, p. 10), the natural assumption is made that if a worker is
not in an employment relationship then he does not compare his income to that of
other workers, and hence the rank dependent component of the utility function is
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irrelevant. This implies that Worker i’s reservation utility, Ū , is normalized to zero.
Finally, we will assume that the utility from rank is bounded:

Assumption 1. The degree to which worker i cares about rank is bounded from
above such that

β <
c̄

ρ̂ + ρ′
.

This assumption is made to rule out situations where the worker derives all his utility
from status so that he will be ready to work for next to nothing as long as he has
status8. Since the agent incurs a cost from high effort, we denote the overall utility
as Ui(w, ei) = ui(w)− c̄ if he exerts high effort, and Ui(w, ei) = ui(w) otherwise.

Each state of nature is characterized by a different level of output. More specifically
the output levels in the two states of nature s = H,L are such that yH > yL. We do
not allow any correlation in agents shocks nor any technological link between them.
These assumptions are made to focus on the case when there are no externalities
between agents except those induced by status.

The technology describing the stochastic relationship between effort and output is
such that if ei = eH then with probability pHs > 0 output is yi = ys where s = L,H.
If ei = eL instead, then with probability pLs > 0 output is equal to yi = ys where
s = L,H. Thus yi depends only on the effort level chosen by Worker i and the
assumed technology describing the relationship between ei and yi, but not on the
effort level chosen by Worker j where i, j = 1, 2 with i 6= j. Define ∆ps ≡ pHs − pLs

for s = L,H. Finally, we make the standard assumption that exerting high effort
results in a higher probability of the good state:

Assumption 2. The technology is such that the distribution of output if a worker
expends effort first-order stochastically dominates the distribution of output if a
worker expends no effort, i.e.:

pHL < pLL and pHH > pLH .

The firm possesses n = 2 identical production facilities i = 1, 2, called factories.
Each factory employs exactly one worker. It is assumed that Worker 1 is employed
at Factory 1 and Worker 2 at Factory 2. This interpretation of the two workers
is made to simplify exposition, so that we can refer to the two factories without
confusion. It should not be taken too literally: any two workers in the firm who are
not related through production would suffice for our model.

The domain of contracts in our model needs to be specified. In principle we can
distinguish between many different feasible sets of contracts. The most general set

8This seems to be the situation in British universities which seem to take full advantage of their
status seeking academics to pay them a pittance.
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is the set of dependent and asymmetric contracts, where wages can be conditioned
on the outcome in both factories and on the identity of workers. For the two worker
case we have a convenient representation:

H L
H (wHH

1 , wHH
2 ) (wHL

1 , wHL
2 )

L (wLH
1 , wLH

2 ) (wLL
1 , wLL

2 )

The matrix denotes the four possible states of nature, a combination of the shocks in
each factory. This is the case of dependent contracts: We call a contract dependent
if wages depend on shocks in both factories. Thus wages are a vector wm

i where

m ∈ SD = {(H,H), (H, L), (L,H), (H, H)}.

A contract is also dependent and symmetric if wkl
i = wlk

j where k represents the
random shock to worker i and l to worker j .

A contract is independent if wkl
i = wk

i , i.e. the wages of i are independent of the shock
to worker j. Thus wages of worker i are a vector wm

i where m ∈ SI = {(H), (L)}.
Finally a contract is independent and symmetric if wk

i = wk
j .

As is standard in the literature, we assume that the firm is risk-neutral. The firm’s
choice problem is to choose a profile of wage contracts ωm = wm

1 , wm
2 (where m

depends on which type of contract is chosen) and a profile of effort levels e = e1, e2

which maximize its combined expected profit Π from Factory 1 and 2.

max
ωm,e

∑
i

∑
s

{
pls

i (ys
i − Ews

i )
}

(2)

(where Ews
i is the expectation over the other factories shocks, given that factory i

has shock s.)

The constraints for the firm are:

–the workers’ Individual Rationality constraints:

E (Ui(w, ei)) ≥ Ū = 0, (3)

for i = 1, 2, ei = eH , eL

–the workers’ Limited Liability constraints, i.e.

wm
i ≥ 0 (4)

for i = 1, 2.
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–the Incentive Compatibility constraints, i.e, which depend on whether the firm
wants high effort or low effort (or a combination) from each worker.

The above profit-maximization problem of the firm is equivalent to the following
two-stage problem:

(i) For given effort levels, e1 and e2, the firm minimises its expected wage cost
EWC.

(ii) The firm maximises expected profit Π by comparing the different outcomes of
stage (i) with each other.

