
HAL Id: hal-01097401
https://hal.archives-ouvertes.fr/hal-01097401v2

Submitted on 14 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

A calculus of constructions with explicit subtyping
Ali Assaf

To cite this version:
Ali Assaf. A calculus of constructions with explicit subtyping. 20th International Conference on
Types for Proofs and Programs (TYPES 2014), May 2014, Institut Henri Poincaré, Paris, France.
�hal-01097401v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49437546?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01097401v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Calculus of Constructions with Explicit
Subtyping
Ali Assaf1,2

1 INRIA Paris-Rocquencourt, Paris, France
2 École Polytechnique, Palaiseau, France

Abstract
The calculus of constructions can be extended with an infinite hierarchy of universes and cumu-
lative subtyping. Subtyping is usually left implicit in the typing rules. We present an alternative
version of the calculus of constructions where subtyping is explicit. We avoid problems related
to coercions and dependent types by using the Tarski style of universes and by adding equations
to reflect equality.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases type theory, calculus of constructions, universes, cumulativity, subtyping

Digital Object Identifier 10.4230/LIPIcs.TYPES.2014.27

1 Introduction

The predicative calculus of inductive constructions (PCIC), the theory behind the Coq proof
system [20], contains an infinite hierarchy of predicative universes Type0 : Type1 : Type2 : . . .
and an impredicative universe Prop : Type1 for propositions, together with a cumulativity
relation:

Prop ⊆ Type0 ⊆ Type1 ⊆ Type2 ⊆

Cumulativity gives rise to an asymmetric subtyping relation ≤ which is used in the subsump-
tion rule:

Γ `M : A A ≤ B
Γ `M : B .

Subtyping in Coq is implicit and is handled by the kernel. Type uniqueness does not hold,
as a term can have many non-equivalent types, but a notion of minimal type can be defined.
While subject reduction does hold, the minimal type of a term is not preserved during
reduction.

The goal of this paper is to investigate whether it is possible to make subtyping explicit,
by inserting explicit coercions such as

↑0: Type0 → Type1

and rely on a kernel that uses only the classic conversion rule:

Γ `M : A A ≡ B
Γ `M : B .

In this setting, a well-typed term would have a unique type up to equivalence and the type
would be preserved during reduction.

© Ali Assaf;
licensed under Creative Commons License CC-BY

20th International Conference on Types for Proofs and Programs (TYPES 2014).
Editors: Hugo Herbelin, Pierre Letouzey, and Matthieu Sozeau; pp. 27–46

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TYPES.2014.27
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

28 A Calculus of Constructions with Explicit Subtyping

Coercions and dependent types

In the presence of dependent types, coercions can interfere with type checking because
↑0 (A) 6≡ A. As a result, terms that were well-typed in a system with implicit subtyping
become ill-typed after introducing explicit coercions.

I Example 1.1. In the context

Γ = (a : Type0, b : Type0, f : a→ b, g : Π c :Type1. c) ,

the term f (g a) is well-typed and has type b:

Γ ` f (g a) : b .

In a system with explicit subtyping, before inserting coercions, this term is not well-typed
because a has type Type0 while g has type Π c :Type1. c and Type0 6≡ Type1. With an explicit
coercion ↑0: Type0 → Type1, the term g (↑0 (a)) has type ↑0 (a) but f (g (↑0 (a))) is not
well-typed because f has type a→ b and ↑0 (a) 6≡ a.

The easiest way to circumvent this problem is to add a new equation

↑0 (A) ≡ A.

In other words, we erase the coercions to check if two terms are equivalent. While this
solution is straightforward, it unfortunately means that we use ill-typed terms. In a system
where equivalence is defined by reduction rules, this solution amounts to adding a new
reduction rule ↑0 (A) −→ A, which would completely break subject reduction. A calculus of
constructions with explicit subtyping should therefore avoid these rules. The solution to this
problem is to use universes à la Tarski.

Russell vs. Tarski

There are two ways of presenting universes: the Russell style and the Tarski style. The first
is implicit and is used in the calculus of constructions and in pure type systems [1]. The
second is explicit and is mainly used in Martin-Löf’s intuitionistic type theory [15]. While
the Tarski style is usually regarded as the more fundamental of the two, the Russell style is
often used as a practical informal version of the other.

