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Abstract 

This paper is concerned with the development of a scalable high order finite element type solver for the 
numerical modeling of light interaction with nanometer scale structures. From the mathematical modeling 
point of view, one has to deal with the differential system of Maxwell equations in the time domain, 
coupled to an appropriate differential model of the behavior of the underlying material (which can be a 
dielectric and/or a metal) at optical frequencies. For the numerical solution of the resulting system of 
differential equations, we have designed a high order DGTD (Discontinuous Galerkin Time-Domain) solver 
that has been adapted to hybrid MIMD/SIMD computing. Here we discuss about this later aspect and 
report on preliminary performance results on the Curie system of the PRACE research infrastructure.  
 

1. Scientific and technological context 
 
Nanostructuring of materials has opened up a number of new possibilities for manipulating and 
enhancing light-matter interactions, thereby improving fundamental device properties. Low-dimensional 
semiconductors, like quantum dots, enable one to catch the electrons and control the electronic properties 
of a material, while photonic crystal structures allow synthesizing the electromagnetic properties. These 
technologies may, e.g., be employed to make smaller and better lasers, sources that generate only one 
photon at a time for applications in quantum information technology, or miniature sensors with high 
sensitivity. The incorporation of metallic structures into the medium adds further possibilities for 
manipulating the propagation of electromagnetic waves. In particular, this allows subwavelength 
localization of the electromagnetic field and, by subwavelength structuring of the material, novel effects 
like negative refraction, e.g. enabling super lenses, may be realized. Nanophotonics is the field of science 
and technology aimed at establishing and using the peculiar properties of light and light-matter 
interaction in various nanostructures. Nanophotonics includes all the phenomena that are used in optical 
sciences for the development of optical devices. Therefore, nanophotonics finds numerous applications 
such as in optical microscopy, the design of optical switches and electromagnetic chips circuits, transistor 
filaments, etc. Because of its numerous scientific and technological applications (e.g. in relation to 
telecommunication, energy production and biomedicine), nanophotonics represents an active field of 
research increasingly relying on numerical modeling beside experimental studies. 

* Corresponding author. E-mail address: Stephane.Lanteri@inria.fr 
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Plasmonics [1] is a related field to nanophotonics. Metalic nanostructures whose optical scattering is 
dominated by the response of the conduction electrons are considered as plasmomic media. If the 
structure presents an interface with e.g. a dielectric with a positive permittivity, collective oscillations of 
surface electrons create surface-plasmons-polaritons (SPPs) that propagate along the interface. SPPs are 
guided along metal-dielectric interfaces much in the same way light can be guided by an optical fiber, with 
the unique characteristic of subwavelength-scale confinement perpendicular to the interface. 
Nanofabricated systems that exploit SPPs offer fascinating opportunities for crafting and controlling the 
propagation of light in matter. In particular, SPPs can be used to channel light efficiently into nanometer-
scale volumes, leading to direct modification of mode dispersion properties (substantially shrinking the 
wavelength of light and the speed of light pulses for example), as well as huge field enhancements suitable 
for enabling strong interactions with nonlinear materials. The resulting enhanced sensitivity of light to 
external parameters (for example, an applied electric field or the dielectric constant of an adsorbed 
molecular layer) shows great promise for applications in sensing and switching. In particular, very 
promising applications are foreseen in the medical domain [2]-[3]. 

2. Mathematical and numerical modeling 
 
In the computational nanophotonics literature, a large number of studies are devoted to Finite Difference 
Time-Domain (FDTD) type discretization methods based on Yee’s scheme [4]-[5]. As a matter of fact, the 
FDTD method is a widely used approach for solving the systems of partial differential equations modeling 
nanophotonic applications. In this method, the whole computational domain is discretized using a 
structured (Cartesian) grid. However, in spite of its flexibility and second-order accuracy in a 
homogeneous medium, the Yee scheme suffers from serious accuracy degradation when used to model 
curved objects or when treating material interfaces. During the last twenty years, numerical methods 
formulated on unstructured meshes have drawn a lot of attention in computational electromagnetics with 
the aim of dealing with irregularly shaped structures and heterogeneous media.  In particular, the 
discontinuous Galerkin time-domain (DGTD) method has progressively emerged as a viable alternative to 
well established finite-difference time-domain (FDTD) and finite-element time-domain (FETD) methods 
for the numerical simulation of electromagnetic wave propagation problems in the time-domain. In this 
work, we are concerned with the design of such a DGTD method for nanophotonics.  