In this paper, the focus is on the minimization of the firm’s expected wage cost
EWC. Stage (ii) is ignored and we assume that the firm wants both workers to ex-
ert effort. Suppose contracts are dependent. Then let Ewsi

i =
∑

sj∈{H,L}
(
pHsjw

sisj

i

)

for si = H, L. EwH
i represents the expected wage of worker i when he has a good

shock (expectation is taken over the other workers’ shocks) and EwL
i represents the

expected wage of worker i when he has a bad shock. When contracts are indepen-
dent, Ewsi

i = wsi
i . Similarly, let Eρ(rH

i ) =
∑

s∈{H,L} pHsρ(rHs
i ) denote the expected

utility from rank of worker i when he has shock H, and Eρ(rL
i ) =

∑
s∈{H,L} pHsρ(rLs

i )
when he has shock L. Although the rank rs

i depends on the wage profile, we suppress
the argument to save on notation. Then the Incentive Compatibility constraints are:

pHH(EwH
i + βE(ρ(rH

i )) + (1− pHH)(EwL
i + βEρ(rL

i ))− c̄

≥ pLH(EwH
i + βE(ρ(rH

i )) + (1− pLH)(EwL
i + βEρ(rL

i )) (5)

With only two states of nature ∆pL = −∆pH and hence we can shorten to:

∆pH
[
(EwH

i − EwL
i ) + β

(
Eρ(rH

i )− Eρ(rL
i )

)]− c̄ ≥ 0 (6)

Denote Eρ(rH
i )−Eρ(rL

i ) as Ii, the incentives from status. Then we can rewrite the
Incentive Compatibility constraint as the following:

∆pH
[
E(wH

i )− E(wL
i )

] ≥ c̄− β∆pH (Ii) , (7)

For the following sections, all proofs are in the Appendix.
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3 Complete Information

As a starting point, we assume that effort is observable and verifiable. Even in
this situation, we show that firms have incentives to offer asymmetric contracts.
We present briefly the standard model and result and then show that with rank
dependent preferences the standard results change significantly.

If Worker i’s (i = 1, 2) preferences are rank-independent (β = 0) then the whole
problem degenerates to the standard complete information problem. We discuss a
representative worker i’s problem only, since in this case the minimization problem
for the two factories is separable and contracts are independent, so that m ∈ SI .
The complete information optimal contract wCI solves the following problem

min
w

∑
m∈SI

pHmwm subject to
∑
m∈SI

pHmwm − c̄ ≥ 0 and wm ≥ 0. (8)

From (8) it is immediately obvious that there is no unique complete information
optimal contract. Instead there is an infinite number of contracts that solve this
optimization problem. Any wage contract with wm ≥ 0 such that the individual
rationality constraint (3) is binding is a complete information optimal contract.
The following proposition summarises this standard result of contract theory (see
for instance Laffont and Martimort (2002)).

Proposition 1. (Laffont and Martimort (2002)). Let workers’ preferences be rank-
independent. Any wage contract wCI with wm ≥ 0 such that

EWCi

(
wCI

)
= c̄

is a complete information optimal contract. The first-best cost of implementing
the high effort level eH = 1 is

CFB
i = EWCi

(
wCI

)
= c̄.

Thus, any wage contract that leads to a minimum wage cost equal to c̄ for each
worker and offers a positive wage in each state of nature is an optimal wage contract.
All optimal contracts however give the same expected wage cost.

3.1 Rank-Dependence and Complete Information

What happens to this standard result once we introduce rank-dependence? We
show that the firm can achieve the minimum feasible costs if it uses symmetric
independent contracts when preferences are concave and asymmetric independent
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contracts when preferences on status are convex. It follows that dependent contracts
can do no better.

Observe that the game of status is conceptually a strictly competitive game. Hence
giving higher expected status to one worker is at the expense of the other worker
who must then be compensated suitably for lower expected status. It is therefore
not obvious that costs can be lowered by asymmetric contracts. The problem is
not trivial because we have assumed that status only comes from the order of the
wages– if there was another dimension of status then, of course, costs can always
be lowered, since one worker can be given a higher rank but lower wages and vice
versa. However it seems to us highly implausible that high status workers get paid
less than low status workers.

The following lemma shows the minimum feasible costs that a firm can achieve.

Lemma 1. The minimum expected wage cost possible for the firm, EWCmin are
equal to 2c̄ − β(ρ̂ − ρ′) if preferences on status are convex and equal to 2 (c̄− βρ̃)
otherwise.

It can now be established that the firm can achieve minimum expected wage cost
EWCmin with independent contracts as long as the firm can use asymmetric con-
tracts. Let

p̄ =
ϕ

2

{√
1 +

4

ϕ
− 1

}
,

where ϕ = 1 + ρ′
ρ̂+ρ′ . Note, 1 ≤ ϕ ≤ 3/2 given the assumptions made about ρ̂ and ρ′

and hence 0 < p̄ < 1.

Theorem 1. Assume 0 < pHH < 1. There exists a profile of optimal independent
wage contracts that guarantees minimum expected wage cost EWCmin for the firm.

When preferences on status are concave the contracts are symmetric and equal to

wH = wL = c̄− βρ̃.

When preferences on status are convex the contracts are asymmetric and equal
to (i, j = 1, 2 with i 6= j)

w̃i =

{
c̄− β

(
pHH ρ̂− (1− pHH)ρ′

)

pHH
, 0

}
,

and w̃j = {w̃, w̃} where

w̃ = c̄− β
((

1− pHH
)
ρ̂− pHHρ′

)
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whenever pHH ≤ p̄,

and equal to

w̆i ≡
{

0,
c̄− β

(
(1− pHH)ρ̂− pHHρ′

)

(1− pHH)

}
.

and w̆j = {w̆, w̆} where

w̆ = c̄− β
[
pHH ρ̂− (1− pHH)ρ′

]

whenever pHH ≥ 1− p̄.