In the Tarski style, we make the distinction between terms and types. Every sort
Typei has a corresponding universe symbol Ui and a decoding function Ti. If A is a term
of type Ui, it is not itself a type but a code that represents a type, and Ti (A) is its
corresponding type. Types do not have a type and there is a separate judgment for well-
formed types. For example, πi x : A.B is the term of type Ui that represent the product type
Ti (πi x : A.B) ≡ Πx :Ti (A) . Ti (B). In this setting, the context Γ of example 1.1 becomes

Γ = (a : U0, b : U0, f : T0 (a)→ T0 (b) , g : Π a :U1. T1 (a))

and with the coercion ↑0: U0 → U1, the term g ↑0 (a) has type T1 (↑0 (a)):

Γ ` g (↑0 (a)) : T1 (↑0 (a)) .

By introducing the following equation at the level of types:

T1 (↑0 (a)) ≡ T0 (a) ,

A. Assaf 29

we get

Γ ` g (↑0 (a)) : T0 (a)

and therefore

Γ ` f (g (↑0 (a))) : T0 (b) .

Notice that the equation is well-formed because both members are types, not terms, so they
only need to both be well-formed.

Using Tarski-style universes allows for a finer and cleaner distinction between terms and
types. Aside from solving the problem above, it is better suited for studying the metatheory,
e.g. for building models, justifying proof irrelevance and extraction, etc. where the implicit
cumulativity would be a pain. It is often considered as the “fundamental” formalization of
universes that should be taken as reference, while the Russell style is more convenient to use
in practice, e.g. in proof assistants like Coq and Agda.

However, are the two styles equivalent? This question comes up frequently, for example
in recent work homotopy type theory [17]. While the question has already been partially
answered for intuitionistic type theory, it has never been studied for the calculus of construc-
tions before. The answer turns out to be no, the two styles are not always equivalent. Luo [14]
already showed that there is some discrepancy between them. Example 1.1 confirms this idea
and suggests that explicit subtyping in the Russell style is not possible. More importantly,
depending on the system, the Russell style can sometimes be strictly more expressive than
the Tarski style because the equality of types is not reflected at the level of terms.

This discrepancy can be adressed in one of 3 ways:
either discard the Tarski style and justify taking the Russell style as reference,
or keep things as they are and argue that the difference is acceptable,
or find a formulation where the two styles are equivalent.

In this paper, we go for the last option by presenting a Tarski version of the cumulative
calculus of constructions that is equivalent to the Russell version. The key is to add enough
equations to reflect the equality of types at the level of terms.

Reflecting equalities

Within the Tarski style, there are two main ways of introducing universes known as universes
as full reflections and universes as uniform constructions [16]. The first method requires
reflecting equalities, meaning that codes corresponding to equivalent types are equivalent:
if Ti (A) ≡ Ti (B) then A ≡ B. In order to achieve that, additional equations must be
introduced such as

↑0 (π0 x : A.B) ≡ π1 x : (↑0 (A)) . ↑0 (B) . (1)

The second method drops that principle. Instead, ↑0 is used as a constructor to inject types
from U0 into U1. In practice, the usefulness of reflection has not been shown until now and
uniform constructions have been preferred [13, 14, 16].

While reflecting equality can be hard to achieve, we argue here that, on the contrary, it is
essential to be equivalent to the Russell style. First, we note that a term can have multiple
translations with the following example.

I Example 1.2. With Russell-style universes, in the context Γ = (a : Type0, b : Type0) , the
term M = Πx :a. b has type Type1:

Γ `⊂ Πx :a. b : Type1.

TYPES’14

30 A Calculus of Constructions with Explicit Subtyping

With Tarski-style universes, this term can be translated in two different ways as M1 =
↑0 (π0 x : a.b) and M2 = π1 x : ↑0 (a) . ↑0 (b):

Γ `↑ ↑0 (π0 x : a.b) : U1, Γ `↑ π1 x : ↑0 (a) . ↑0 (b) : U1.

When M1 and M2 are used as types, this is not a problem because T1 (M1) ≡ T1 (M2) ≡
Πx :T0 (a) . T0 (b). The problem appears when proving higher-order statements about such
terms: if p is an abstract predicate of type Type1 → Type1 then T1 (pM1) 6≡ T1 (pM2). As a
result, we lose some of the expressivity of the Russell-style universes with implicit subtyping.