2.1 Generalities about the DGTD method 
 
The DGTD method can be considered as a finite element method where the continuity constraint at an 
element interface is released.  While it keeps almost all the advantages of the finite element method (large 
spectrum of applications, complex geometries, etc.), the DGTD method has other nice properties, which 
explain the renewed interest it gains in various domains in scientific computing: 
 It is naturally adapted to a high order approximation of the unknown field. Moreover, one may 

increase the degree of the approximation in the whole mesh as easily as for spectral methods but, 
with a DGTD method, this can also be done locally i.e. at the mesh cell level. In most cases, the 
approximation relies on a polynomial interpolation method but the method also offers the 
flexibility of applying local approximation strategies that best fit to the intrinsic features of the 
modeled physical phenomena. 

 When the discretization in space is coupled to an explicit time integration method, the DG method 
leads to a block diagonal mass matrix independently of the form of the local approximation (e.g the 
type of polynomial interpolation). This is a striking difference with classical, continuous FETD 
formulations. Moreover, the mass matrix is diagonal if an orthogonal basis is chosen. 

 It easily handles complex meshes. The grid may be a classical conforming finite element mesh, a 
non-conforming one or even a hybrid mesh made of various elements (tetrahedra, prisms, 
hexahedra, etc.). The DGTD method has been proven to work well with highly locally refined 
meshes. This property makes the DGTD method more suitable to the design of a hp-adaptive 
solution strategy (i.e. where the characteristic mesh size h and the interpolation degree p changes 
locally wherever it is needed). 

 It is flexible with regards to the choice of the time stepping scheme. One may combine the 
discontinuous Galerkin spatial discretization with any global or local explicit time integration 
scheme, or even implicit, provided the resulting scheme is stable. 

 It is naturally adapted to parallel computing. As long as an explicit time integration scheme is used, 
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the DGTD method is easily parallelized. Moreover, the compact nature of method is in favor of high 
computation to communication ratio especially when the interpolation order is increased. 

 
As in a classical finite element framework, a discontinuous Galerkin formulation relies on a weak form of 
the continuous problem at hand. However, due to the discontinuity of the global approximation, this 
variational formulation has to be defined at the element level. Then, a degree of freedom in the design of a 
discontinuous Galerkin scheme stems from the approximation of the boundary integral term resulting 
from the application of an integration by parts to the element-wise variational form. In the spirit of finite 
volume methods, the approximation of this boundary integral term calls for a numerical flux function, 
which can be based on either a centered scheme or an upwind scheme, or a blend of these two schemes. 
 
In the early 2000’s, DGTD methods for time-domain electromagnetics have been first proposed by mainly 
three groups of researchers.  One of the most significant contributions is due to Hesthaven and Warburton 
[6] in the form of a high order nodal DGTD method formulated on unstructured simplicial meshes.  The 
proposed formulation is based on an upwind numerical flux, nodal basis expansions on a triangle (2D 
case) and a tetrahedron (3D case) and a Runge-Kutta time stepping scheme. In [7], Kakbian et al. describe 
a rather similar approach. More precisely, the authors develop a parallel, unstructured, high order DGTD 
method based on simple monomial polynomials for spatial discretization, an upwind numerical flux and a 
fourth-order Runge-Kutta scheme for time marching. The method has been implemented with hexahedral 
and tetrahedral meshes. Finally, a high order nodal DGTD method formulated on unstructured simplicial 
meshes has also been proposed in the same time frame by Fezoui et al. [8]. However, contrary to the 
DGTD methods discussed in [6] and [7], the method proposed in [8] is non-dissipative thanks to a 
combination of a centered numerical flux with a second-order leapfrog time stepping scheme.  