With complete information such that effort is verifiable independent contracts allow
the firm to achieve whatever it can achieve with dependent asymmetric contracts as
long as it has the ability to choose independent asymmetric contracts. Notice that,
unlike the case of rank independent preferences, it is necessary to condition wages
on output and not just effort, in order to achieve minimum cost: the asymmetric
contract cannot be replicated by a deterministic one that is conditioned only on
effort. However, if we allow contracts to be stochastic then we could replicate the
asymmetric contract with a symmetric stochastic contract that is conditioned only
on effort. In order to provide the same incentives from status, consider a contract
that gives worker 1 high wages wH > 0, and worker 2 low wages wL = 0, with
probability pHH and vice versa with probability 1 − pHH if they both put in high
effort. This contract achieves the minimum cost. Thus, in the case of observable
effort we find that under some conditions the optimal contract is asymmetric and
independent. The intuition behind this result is quite simple – when status and
monetary incentives are substitutes, the firm is able to exploit the order of wages
to create situations where each worker gets utility from status and hence lowers
the total expected wage cost. This intuition is easy to see with the stochastic
symmetric contract. Notice that when preferences on status are convex the firm
achieves minimum expected cost by making one worker higher in expected status
(e.g. in the first case worker i has higher expected status when pHH > 1

2
) but the

other worker has higher expected wages. If workers had different types of preferences
on status, we could use these results to justify the existence of different contracts:
some which have high expected status but a high probability of getting fired and
those with low expected status but which are more secure.

This may seem unrealistic: If firms started paying workers according to random
events even when effort is fully observed it might cause a loss of morale. However,
our results are consistent with situations where effort is unobserved but is very
weakly correlated with output. We suggest that in such situations, linking employee
compensation differentially to random events (like changes in the value of the firm’s
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stocks) might occur since it lowers overall costs to the firm by creating artificial
heirarchies.

Does the presence of status seeking agents cause wage compression? Wage Compres-
sion in this setting occurs when in the optimal (symmetric independent) contract,
the wage difference |wH

i − wL
i | is lower with rank dependent preferences than in

the benchmark case. In Dhillon and Herzog-Stein (2006) we show that given our
assumptions on the utility from status (ρ̂ > ρ′, ρ̃), wage compression holds indepen-
dently of behindness aversion9 as defined in Neilson and Stowe (2004). If preferences
on status are concave, then this wage compression result relies on having a positive
utility from being equal in rank.

We turn now to the situation when effort is unobservable. What matters here is
the expected gain in status when an agent works relative to when he shirks, given
that all others are working. The next section addresses the question of whether
asymmetric contracts can do better than symmetric contracts, even in the moral
hazard setting.

4 Moral Hazard with Risk Neutral parties

If the firm is unable to observe the choice of effort, directly, then the firm can offer
only a contract that is contingent on the observable output levels of the two factories.

The remainder of this section is structured as follows. First, the standard moral-
hazard problem is presented briefly. As in the complete information case when there
is no rank-dependence in utilities, then the two factories problems are separable and
so independent symmetric contracts will do as well as the most general contracts.

We then study the moral-hazard problem in an environment of rank-dependent
preferences. Here, we present our main result: that asymmetric dependent contracts
can achieve the minimum feasible cost. Moreover in Dhillon and Herzog-Stein (2006)
we show that no independent contract can achieve this cost.

4.1 The Benchmark Moral-Hazard Problem

If Worker i’s (i = 1, 2) utility is rank-independent, β = 0, then the whole problem
degenerates to the standard moral-hazard problem. For each of its factories, the
firm’s strategy is to find a wage contract ωi which minimizes its expected wage cost,
and makes the individual worker exert effort at Factory i.10

9In our model, this is the same as having concave preferences on status.
10Therefore in the remainder of this section the subscript i is omitted.
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Let m ∈ SI . With incomplete information, i.e. if Worker i’s effort level is not
verifiable, the problem of the firm is to find a wage contract w that minimizes

min
w

EWC =
∑
m

pHmwm,

where EWC represents the expected wage cost at Factory i,

–subject to the limited liability constraint (4),

–Worker i’s incentive constraint:

∆pHwH + ∆pLwL ≥ c̄

or using the fact that ∆pL = −∆pH

∆pH
[
wH − wL

] ≥ c̄. (9)

–and worker i’s participation constraint for low effort:

∑
m

pLmwm ≥ 0

Note that this implies the participation constraint for high effort, if the incentive
constraints are satisfied.

The following proposition describes the optimal contract for the standard moral-
hazard problem. In its main part it repeats Proposition 1 of Itoh (2004).

Proposition 2. For all m = L,H and risk neutral parties the unique optimal con-
tract solving the standard moral-hazard problem is

wS =
{
wH , wL

}
=

{
c̄

∆pH
, 0

}
,

and the expected cost of implementing effort is

EWCi

(
wS

)
=

pHH c̄

∆pH

in Factory i. The firm’s overall expected cost of implementing effort is 2EWCi

(
wS

)
.