I Example 1.3 (Necessity of reflecting equalities). In the context

Γ = p : Type1 → Type1,

q : Type1 → Type1,

f : Π c :Type0. p c→ q c,

g : Π a :Type1. Π b :Type1. p (Πx :a. b)
a : Type0,

b : Type0,

the term f (Πx :a. b) (g a b) has type q (Πx :a. b):

Γ ` f (Πx :a. b) (g a b) : q (Πx :a. b)

but the corresponding Tarski-style term

f (π0 x : a.b) (g ↑0 (a) ↑0 (b))

is ill-typed because T1 (p (π1 x : ↑0 (a) . ↑0 (b))) 6≡ T1 (p (↑0 (π0 x : a.b))). The type corre-
sponding to q (Πx :a. b) is not provable in the Tarski style without further equations!

Reflecting equality with Equation 1 solves this problem by ensuring that any type has a
single term representation up to equivalence. While the equations needed for the predicative
universes Typei have been known for some time [13, 16], the equations for the impredicative
universe Prop are less obvious and have not been studied before.

Related work

Geuvers and Wiedijk [6] presented a dependently typed system with explicit conversions. In
that system, every conversion is annotated inside the term and there is no implicit conversion
rule. Terms have a unique type instead of a unique type up to equivalence. To solve the issue
of dependent types mentioned above, they rely on an erasure equation similar to ↑0 (A) ≡ A.
They also present a variant of the system which does not go through ill-typed terms, but
that uses typed heterogeneous equality judgments instead.

In Martin-Löf’s intuitionistic type theory, Palmgren [16] and Luo [13] formalized systems
with a cumulative hierarchy of predicative universes Ui and an impredicative universe Prop.
They both use the Tarski style of universes, which distinguishes between a term A of type
Ui and the type Ti (A) that it represents, and which allows them to introduce well-typed
equations such as Equation 1. However, they only show how to reflect equality for the
predicative universes. As a result, these systems lose some of the expressivity of Russell-style
universes with implicit subtyping and are therefore incomplete. Similarly, Herbelin and
Spiwack [9] presented a variant of the calculus of constructions with one Type universe and
explicit coercions from Prop to Type but they do not reflect equality.

A. Assaf 31

Cousineau and Dowek [5] showed how to embed functional pure type systems in the λΠ-
calculus modulo, a logical framework that can be seen as a subset of Martin-Löf’s framework
where equations are expressed as rewrite rules. When the rewrite system is confluent and
strongly normalizing, the λΠ-calculus modulo becomes a decidable version of Martin-Löf’s
framework. Burel and Boespflug [4] used this embedding to formalize and translate Coq
proofs to Dedukti [18], a type-checker based on the λΠ-calculus modulo rewriting, but they
handle neither the universe hierarchy nor cumulativity.

Contribution

We present a formulation of the cumulative calculus of constructions where subtyping is
explicit. By using Tarski-style universes, we are able to solve the problems related to coercions
and dependent types. We show that reflecting equality is necessary for the Tarski style to
be equivalent to the Russell style, thus settling an old question for good. Our system fully
reflects equality: by introducing additional equations between terms, we ensure that every
well-typed term in the original system has a unique representation up to equivalence in the
new system.

To our knowledge, this is the first time such work has been done for the cumulative
calculus of constructions, which includes both a cumulative hierarchy of predicative universes
and an impredicative universe. We also show how to orient the equations into rewrite rules
so that equivalence can be defined as a congruence of reduction steps. In summary, this
paper answers the question:

What is the system that corresponds to the question mark in Figure 1?

PTS

STLC System F
impredicative
polymorphism

LF

dependent types

CC

LF∞

infinite hierarchy

CC∞

(Russell)
ITT

cumulativity

CC∞⊂

(Tarski)
ITT

annotations erasure

? PCIC

inducti
ve types

STLC simply typed λ-calculus
LF dependently typed λ-calculus
CC calculus of constructions
ITT intuitionistic type theory

Figure 1 Type theory zoo.

TYPES’14

32 A Calculus of Constructions with Explicit Subtyping

Outline

In Section 2, we present a subset of the original PCIC that we call the cumulative calculus of
constructions (CC∞⊂). It will serve as the reference to which systems with explicit subtyping
will be compared. In Section 3, we present our system with explicit subtyping called the
explicit cumulative calculus of constructions (CC∞↑). We show exactly which equations are
needed to reflect equality. In Section 4, we show that it is complete with respect to CC∞⊂ by
defining a translation and proving that it preserves typing. Finally, in Section 5, we show
how to transform the equations into rewrite rules so that the system can be implemented in
practice.