2.2 A non-dissipative DGDT method for nanophotonics/plasmonics 
 
Numerical modeling of electromagnetic wave propagation in interaction with metallic nanostructures at 
optical frequencies requires solving the system of Maxwell equations coupled to appropriate models of 
physical dispersion in the metal. In general, the Drude and Drude-Lorentz models are adopted although 
there are practical situations for which these models can fail to describe correctly the behavior of some 
materials (e.g. transition metals [9]-[10] and graphene [11]). Furthermore at some scales, non-local effects 
starts to play an important role [12]. With all their features (as described above), DGTD methods seem to 
be well suited to the numerical simulation of complex time-domain electromagnetic wave propagation 
problems. As a matter of fact, the DGTD method for solving the time domain Maxwell equations is 
increasingly adopted by several physics communities. Concerning nanophotonics, unstructured mesh 
based DGTD methods have been developed and have demonstrated their potentialities for being 
considered as viable alternatives to the FDTD method [13]-[14]-[15]-[16]-[17]-[18]-[19]. Noteworthy, all 
these studies adopt a diffusive DGTD formulation based on upwind numerical fluxes.    
 
Towards the general aim of being able to consider concrete physical situations relevant to nanophotonics, 
one has to take into account in the numerical treatment, a better description of the propagation of waves 
in realistic media. The physical phenomenon that one has to consider in the first instance here is 
dispersion.  In the presence of an electric field the medium cannot react instantaneously and thus presents 
an electric polarization of the molecules or electrons that itself influences the electric displacement. In the 
case of a linear homogeneous isotropic media, there is a linear relation between the applied electric field 
and the polarization. However, above some range of frequencies (depending on the considered material), 
the dispersion phenomenon cannot be neglected and the relation between the polarization and the 
applied electric field becomes complex. In practice, this is modeled by a frequency dependent complex 
permittivity. Several such models for the characterization of the permittivity exist; they are established by 
considering the equation of motion of the electrons in the medium and making some simplifications. 
There are mainly two ways of handling the frequency dependent permittivity in the framework of time-
domain simulations, both starting from models defined in the frequency domain. A first approach is to 
introduce the polarization vector as an unknown field through an auxiliary differential equation, which is 
derived from the original model in the frequency domain by means of an inverse Fourier transform.  This 
is called the Direct Method or Auxiliary Differential Equation (ADE) formulation. Let us note that while the 
new equations can be easily added to any time-domain Maxwell solver, the resulting set of differential 
equations is tied to the particular choice of dispersive model and will never act as a black box able to deal 
with other models. In the second approach, the electric field displacement is computed from the electric 
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field through a time convolution integral and a given expression of the permittivity which formulation can 
be changed independently of the rest of the solver. This is called the Recursive Convolution Method (RCM). 
 
We have recently adapted the DGTD method initially introduced in [8] to deal with various dispersion 
models.  An ADE formulation has been adopted.  We first considered the case of Drude and Drude-Lorentz 
models and, further extend the proposed ADE-based DGTD method to be able to deal with a generalized 
dispersion model in which we make use of a Padé approximant to fit an experimental permittivity 
function. In this paper, we focus on the case of the Drude model. The latter is associated to a particularly 
simple theory that successfully accounts for the optical and thermal properties of some metals. In this 
model, the metal is considered as a static lattice of positive ions immersed in a free electrons gas. Those 
electrons are considered to be the valence electrons of each metallic atom that got delocalized when put 
into contact with the potential produced by the rest of the lattice atoms. The DGTD method proposed in 
[20] relies on a compact stencil high order interpolation of the electromagnetic field components within 
each cell of an unstructured tetrahedral mesh. This piecewise polynomial numerical approximation is 
allowed to be discontinuous from one mesh cell to another, and the consistency of the global 
approximation is obtained thanks to the definition of appropriate numerical traces of the fields on a face 
shared by two neighboring cells. Time integration is achieved using an explicit scheme and no global mass 
matrix inversion is required to advance the solution at each time step. As a result, this DGTD solver is 
particularly well adapted to parallel computing. The resulting ADE-based DGTD method is detailed in [20] 
and is part of a larger initiative aiming at the development of a software suite dedicated to 
nanophotonics/nanoplasmonics. 