4.2 Rank-Dependence and Moral Hazard

If effort is no longer observable and verifiable, and workers possess rank-dependent
preferences then the firm’s choice problem changes. Like in the standard moral-
hazard problem the firm has to base its contracts on an observable variable, output.
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However, with rank-dependent preferences, when offering a wage contract to one
worker the firm has to take into account the effects of this contract on the other
worker. In this section we show our main result: with asymmetric dependent con-
tracts, the firm can achieve the minimum feasible expected wage cost. Moreover no
symmetric contract and no independent contract can achieve this cost.

Let m = (s1, s2) ∈ SD (since this is a dependent contract) and denote qm = pHs1pHs2 ,
i.e. the joint probability that the shocks are s1, s2 in the two factories respectively
given that both workers exert high effort.

The firm’s problem is to minimize expected wage costs by choosing a dependent
wage contract:

min
wm

EWC =
∑

i

∑
m

[qmwm
i ]

subject to the limited liability constraints, which follow from (4),

wm
i ≥ 0.

the incentive constraints (7):

∆pH
[
E

(
wH

i

)− E
(
wL

i

)] ≥ c̄− βE (∆ρi) , (10)

and the (low effort) Individual Rationality constraints (ei = 0)

pLHE
(
wH

i

)
+

(
1− pLH

)
E

(
wL

i

)
+ βE (ρ(ri)|w) ≥ 0, (11)

where E (∆ρi) is Worker i’s expected gain or loss in expected rank-utility from
expending effort.

Note the Individual Rationality constraints for high effort can be ignored in this
framework because they are implied by the (low effort) participation constraints
and the incentive constraints.

Recall that Ii denotes the incentives from status. Let I∗1 +I∗2 be the maximized value
of I1 + I2 across different wage orders. The minimum expected wage cost possible
for the firm, EWCmin, is

EWCmin = pHH

{
2

c

∆pH
− β (I∗1 + I∗2 )

}
.

The minimum feasible cost is achieved when the Expected wage E(wL) = 0 for both
workers and the sum of the expected wages E(wH

1 )+E(wH
2 ) is just enough to satisfy
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the sum of incentive constraints. The next lemma characterizes the wage orders that
maximize the sum of incentives.

Lemma 2. The rank payoff matrix which maximizes I1 + I2 (we can exchange the
roles of the two workers and get the same sum of incentives) is given by:

H L
H (ρ̂,−ρ′) (ρ̂,−ρ′)
L (−ρ′, ρ̂) (ρ̃, ρ̃)

when preferences on status are convex, and by

H L
H (ρ̃, ρ̃) (ρ̂,−ρ′)
L (−ρ′, ρ̂) (−ρ′, ρ̂)

when preferences on status are concave.

The maximized value of I1 + I2 is equal to

I∗1 + I∗2 = pHH(ρ̂ + ρ′) + 2(1− pHH)(ρ̂− ρ̃)

when preferences on status are convex, and by

I∗1 + I∗2 = 2pHH(ρ̃ + ρ′) + (1− pHH)(ρ̂ + ρ′)

when preferences are concave.

We can now characterize the optimal asymmetric (dependent) contract. Let

ρ′
1

=

(
(1− pHH)

[
pLH ρ̂ + (1− pLH)ρ̃

]

pHH

)

and

ρ′
2

=

(
pLH

[
(1− pHH)ρ̂ + pHH ρ̃

]

1− pLH

)

Theorem 2. Assume that

ρ′ ≤ min

[
ρ′

1
, ρ′

2

]
. (12)

(i) Suppose that preferences are convex: then there exists a dependent contract that
achieves the minimum expected cost, EWCmin, with an induced asymmetric wage
order:

wHH
1 > wHH

2 = 0; wLH
2 > wHL

1 > wHL
2 = wLH

1 = wLL
1 = wLL

2 = 0.
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with
E(wH

1 ) =
c

∆pH
− β(pHH(ρ̂ + ρ′) + (1− pHH)(ρ̂− ρ̃))

and
E(wH

2 ) =
c

∆pH
− β((1− pHH)(ρ̂− ρ̃)).

(ii) Suppose preferences are concave: then there exists a dependent contract that
achieves an expected wage cost that is ε > 0 close to the EWCmin:

EWC = EWCmin +
(
1− pHH

)
ε,

where ε > 011 with an induced asymmetric wage order:

wHH
1 = wHH

2 ; wLH
2 > wLH

1 = 0; wHL
1 > wHL

2 = 0; wLL
2 > wLL

1 = 0

with
E(wH

1 ) =
c

∆pH
− β(pHH(ρ̃ + ρ′) + (1− pHH)(ρ̂ + ρ′)),

E(wL
2 ) =

(
1− pHH

)
wLL

2 =
(
1− pHH

)
ε

and
E(wH

2 ) =
c

∆pH
− β(pHH(ρ̃ + ρ′)) +

(
1− pHH

)
ε,

Moreover, we can show that no independent or symmetric contract can achieve
these costs12. So why is it possible to achieve minimum expected wage cost EWCmin

with asymmetric dependent contracts but not with symmetric dependent contracts?
In the setup here the main trade off is through the incentive constraints, because
they are crucial for the determination of the expected wage cost. With asymmetric
dependent contracts the incentives from status are higher for worker 1 and lower for
worker 2 relative to the situation with the optimal symmetric contract.13 Denote
the asymmetric contract by AS and the symmetric one by S, then

I∗AS
1 > I∗S1 = I∗S2 > I∗AS

2 and E(w)AS
2 > E(w)S

1 = E(w)S
2 > E(w)AS

1 .