2 The cumulative calculus of constructions

We consider a subset of PCIC that does not contain inductive types so that we can focus
entirely on universes and cumulativity. This system was introduced by Luo [11] under the
name CC∞⊂ , although with a slightly different presentation. We will also refer to it as the
cumulative calculus of constructions. It is an extension of the calculus of constructions
(CC) with universes and subtyping. It is related to the extended calculus of constructions
(ECC) [12] but it does not contain sum types. It is also related to the generalized calculus
of constructions [7, 8] but that one is not fully cumulative as it lacks the Prop ⊆ Type0
inclusion1.

Our presentation differs slightly from Luo’s original presentation. The main differences
are that Prop : Type1 instead of Prop : Type0 and that all the rules (Typei,Typej ,Typemax(i,j))
are allowed, as done in Coq. The reason for having Prop in Type1 instead of Type0 is mainly
historical and not of importance for the purposes of this paper. All of Luo’s results still hold
for our presentation.

Syntax

The syntax is defined as usual for type theories based on pure type systems. For further
background, we refer the reader to [1, 20].

I Definition 2.1 (Syntax).

variables x, y, α, β ∈ V
sorts s ∈ S = {Prop} ∪ {Typei | i ∈ N}
terms M,N,A,B ∈ T ::= x | s | Πx :A.B | λx :A.M |M N

contexts Γ,∆ ∈ C ::= . | Γ, x : A

Typing

Since the pure type system at the core of CC∞⊂ is functional and complete, we can define its
axiom relation (s1 : s2) ∈ A as a function A(s1) and its product rule relation (s1, s2, s3) ∈ R
as a function R(s1, s2). The cumulativity relation ⊆ can be defined as the reflexive transitive
closure of Prop ⊆ Type0 and Typei ⊆ Typei+1. In order to give a uniform presentation, we
define the following operations on sorts.

1 The Prop ⊆ Type0 barrier is often the main difficulty in the metatheory of systems with cumulativity.

A. Assaf 33

I Definition 2.2 (Sort operations). The unary operations A and N and the binary operation
R are defined as follows.

A(Prop) = Type1
A(Typei) = Typei+1
N (Prop) = Type0
N (Typei) = Typei+1

R(Prop,Prop) = Prop
R(Typei,Prop) = Prop
R(Prop,Typej) = Typej
R(Typei,Typej) = Typemax(i,j)

The cumulativity relation ⊆ is the reflexive transitive closure of N .

To simplify the presentation, we also decouple the context well-formedness judgment from
the typing judgment to break the mutual dependency between the two. This formulation
is equivalent to the original one but is better suited for proofs by induction. For more
information on this common technique, we refer the reader to [21].

I Definition 2.3 (Typing). A term M has type A in the context Γ when the judgment
Γ `⊂ M : A can be derived from the following rules.

(x : A) ∈ Γ
Γ `⊂ x : A

variable

Γ `⊂ s : A(s)
sort

Γ `⊂ A : s
Γ `⊂ A : N (s)

cumulativity

Γ `⊂ A : s1 x 6∈ Γ Γ, x : A `⊂ B : s2

Γ `⊂ Πx :A.B : R(s1, s2)
product

Γ `⊂ A : s x 6∈ Γ Γ, x : A `⊂ M : B
Γ `⊂ λx :A.M : Πx :A.B

abstraction

Γ `⊂ M : Πx :A.B Γ `⊂ N : A
Γ `⊂ M N : {N/x}B

application

Γ `⊂ M : A Γ `⊂ B : s A ≡ B
Γ `⊂ M : B

conversion

A context Γ is well-formed when the judgment WF⊂ (Γ) can be derived from the following
rules.

WF⊂ (.)
empty

WF⊂ (Γ) x 6∈ Γ Γ `⊂ A : s
WF⊂ (Γ, x : A)

declaration

We write Γ ` M : A and WF (Γ) instead of Γ `⊂ M : A and WF⊂ (Γ) when there is no
ambiguity.

TYPES’14

34 A Calculus of Constructions with Explicit Subtyping

I Remark. The system CC∞⊂ is not equivalent to a non-functional traditional PTS [1]. Indeed,
even if the PTS had Prop : Typei for all i ∈ N as axioms, the term λ a :Prop. (λ a :Type0. a) a
would not be well-typed, while it has type Prop→ Type0 with cumulativity in CC∞⊂ .