3. DGTD code workflow and parallelization 
 
The DGTD method outlined in section 2 for solving the system of 3d time-domain Maxwell equations 
coupled to a dispersion model for a metal such as the Drude model (we refer below to the resulting 
coupled system as the Maxwell-Drude system) has been implemented in simulation software programmed 
in Fortran 95. The DGTD method is formulated on an unstructured tetrahedral mesh. Within each element 
of the mesh, the components of the electromagnetic field are approximated by a arbitrary high order 
nodal polynomial interpolation method. The unknowns of the problem are 3-component vectors that 
depend on the spatial coordinate vector x = (x,y,z) and the time t: the electric field E, the magnetic field H 
and the electric polarization vector P.  At the discrete level, the objective is to solve the Maxwell-Drude 
system for Eh, Hh and Ph (here h denotes the spatial discretization parameter) at a set of nodal points 
associated to Lagrange type basis functions defined on simplicial elements. Note that, contrary to the 
FDTD method, the unknown components of these three vectors are collocated in the spatial grid. As it is 
usually done in standard finite element approaches, elemental terms appearing in the variational 
formulation of the problem are evaluated and stored on a reference tetrahedron and then transformed to 
the physical tetrahedra using a bijective affine map (the underlying spatial grid is assumed to rely on 
affine tetrahedra only). The spatial interpolation order within each element of the mesh is arbitrary (but 
in the current implementation of the DGTD solver the spatial interpolation order is uniform i.e. is the same 
for all the tetrahedra of the mesh). The local (i.e. element-wise) number of degrees of freedom is equal to 
9np where np is the number of basis functions for a pth order interpolation. For p = 1,2,3,4,5 the number np 
is respectively equal to (p+1)(p+2)(p+3)/6. 
 
From the algorithmic point of view, the DGTD method mainly involves matrix-vector product operations 
that are performed at the tetrahedron level, involving a set of local matrices corresponding to integral 
terms of the weak formulation of the method. Indeed, two types of integral terms latter appear in the 
weak formulation: 

 Volume integral terms i.e. whose support is a tetrahedron: one of this term leads to the definition of 
a local mass matrix, while the other term corresponds to a local pseudo-stiffness matrix. These are 
square matrices. 

 Surface (or boundary) integral terms i.e. whose support is the boundary of a tetrahedron: this term 
couples the local solution computed in a tetrahedron to its face-wise neighbors. This integral term 
leads to the definition of the so-called local interface matrix. These are square matrices if the 
interpolation order is the same for each tetrahedron (and thus, each face of a tetrahedron). 
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The sizes of these local matrices, which are dense matrices, depend on the interpolation order of the 
components of the physical fields in a tetrahedron. For instance, the mass and pseudo-stiffness matrices 
are of size np x np. 

 
The coarse grain parallelization of the DGTD code is based on a SPMD approach. It relies on a partitioning 
of the underlying tetrahedral mesh (this step is performed using a separate toolkit specifically designed 
for that purpose and making use of existing graph partitioning tools such as MeTiS or PT-Scotch). Then, in 
this SPMD version, each submesh of the partition is treated by one single MPI process.  
 
The resulting DGTD simulation software is structured into 3 phases (see Fig. 1):  

1. A pre-preprocessing phase, which essentially consists in operations, related to the definition of 
the problem under consideration (reading of the computational mesh and simulation parameters, 
construction of geometrical entities related data structures, definition of the initial distribution of 
the electromagnetic field and source terms, etc.). In this pre-processing phase, communication 
lists – which are the index lists of faces that connect two neighboring submeshes - are built. 

2. The main time-stepping loop, which represents the core processing part of the unsteady 
simulation. The selected time-stepping scheme is fully explicit so there is no matrix inversion step 
(or linear system solve), because of the discontinuous nature of the approximation in space (i.e. 
the discontinuous Galerkin method leads to block diagonal mass matrices).  

3. A post-processing phase, which is concerned with all the operations, related to the treatment of 
the numerical solution in view of further visualization and other operations. 
 