However, crucial for the firm’s decision to use asymmetric dependent contracts in-
stead of symmetric contracts is whether it can achieve lower expected wage cost with
asymmetric dependent than with symmetric contracts. To understand the intuition
for the results presented here it is useful to look at the status payoff matrix for a
symmetric contract:

11We assume that ε is the smallest monetary unit to be able to fix the optimal contract; otherwise
there is always a smaller ε.

12Proofs are available in Dhillon and Herzog-Stein (2006).
13Recall that calling the agent with higher incentives agent 1 is without loss of generality since

the roles of the two workers can be exchanged.
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H L
H ρ̃, ρ̃ ρ̂,−ρ′

L −ρ′, ρ̂ ρ̃, ρ̃

By offering an asymmetric contract the firm can take advantage of the fact that the
changes in incentives (gain for one worker, loss for the other relative to the symmet-
ric contract) are not symmetric for the two workers. Indeed the gain in incentives
(relative to the symmetric contract) and hence the reduction in the expected wage
cost for one worker must be larger than the loss in incentives (relative to the sym-
metric contract) and hence the increase in expected wage cost for the other worker.
Starting from the optimal symmetric contract there are two states for which a switch
to an asymmetric contract can cause a change in incentives if the firm’s intention is
to do so: the states when either both factories are in the good state or when both fac-
tories are in the bad state. First look at the case when both factories are in the good
state. When preferences on status are convex then the firm gains more by increasing
worker 1’ incentives by increasing his status payoff than it looses by reducing worker
2’s incentives by reducing his status payoff in the situation when both factories are
in the good state, because worker 1’s gain in incentives is I∗AS

1 − I∗S1 = pHH (ρ̂− ρ̃)
and worker 2’s loss in incentives is I∗AS

2 − I∗S2 = −pHH (ρ̃ + ρ′). Second, looking at
the case when both factories are in the bad state, then when preferences on status
are concave the firm gains more by increasing worker 1’ incentives by decreasing his
status payoff than it looses by reducing worker 2’s incentives by increasing his status
payoff in the situation when both factories are in the good state, because worker 1’s
gain in incentives is I∗AS

1 − I∗S1 =
(
1− pHH

)
(ρ̃ + ρ′) and worker 2’s loss in incen-

tives is I∗AS
2 − I∗S2 = − (

1− pHH
)
(ρ̂− ρ̃). Furthermore with asymmetric dependent

contracts in both cases wage profiles exist which translate these overall gains in
incentives into lower expected wage cost. If preferences on status were linear, i.e.
ρ̂− ρ̃ = ρ̃ + ρ′, then asymmetry would not help and the optimal contract would be
the symmetric one. Also as shown above with asymmetric independent contracts
there are no wage profiles which can translate the overall gains in incentives into the
minimum expected wage cost EWCmin.

Hence, even when agents are ex-ante symmetric, the firm gains by using discrimi-
natory contracts to exploit the utility that agents get from status. When agents are
not symmetric in their status preferences, then the firm could find it optimal to let
workers self-select into different contracts. Finally, observe that wage compression
occurs in the optimal contract, relative to the standard moral hazard setting, given
our assumptions on the utility from status ρ̂ ≥ ρ′, ρ̃.
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5 Concluding Remarks

Much of contract theory has focused on agents who are self interested. What hap-
pens to the theory of optimal contracts when this assumption is relaxed? In particu-
lar, what happens when workers care about their rank? We investigate this question
in a simple model with two status-seeking agents. We show that then the problem
of finding the optimal contract involves: (1) Maximizing the incentives from status
given a particular distribution of the stochastic shocks to the two workers: here we
are essentially designing a game of status (Shubik (1971)) to maximize the incentives
of both workers. (2) Look for the levels of wages that minimize expected wage costs
and satisfy the constraints.

Our main results are illustrated in our simple two agent model. If agents are not
too averse to being behind, we show that asymmetric contracts or discriminatory
contracts where the two agents are offered different contracts even though they are
ex-ante identical, are better than symmetric contracts in the case of observable
effort, when preferences are convex. In the case of unobservable effort, we find that
asymmetric contracts dominate symmetric contracts, as long as the firm is allowed to
write down dependent contracts. If the firm is restricted to independent contracts
on the other hand, then we show in Dhillon and Herzog-Stein (2006) that under
some conditions, asymmetric independent contracts are also better than symmetric
contracts. Moreover, no symmetric contract even if it is dependent can replicate the
discriminatory one.