Unlike in Coq, cumulativity in CC∞⊂ is not presented as a subtyping rule. This makes it very
slightly weaker because product covariance does not hold: if M : Πx :A.Typei then it does
not follow that M : Πx :A.Typei. Luo [11] covers this difference in great detail. Since our
main focus is the difficulties that arise from universe cumulativity, this is not an issue for us.
The notion of subtyping is still useful however. We will define it and use it to caracterize
minimal typing.

Minimal typing

The system CC∞⊂ does not satisfy the uniqueness of types because a term can have multiple
non-equivalent types. However, it does have a notion of minimal type.

I Definition 2.4 (Subtyping). A term A is a subtype of B when the relation A ≤ B can be
derived from the following rules where ≡ is the usual β-equivalence relation.

A ≡ B
A ≤ B

reflexivity
A ≤ B B ≤ C

A ≤ C
transitivity

s1 ⊆ s2

s1 ≤ s2
cumulativity

B ≤ C
Πx :A.B ≤ Πx :A.C

covariance

I Definition 2.5. A term M has minimal type A in the context Γ when Γ ` M : A and for
all B, Γ ` M : B implies A ≤ B. We write Γ `m M : A.

I Theorem 2.6 (Existence of minimal types). If Γ `⊂ M : B then there is an A such that
Γ `m M : A.

Proof. The details can be found in Luo’s paper, pages 16–17, [11]. J

This notion will be useful when we define our translation. However, note that while minimal
types always exist, they are not preserved by substitution and β-reduction, as shown in the
following example.

I Example 2.7. In the context Γ = (a : Type0, x : Type1), the term x has minimal type
Type1:

a : Type0, x : Type1 `m x : Type1

but the term {a/x}x = a has minimal type Type0 6≡ {a/x}Type1:

a : Type0 `m a : Type0.

3 Explicit subtyping

In this section, we define the explicit cumulative calculus of constructions (CC∞↑) where
subtyping is explicit. The syntax is extended to include coercions and to make the distinction
between terms and types. We introduce additional equations in the equivalence relation ≡
and give the typing rules based on the rules of CC∞⊂ .

A. Assaf 35

Syntax

For each sort s, we introduce the universe symbol Us. A term A of type Us is a code that
represents a type in that universe. The decoding function Ts (A) gives the corresponding
type. We extend the syntax with the codes us and πs1,s2 x : A.B that represent the type
Us in the universe UA(s) and the product type in the universe UR(s1,s2) respectively. The
universe hierarchy being cumulative, each universe contains codes for all the types of the
previous universe using the coercion2 ↑s (A).

I Definition 3.1 (Syntax).

terms M,N,A,B ∈ T ::= x | λx :A.M |M N

| us | ↑s (A) | πs1,s2 x : A.B
| Us | Ts (A) | Πx :A.B

contexts Γ,∆ ∈ C ::= . | Γ, x : A

We write Ui, Ti (A), ui, ↑i (A), and πi,j x : A.B instead of UTypei
, TTypei

(A), uTypei
,

↑Typei
(A), and πTypei,Typej

x : A.B respectively. When s1 ⊆ s2 and s2 = N i(s1), we
write ↑s2

s1
(A) for the term

↑N i−1(s)

(
· · · ↑N (s) (↑s (A))

)
.

For example, ↑31 (A) = ↑2 (↑1 (A)) and ↑1Prop (A) = ↑0
(
↑Prop (A)

)
.

I Remark. It is possible to completely split the syntax into distinct categories for types (Us,
Ts (A), Πx :A.B) and terms. This is one of the advantages of using the Tarski style and it
could help simplify the theoretical studies of the calculus of constructions, where the lack of
syntactic stratification between terms and types is cumbersome. However, it is not necessary
for our purposes so we will not do that here.

Equivalence

Because we are using Tarski-style universes, we need to consider additional equations besides
β-equivalence. For now, we just state the equations that are needed and assume a congruence
relation ≡ that satisfies those equations. We do not worry about the algorithmic aspect.
Later in Section 5, we show how to define ≡ as the usual congruence induced by a set of
reduction rules.

In addition to β-equivalence:

(λx :A.M) N ≡ {N/x}M,

we need equations to describe the behaviour of the decoding function Ts (A). These are the
same as in intuitionistic type theory:

TA(s) (us) ≡ Us
TN (s) (↑s (A)) ≡ Ts (A)

TR(s1,s2) (πs1,s2 x : A.B) ≡ Πx :Ts1 (A) . Ts2 (B) .

Finally, we also need equations that reflect equality to ensure that each term of a given type
has a unique representation.