The relative proportion in terms of CPU time of these 3 steps depends on the number of iterations of the 
time advancing procedure. Typically in the initial setting of the problem, the time-stepping loop takes 
about 90% of the total time whereas the pre and post processing phases share the remaining 10%. 
 
 

 
 

Fig.1: Workflow of the DGTD simulation. 
 

The main time stepping loop essentially consists in four phases: 
1. Update the electric field Eh at time station (n+1)Dt form the known fields Eh at time station nDt and 

magnetic field Hh at time station (n+1/2)Dt. 

2. Update the electric polarization vector Ph at time station (n+1)Dt form the known polarization 
vector Ph at time station nDt and field electric Eh at time stations nDt and (n+1)Dt. 

3. Update the electric field Hh at time station (n+3/2)Dt form the known fields magnetic field Hh at 
time station (n+1/2)Dt and Eh at time station (n+1)Dt. 

4. Perform auxiliary calculations: compute the DFT (discrete Fourier transform) of the Eh and Hh fields 
on the fly, update the imposed incident field (for test problems for which this field is required), 
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update the imposed source current density (for test problems for which this current density is 
required) and perform some edition and I/O operations of intermediate results. 

The first and third phases correspond to two separate routines whose structures are very similar:  
1. Definition of the fictious fields associated to the boundary conditions on the physical boundaries 

faces (purely local operation). 

2. Definition of the fictious fields associated to the artificial boundary faces (requires point-to-point 
communication operations). 

3. Contribution of the boundary integral over the face of a tetrahedron to the flux balance of this 
tetrahedron, for each face of the tetrahedron.  

4. Contribution of the volume integral over a tetrahedron for the curl operator to the flux balance of 
this tetrahedron. 

5. Update of the field in a tetrahedron using the flux balance of this tetrahedron. 

Steps 1 and 2 allow gathering the data necessary to perform step 3 in a purely local way. Steps 4 and 5 are 
purely local i.e. do not require to access the fields of neighboring tetrahedra of a given tetrahedron. Step 2 
involves matrix-vector product operations with the interface matrix, while in step 4 matrix-vector product 
operations are performed with the mass and pseudo-stiffness matrices. Note that step 3, 4, 5 are based on 
a loop through the cell of the local submesh. 
 
Because of the use of an explicit time stepping method and the local nature of the formulation, the time 
advancing of the components of the Eh and Hh fields at the degrees of freedom of one tetrahedron only 
depends of the local values of these fields, and on the field values at the degrees of freedom localized on 
the faces shared by the tetrahedron and its direct neighboring tetrahedra. Therefore, at each iteration of 
the time stepping phase, it is necessary to send and receive values of the components of the Eh and Hh 
fields for the degrees of freedom of the set of faces lying on an interface (triangular surface) between 
neighboring submeshes. For both fields (i.e. once in each of the ELECTR and MAGNET routines), this 
requires point-to-point communication operations between 2 adjacent submeshes. The size of the MPI 
buffers depend on the number of degrees of freedom on one face and the length of the communication list, 
i.e. the number of facets that connect submeshes to each other. Note that we are using an updating scheme 
based on non-blocking operations (both interface updating strategies will be available and the selection 
will be possible through a single flag set in the pre-processing phase). Note that the space-time evolution 
of the electric polarization in the Maxwell-Drude equations is modeled by a system of ordinary differential 
equations. Therefore, the time advancing of Ph at the degrees of freedom of one tetrahedron only depends 
of the local values of Ph. Moreover, at each time step, if required, the discrete electromagnetic energy is 
computed in every submesh and globally reduced through a global communication operation. 