The result relies on the fact that there are enough states of nature that any given
agent can be both ahead in some states and behind or equal in others14. Second, our
result relies on being able to pay one worker just a little bit more than the other (the
ε in our story). A criticism that might be leveled at us is that people perceive rank
differences only when there are noticeable or significant differences in wages (see e.g.
Shubik (1971)) . We have two answers to this. First, we refer to anecdotal evidence
from Brown et al. (2003) who cite the story of Professor X who refused a job in a
top university because he was paid a wage $ 10 below that of the (then) highest
paid professor. In other words, the satisfaction of being top ranked comes from the
fact that this hierarchy in wages is common knowledge. This is what we assume
in our model (contracts have to be common knowledge to both workers). Second,
what we suggest (like Winter (2004)) is that there may be benefits to introducing an
artificial hierarchy between workers even when the job is ex-ante identical – again
it is the common knowledge about status that is important rather than the actual
wage differences. Indeed Baron (1988) suggests that reference actors are people who
are nor too different from oneself in terms of pay. Pay differences matter more when

14In this respect our result parallels the observation in Dubey and Geanakoplos (2004) that to
maximize incentives to students from working some randomness must be introduced in the payoffs
from rank. However in our context the randomness is given as part of the moral hazard set up and
we can only play with the ranks.
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they are across people in the same job title.

Is it better to have status seeking agents as far as the principal is concerned? We
might argue that the extra utility that agents get from rank might cause the total
expected wages paid out to be lower than in the case of agents who are not status
seeking (this is the wage compression result that is discussed by many authors in
this area (e.g. Frank (1984), Neilson and Stowe (2004)). Let us compare symmetric
contracts with and without status seeking agents. It turns out that the wage com-
pression result holds in our model both with observable effort and with unobservable
effort. This is quite intuitive in that when agents get some utility from rank (in the
cases when the state is different across workers), they need to be paid less to exert
effort.

We conclude this paper with some ideas for extensions of this work. One obvious
extension is to investigate the case of status seeking agents who are not identical
(adverse selection). Another interesting question is that of information about wage
scales. Why do we observe e.g. that many organizations give broad information
about wages (i.e. the bands within which the wages for a given job title lie) but not
detailed information (e.g. which employee is getting how much). Is this a case of
making the reference group endogenous? How are these bands chosen? We hope to
tackle these questions in future work.
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A Appendix: Proof of Lemma 1

Proof: Observe that total costs of the firm are minimized if E(ρ(r1)|w)+E(ρ(r2)|w)
is maximized. Now,

E(ρ(r1)|w)+E(ρ(r2)|w)) = (pHH)2(x1)+(pHH)(1−pHH)(x2 +x3)+(1−pHH)2(x4)
(13)

where xi ∈ {ρ̂− ρ′, 2ρ̃} for i = 1, 2, 3, 4. It is clear that when preferences are convex
x∗i = ρ̂ − ρ′ maximizes total expected status while if preferences are convex then
x∗i = 2ρ̃ maximizes total expected status.

¤

B Appendix: Proof of Theorem 1

Proof: Suppose preferences on status are concave, then the symmetric independent
contract, wH = wL = (c̄− βρ̃) implements the EWCmin. Note that limited liability
and participation constraints are satisfied since c̄ > βρ̂ follows from Assumption 1.

Now suppose preferences on status are convex. Consider first the profile of asymmet-
ric and independent wage contracts ω̃. Observe that given the profile ω̃, EWC =
EWCmin if the order of wages satisfies:

w̃H
i > w̃H

j

(14)

w̃L
j > w̃L

i ,

where, recall that w̃j = {w̃, w̃} (since then worker i’s expected rank utility is
E (ρ(ri)|ω̃) = pHH ρ̂−(1−pHH)ρ′ and Worker j’s expected rank utility is E (ρ(rj)|ω̃) =(
1− pHH

)
ρ̂− pHHρ′).

It is sufficient to show that the profile ω̃ is such that both workers participation
constraints are satisfied and order (14) is satisfied:

Worker i’s participation constraint is

pHHw̃H
i +

(
1− pHH

)
w̃L

i = c̄− β
[
pHH ρ̂− (

1− pHH
)
ρ′

]
= E (ρ(ri)|ω̃) ,

and Worker j’s participation constraint is

w̃ = c̄− β
[(

1− pHH
)
ρ̂− pHHρ′

]
= E (ρ(rj)|ω̃) .
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Hence, the participation constraints are clearly satisfied given wage profile ω̃.

The order of wages and the limited liability constraints imply that we need to show
that w̃H

i > w̃ > w̃L
i = 0.

Given Assumption 1, pHH ≤ p̄ is a sufficient condition for the first inequality to be
fulfilled:

Note, w̃H
i > w̃ iff

c̄ > β

{[ (
pHH

)2

1− pHH

]
ρ̂ +

[
1−

(
pHH

)2

1− pHH

]
(−ρ′)

}
.

Assumption 1 implies that c̄ > β (ρ̂ + ρ′) and hence a sufficient condition for the
above (strict) inequality to be fulfilled is

(ρ̂ + ρ′) ≥
{[ (

pHH
)2

1− pHH

]
ρ̂ +

[
1−

(
pHH

)2

1− pHH

]
(−ρ′)

}
.

However this (weak) inequality is equivalent to

ϕ ≥
[ (

pHH
)2

1− pHH

]
or pHH ≤ ϕ

2

{√
1 +

4

ϕ
− 1

}
= p̄.

The second inequality follows directly from Assumption 1.