2 One can also view ↑s (A) as the code representing Ts (A) in the universe UN (s).

TYPES’14

36 A Calculus of Constructions with Explicit Subtyping

Table 1 Different typing derivations for same terms.

CC∞⊂ typing derivation CC∞↑ term representation

A : Typei x : A ` B : Typei

Πx :A.B : Typei

Πx :A.B : Typei+1

↑i (πi,i x : A.B)

A : Typei

A : Typei+1

x : A ` B : Typei

x : A ` B : Typei+1

Πx :A.B : Typei+1

πi+1,i+1 x : ↑i (A) . ↑i (B)

A : Typei x : A ` B : Prop
Πx :A.B : Prop πi,Prop x : A.B

A : Typei

A : Typei+1 x : A ` B : Prop
Πx :A.B : Prop

πi+1,Prop x : ↑i (A) .B

A : Typei

x : A ` B : Prop
x : A ` B : Type0

Πx :A.B : Typei

πi,0 x : A. ↑Prop (B)

A : Typei x : A ` B : Prop
Πx :A.B : Prop
Πx :A.B : Type0

...
Πx :A.B : Typei

↑i
Prop (πi,Prop x : A.B)

Which equations are needed to reflect equality? The answer lies in the multiplicity of
typing derivations in CC∞⊂ . For example, the product Πx :A.B of minimal type Type0 can
be typed at the level Type1 in two different ways, each giving a different term in CC∞↑ :

A : Type0 x : A ` B : Type0

Πx :A.B : Type0

Πx :A.B : Type1

↑1 (π0,0 x : A.B)

A : Type0

A : Type1

x : A ` B : Type0

x : A ` B : Type1

Πx :A.B : Type1

π1,1 x : ↑0 (A) . ↑0 (B)

The equivalence relation must therefore take this multiplicity into account. Table 1 lists the
different typing derivations that can occur for product types. A careful analysis yields the

A. Assaf 37

following equations:

πN (s),Prop x : ↑s (A) .B ≡ πs,Prop x : A.B
πProp,N (s) x : A. ↑s (B) ≡ ↑s (πProp,s x : A.B)

π0,j x : ↑Prop (A) .B ≡ πProp,j x : A.B
πi,0 x : A. ↑Prop (B) ≡ ↑iProp (πi,Prop x : A.B)

πi+1,j+1 x : ↑i (A) .B ≡ πi,j+1 x : A.B when i ≤ j
πi+1,j+1 x : ↑i (A) .B ≡ ↑i (πi,j+1 x : A.B) when i > j

πi+1,j+1 x : A. ↑j (B) ≡ πi+1,j x : A.B when i ≥ j
πi+1,j+1 x : A. ↑j (B) ≡ ↑j (πi+1,j x : A.B) when i < j.

It turns out we can express these concisely using the ↑s2
s1

(A) notation:

πN (s1),s2 x : ↑s1
(A) .B ≡ ↑R(N (s1),s2)

R(s1,s2) (πs1,s2 x : A.B)

πs1,N (s2) x : A. ↑s2
(B) ≡ ↑R(s1,N (s2))

R(s1,s2) (πs1,s2 x : A.B) .

I Definition 3.2 (Equivalence). The equivalence relation ≡ is the smallest congruence relation
that satisfies the following equations:

(λx :A.M) N ≡ {N/x}M
TA(s) (us) ≡ Us

TN (s) (↑s (A)) ≡ Ts (A)
TR(s1,s2) (πs1,s2 x : A.B) ≡ Πx :Ts1 (A) . Ts2 (B)

πN (s1),s2 x : ↑s1
(A) .B ≡ ↑R(N (s1),s2)

R(s1,s2) (πs1,s2 x : A.B)

πs1,N (s2) x : A. ↑s2
(B) ≡ ↑R(s1,N (s2))

R(s1,s2) (πs1,s2 x : A.B) .

Typing

To make the distinction between types and terms, we introduce an additional judgment
Γ `↑ type (A) to capture the property that a type is well-formed. The derivation rules mirror
the rules of CC∞⊂ .