4. Scalability evaluation 
 
We limited ourselves to a parallel performance evaluation in terms of strong scalability analysis. For that 
purpose, we selected a use case typical of optical guiding applications. A Y-shaped waveguide is 
considered which consists in nanosphere embedded in vacuum. The computational domain is shown of 
Fig. 2 below. The constructed tetrahedral mesh consists of 520,704 vertices and 2,988,103 elements.  The 
high order discontinuous finite element method designed for the solution of the system of time-domain 
Maxwell equations coupled to a Drude model for the dispersion of noble metals at optical frequencies is 
formulated on a tetrahedral mesh. Within each element (tetrahedron) of the mesh, the components of the 
electric and magnetic field, as well as the component of the electric polarization, are approximated by a 
nodal (Lagrange type) interpolation method. The unknowns of the problem are thus given by the values of 
these physical quantities at the nodes of the polynomial interpolation. For instance, for a linear (i.e. P1) 
interpolation of the fields, the number of DoFs (Degrees of Freedoms) within a tetrahedron is 6x4 if the 
element is located in vacuum, and 9x4 if the element is located in the metallic structure. For a quadratic 
(i.e. P2) interpolation, the corresponding figures are 6x10 and 9x10, and so on for higher interpolation 
degrees. Then the global number of DoFs is the sum of these figures of the elements of the given mesh. 
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Fig.2: View of the computational domain for the Y-shaped waveguide.  

 
 

 
 

Fig. 3: Contour lines of the amplitude of the discrete Fourier transform of the electric field. 

The strong scalability analysis has been conducted on the thin nodes of the Curie system. Each run has 
been made considering 8 OpenMP threads per socket and 2 sockets per node. Plots of the parallel speedup 
of the DGTD solver with P2 (top), P3 (middle) and P4 (bottom) interpolation are shown on Fig. 4. The 
maximum number of cores that has been exploited is 8192 for a simulation based on the DGTD-P4 method. 
A quasi-ideal scaling is obtained up to 1024 cores. Achieving a better parallel speedup for a number of 
cores greater than 1024 would probably require a finer tetrahedral mesh (with several million mesh 
vertices).  Simulation times as well as speedup values are summarized in Tab. 1-3 below. 
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Fig.4:  Strong scalability analysis of the DGTD solver with P2 (top), P3 (middle) and P4 (bottom) interpolation. 
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Number of cores Wall clock time Speed-up vs. the 
first one 

Number of 
Nodes 

Number of 
process 

(MPI+OpenMP) 
128 4066 sec 1.00 8 128 
256 1972 sec 2.00 16 256 
512 952 sec 4.05 32 512 

1024 462 sec 8.40 64 1024 
Tab. 1:  Strong scaling of the DGTD solver with P2  interpolation (on each node, we spawn 2 MPI process and 8 

OpenMP threads per MPI process). 
 
 

Number of cores Wall clock time Speed-up vs. the 
first one 

Number of 
Nodes 

Number of 
process 

(MPI+OpenMP) 
512 2580 sec 1.00 32 512 

1024 1271 sec 2.00 64 1024 
2048 646 sec 4.00 128 2048 

Tab. 2: Strong scaling of the DGTD solver with P3  interpolation (on each node, we spawn 2 MPI process and 8 OpenMP 
threads per MPI process). 

 
 

Number of cores Wall clock time Speed-up vs. the 
first one 

Number of 
Nodes 

Number of 
process 

(MPI+OpenMP) 
2048 1714 sec 1.00 128 256 
4096 897 sec 1.90 256 512 
8192 529 sec 3.25 512 1024 

Tab.  3: Strong scaling of the DGTD solver with P4  interpolation (on each node, we spawn 2 MPI process and 8 
OpenMP threads per MPI process). 

 
 
Finally, the computational performances of the DGTD solver for the considered problem size are reported 
in Tab. 4 below. As expected, the performances increase with the interpolation degree in the DGTD 
method. Indeed, when the interpolation degree is raised, the amount of local (i.e. at the element level) 
operations increases accordingly (recall that these local operations take the form of dense matrix/matrix 
and matrix/vector products). 
 

Interpolation 
method 

# MPI processes # OMP threads Wall clock time Gflop/s 

P1 16 8 619 sec 217 
P2  64 8 844 sec 1378 
P3 64 8 2385 sec 1844 
P4 256 8 1677 sec 8872 

 
Interpolation 

method 
Gflop/s per core % peak 

(peak = 21.6 
Gflop/s) 

P1 1.69 8 % 
P2  2.69 13 % 
P3 3.60 17 % 
P4 4.33 20 % 

Tab.  4: Computational performances of the DGTD solver.
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