Second. consider the profile of asymmetric and independent wage contracts ω̆. Ob-
serve that given the profile ω̆, EWC = EWCmin if the order of wages satisfies:

w̆L
i > w̆L

j

(15)

w̆H
j > w̆H

i ,

where, remember, w̆j = {w̆, w̆} (since then Worker i’s expected rank utility is
E (ρ(ri)|w) =

(
1− pHH

)
ρ̂−pHHρ′. Worker j’s expected rank utility is E (ρ(rj)|w) =

pHH ρ̂− (
1− pHH

)
ρ′.)

It is sufficient to show that the profile ω̃ is such that both workers participation
constraints are satisfied and order (15) is satisfied:

Worker i’s participation constraint is

pHHw̆H
i +

(
1− pHH

)
w̆L

i = c̄− β
[(

1− pHH
)
ρ̂− pHHρ′

]
= E (ρ(ri)|w) ,

and Worker j’s participation constraint is

w̆ = c̄− β
[
pHH ρ̂− (

1− pHH
)
ρ′

]
= E (ρ(rj)|w) .
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Hence, the participation constraints are clearly satisfied given wage profile ω̆.

The order of wages and the limited liability constraints imply that we need to show
that w̆L

i > w̆ > w̆H
i = 0.

Given Assumption 1, pHH ≥ 1− p̄ is a sufficient condition for the first inequality to
be fulfilled:

Note, w̆L
i > w̆ iff

c̄ > β

{[(
1− pHH

)2

pHH

]
ρ̂ +

[
1−

(
1− pHH

)2

pHH

]
(−ρ′)

}
.

Assumption 1 implies that c̄ > β (ρ̂ + ρ′) and hence a sufficient condition for the
above (strict) inequality to be fulfilled is

(ρ̂ + ρ′) ≥
{[(

1− pHH
)2

pHH

]
ρ̂ +

[
1−

(
1− pHH

)2

pHH

]
(−ρ′)

}
.

However this (weak) inequality is equivalent to

ϕ ≥
[(

1− pHH
)2

pHH

]
or pHH ≥ 1− ϕ

2

{√
1 +

4

ϕ
− 1

}
= 1− p̄.

The second inequality follows directly from Assumption 1.

¤

C Appendix: Proof of Proposition 2

Proof: The Lagrange Function representing the standard moral-hazard problem is

L (w, λ) = pHHwH +
(
1− pHH

)
wL + λ

[
c̄−∆pH

[
wH − wL

]]
. (16)

Minimising (16) leads to the following Kuhn-Tucker conditions:

pHH − λ∆pH ≥ 0 and wH ≥ 0 and wH
[
pHH − λ∆pH

]
= 0

(
1− pHH

)
+ λ∆pH ≥ 0 and wL ≥ 0 and wL

[(
1− pHH

)
+ λ∆pH

]
= 0

and
[
c̄−∆pH

[
wH − wL

]] ≤ 0 and λ ≥ 0 and λ
[
c̄−∆pH

[
wH − wL

]]
= 0.

These Kuhn-Tucker conditions imply that the unique solution is equal to wL = 0,

wH = c̄
∆pH , and λ = pHH

∆pH . The results of Proposition 2 follow immediately.

¤
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D Appendix: Proof Of Lemma 2

Proof:

Step 1: Consider the matrix:

H L
H (x1, y1) (x2, y2)
L (x3, y3) (x4, y4)

The problem is to maximize the following expression, by choice of (xi, yi) pairs:

I1 + I2 = pHH ((x1 − x3) + (y1 − y2)) +
(
1− pHH

)
((x2 − x4) + (y3 − y4)) .

subject to the constraint that (xi, yi) ∈ {(ρ̂,−ρ′); (ρ̃, ρ̃); (−ρ′, ρ̂)}. Notice that we
must have (x2, y2) = (ρ̂,−ρ′) and (x3, y3) = (−ρ′, ρ̂) since I1 + I2 is increasing in
x2, y3 and decreasing in x3, y2.

Hence the rank payoff matrix which maximizes I1 + I2 is of the form:

H L
H (x1, y1) (ρ̂,−ρ′)
L (−ρ′, ρ̂) (x4, y4)

Step 2: The various possibilities given Step 1 above are the following (we can
exchange the roles of the two players and get the same sum of incentives):

(A) (x1, y1) = (ρ̂,−ρ′), (x4, y4) = (−ρ′, ρ̂), with I1 + I2 = ρ̂ + ρ′

(B) (x1, y1) = (ρ̂,−ρ′), (x4, y4) = (ρ̃, ρ̃) with I1+I2 = pHH(ρ̂+ρ′)+2(1−pHH)(ρ̂−ρ̃).

(C) (x1, y1) = (ρ̃, ρ̃), (x4, y4) = (−ρ′, ρ̂), with I1+I2 = 2pHH(ρ̃+ρ′)+(1−pHH)(ρ̂+ρ′).

(D) (x1, y1) = (ρ̃, ρ̃) (x4, y4) = (ρ̃, ρ̃) with I1 +I2 = 2pHH(ρ̃+ρ′)+2(1−pHH)(ρ̂− ρ̃).

It is easy to see that the matrix which maximizes I1 + I2 is (B) when preferences
are convex and (C) when preferences are concave.