I Definition 3.3 (Typing). A term M has type A in the context Γ when the judgment
Γ `↑ M : A can be derived from the following rules, and a term A is a type in the context Γ
when the judgment Γ `↑ type (A) can be derived from the following rules:

(x : A) ∈ Γ
Γ `↑ x : A

variable

Γ `↑ type (Us)
sort-type

Γ `↑ A : Us
Γ `↑ type (Ts (A))

decode-type

Γ `↑ type (A) x 6∈ Γ Γ, x : A `↑ type (B)
Γ `↑ type (Πx :A.B)

product-type

Γ `↑ us : UA(s)
sort

Γ `↑ A : Us
Γ `↑ ↑s (A) : UN (s)

cumulativity

Γ `↑ A : Us1 x 6∈ Γ Γ, x : Ts1 (A) `↑ B : Us2

Γ `↑ πs1,s2 x : A.B : UR(s1,s2)
product

TYPES’14

38 A Calculus of Constructions with Explicit Subtyping

Γ `↑ type (A) x 6∈ Γ Γ, x : A `↑ M : B
Γ `↑ λx :A.M : Πx :A.B

abstraction

Γ `↑ M : Πx :A.B Γ `↑ N : A
Γ `↑ M N : {N/x}B

application

Γ `↑ M : A Γ `↑ type (B) A ≡ B
Γ `↑ M : B

conversion

A context Γ is well-formed when the judgment WF↑ (Γ) can be derived from the following
rules:

WF↑ (.)
empty

WF↑ (Γ) x 6∈ Γ Γ `↑ type (A)
WF↑ (Γ, x : A)

declaration

We write Γ ` M : A, Γ ` type (A), and WF (Γ) instead of Γ `↑ M : A, Γ `↑ type (A), and
WF↑ (Γ) when there is no ambiguity.

I Remark. The equations of Definition 3.2 are well-formed because the left and right side of
each equation are either both types or both terms of the same type. In particular, the last
two are well-typed because R(s1, s2) ⊆ R(N (s1), s2) and R(s1, s2) ⊆ R(s1,N (s2)) for all
s1, s2 ∈ S.

I Theorem 3.4 (Type uniqueness). If Γ `↑ M : A and Γ `↑ M : B then A ≡ B.

Proof. By induction over the derivations of Γ `↑ M : A and Γ `↑ M : B. We can eliminate
conversion rules until we hit a non-conversion rule, in which case we remove the rule from
both derivations at the same time. J

Erasure

Systems with Tarski-style universes are related to systems with Russell-style universes in a
precise sense: we can define an erasure function |M | such that the erasure of a well-typed
term in the Tarski style is well-typed in the Russell style. In our setting, this function shows
that CC∞↑ is sound with respect to CC∞⊂ .

I Definition 3.5 (Erasure). The term erasure |M |, the type erasure ‖A‖, and the context
erasure ‖Γ‖ are defined as follows.

|x| = x

|us| = s

↑s (A)	=	A		
πs1,s2 x : A.B	= Πx :	A	.	B
λx :A.M	= λx :‖A‖ .	M		
M N	=	M		N

‖Us‖ = s

‖Ts (A)‖ = |A|
‖Πx :A.B‖ = Πx :‖A‖ . ‖B‖

‖.‖ = .

‖Γ, x : A‖ = ‖Γ‖ , x : ‖A‖

A. Assaf 39

I Lemma 3.6. For all B, x, N , |{N/x}B| = {|N | /x} |B|.

Proof. By induction on B. J

I Theorem 3.7 (Soundness). If Γ `↑ M : A then ‖Γ‖ `⊂ |M | : ‖A‖. If Γ `↑ type (A) then
‖Γ‖ `⊂ ‖A‖ : s for some sort s. If WF↑ (Γ) then WF⊂ (‖Γ‖).

Proof. By induction on the derivations in CC∞↑ , using Lemma 3.6 for the application rule. J

4 Completeness

In this section, we show that the new system is complete with respect to the original system,
meaning that it can express all well-typed terms. We define a function that translates any
well-typed term of CC∞⊂ into a term of CC∞↑ and we prove that this translation preserves
typing.

Translation

When translating a term, we want to choose the representation that has the minimal type.
However, we sometimes need to lift some subterms, such as the argument of applications, in
order to get a well-typed term. We therefore define two translations: [M]Γ which translates
M according to its minimal type and [M]Γ`A which translates M as a term of type A.
Finally, since we distinguish between terms and types, we also define JAKΓ, the translation of
A as a type.

I Definition 4.1 (Translation). Let Γ be a well-formed context, A and B be well-formed
types in Γ, and M be a well-typed term in Γ such that Γ `m M : A and Γ `⊂ M : B.
The term translation [M]Γ, the cast translation [M]Γ`B, and the type translation JAKΓ are
mutually defined as follows.