¤
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E Appendix: Proof of Theorem 2

Proof: Suppose that preferences are convex. It is clear that (i) implements the
rank payoff matrix (B), since

wHH
1 > wHH

2 = 0; 0 = wHL
2 < wHL

1 ; 0 = wLH
1 < wLH

2 ; wLL
1 = wLL

2 = 0.

This implies 0 = E(wL
1 ) = E(wL

2 ). Also, with the wages given, we need to show
that the incentive compatibility constraints are satisfied: Indeed, both incentive
constraints are binding given that E(wL

i ) = 0 and E(wH
i ) = c

∆pH − βIi for i = 1, 2.

Since I1 > I2 this implies that E(wH
1 ) < E(wH

2 ). This is satisfied by choosing wLH
2

to satisfy
(
1− pHH

)
wLH

2 = E(wH
2 ). The limited liability constraints for worker 1

are satisfied if c
∆pH ≥ β(pHH(ρ̂ + ρ′) + (1− pHH)(ρ̂− ρ̃)), but this is the case since

we assumed that c
∆pH > β (ρ̂ + ρ′). Since E(wH

2 ) > E(wH
1 ) > 0 the limited liability

constraints for worker 2 are satisfied, too. It remains to check that the participation
constraints are satisfied.

We need the following condition for the participation constraint (low effort) for
worker 1 to hold:

pLHE(wH
1 ) +

(
1− pLH

)
E(wL

1 ) + β
[
pLH (ρ̂) +

(
1− pLH

) (
pHH(−ρ′) + (1− pHH)(ρ̃)

) ]
≥ 0, (17)

Since pLHE(wH
1 ) +

(
1− pLH

)
E(wL

1 ) > 0 it is sufficient to check that

pLH (ρ̂) +
(
1− pLH

) (
pHH(−ρ′) + (1− pHH)(ρ̃)

) ≥ 0.

Similarly for worker 2 we need:

pLHE(wH
2 )+

(
1− pLH

)
E(wL

2 )+β
[
pHH (−ρ′) +

(
1− pHH

) (
pLH(ρ̂) + (1− pLH)(ρ̃)

)] ≥ 0,
(18)

Both of these are satisfied given our assumptions on ρ′ being sufficiently small. Note,
that if ρ′ is sufficiently small such that

pHH (−ρ′) +
(
1− pHH

) (
pLH(ρ̂) + (1− pLH)(ρ̃)

) ≥ 0,

then worker 2’s and worker 1’s participation constraint are both fulfilled. In partic-
ular, if ρ′ = 0 the participation constraints are always satisfied.
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(ii)

Suppose that preferences are concave. It is clear that (ii) implements the rank payoff
matrix (C), since

w = wHH
1 = wHH

2 ; 0 = wHL
2 < wHL

1 ; 0 = wLH
1 < wLH

2 ; 0 = wLL
1 < wLL

2 = ε.

This implies that 0 = E(wL
1 ) < E(wL

2 ) = (1 − pHH)ε. Also, with the wages given,
we need to show that the incentive compatibility constraints are satisfied: Note that
E(wL

1 ) = 0, hence worker 1’s incentive constraint is binding. Since E(wL
2 ) = ε,

worker 2’s incentive constraint is also binding. Since I1 > I2 this implies that
E(wH

1 ) < E(wH
2 ). This is satisfied by the choice of wLH

2 , such that E(wH
2 ) =(

pHHw + (1− pHH)wLH
2

)
.

The limited liability constraints are satisfied if c
∆pH ≥ β(pHH(ρ̃+ρ′)+(1−pHH)(ρ̂+

ρ′)), but this is the case since we assumed that c
∆pH > β (ρ̂ + ρ′). Since E(wH

2 ) >

E(wH
1 ) > 0 the limited liability constraints for worker 2 are satisfied. It remains to

check that the participation constraints are satisfied.

We need the following condition for the participation constraint for worker 1 to hold:

pLHE(wH
1 )+

(
1− pLH

)
E(wL

1 )+β
[
pLH

(
pHH ρ̃ + (1− pHH)ρ̂

)
+

(
1− pLH

)
(−ρ′)

]
≥ 0,

(19)

Since pLHE(wH
1 ) +

(
1− pLH

)
E(wL

1 ) > 0 it is sufficient to check that

pLH
(
pHH ρ̃ +

(
1− pHH

)
ρ̂
)

+
(
1− pLH

)
(−ρ′) ≥ 0,

Similarly for worker 2 we need:

pLHE(wH
2 ) +

(
1− pLH

)
E(wL

2 ) + β
[
pLH

(
pHH ρ̃ +

(
1− pHH

)
ρ̂
)

+

(
1− pLH

) (
pHH(−ρ′) + (1− pHH)(ρ̂)

) ]
≥ 0, (20)

Both of these are satisfied given our assumptions on ρ′ being sufficiently small. Note,
that if ρ′ is sufficiently small such that

pLH
(
pHH ρ̃ +

(
1− pHH

)
ρ̂
)

+
(
1− pLH

)
(−ρ′) ≥ 0,

then worker 1’s and worker 2’s participation constraint are both fulfilled. In partic-
ular, if ρ′ = 0 the participation constraints are always satisfied.
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