Term translation

[s]Γ = us
[x]Γ = x

[Πx :A′. B′]Γ = πs1,s2 x : [A′]Γ . [B′]Γ,x:A′

where Γ `m A′ : s1
and Γ, x : A′ `m B′ : s2

[λx :A′.M ′]Γ = λx :JA′KΓ . [M ′]Γ,x:A′

[M ′N ′]Γ = [M ′]Γ [N ′]Γ`A′
where Γ `m M ′ : Πx :A′. B′

Cast translation

[M]Γ`B = [M]Γ
when A ≡ B

[M]Γ`B = ↑s2
s1

([M]Γ)
when A ≡ s1 ⊆ s2 ≡ B

Type translation

JAKΓ = Ts ([A]Γ)
where Γ `m A : s

TYPES’14

40 A Calculus of Constructions with Explicit Subtyping

The context translation JΓK where WF⊂ (Γ) is defined as follows.

Context translation

J.K = .

JΓ, x : AK = JΓK , x : JAKΓ

We will write [M], [M]`C , and JAK instead of [M]Γ, [M]Γ`C , and JAKΓ when unambiguous.

Substitution preservation

A key property for proving the preservation of typing by the translation is that it preserves
substitution. If Γ, x : A `⊂ M : B and Γ `⊂ N : A then the translation of the substitution is
the same as the substitution of the translation. However, the naive statement {[N] /x} [M] ≡
[{N/x}M] is not true. First, x has type A while N has some minimal type C ≤ A so we
need to use the cast translation [N]`A. Second, the minimal typing is not preserved by
substitution, as we showed in Example 2.7. Therefore we also need to fix the type of {N/x}M
using the cast translation [{N/x}M]`{N/x}B .

I Lemma 4.2 (Translation distributivity). The translation satisfies the following properties:
For all s ∈ S, JsK ≡ Us.
If Γ `⊂ A : s1 and Γ, x : A `⊂ B : s2 then JΠx :A.BK ≡ Πx :JAK . JBK .
If Γ `⊂ A : s1 and Γ, x : A `⊂ B : s2 then

[Πx :A.B]`R(s1,s2) ≡ πs1,s2 x : [A]`s1
. [B]`s2

.

If Γ `⊂ A : s1 and Γ, x : A `⊂ M : B then

[λx :A.M]`Π y:A.B ≡ λx :JAK . [M]`B .

If Γ `⊂ M : Πx :A.B and Γ `⊂ N : A then

[M N]`{N/x}B ≡ [M]`Π x:A.B [N]`A .

Proof. Follows from the definition of the equivalence relation ≡ and of the translations JAK
and [M]Γ`A. Note that this proposition would not be true if ≡ did not reflect equality. J

I Lemma 4.3 (Substitution preservation). If Γ, x : A,Γ′ `m M : B and Γ `⊂ N : A then

{[N]Γ`A /x} [M]Γ,x:A,Γ′ ≡ [{N/x}M]Γ,{N/x}Γ′`{N/x}B .

If Γ, x : A,Γ′ `⊆ M : B and Γ `⊂ N : A then

{[N]Γ`A /x} [M]Γ,x:A,Γ′`B ≡ [{N/x}M]Γ,{N/x}Γ′`{N/x}B .

If Γ, x : A,Γ′ `⊂ M : s and Γ `⊂ N : A then

{[N]Γ`A /x} JBKΓ,x:A,Γ′ ≡ J{N/x}BKΓ,{N/x}Γ′ .

Proof. The second and third statements derive from the first. We prove the first by induction
on M , using Lemma 4.2.

Case x. Then we must have A ≡ B ≡ {N/x}B. Therefore
{[N]`A /x} [x] ≡ [N]`A

≡ [N]`{N/x}B
≡ [{N/x}x]`{N/x}B .

A. Assaf 41

Case y 6= x. Then
{[N]`A /x} [y] ≡ y

≡ [{N/x}y]`{N/x}B .

Case s. Then
{[N]`A /x} [s] ≡ s

≡ [{N/x}s]`{N/x}B .

Case Π y :C.D. Then B ≡ s3 where Γ, x : A,Γ′ `m C : s1 and Γ, x : A,Γ′, y : C `m D : s2
and s3 = R(s1, s2). Therefore
{[N]`A /x} [Π y :C.D] ≡ πs1,s2 x : {[N]`A /x} [C] .{[N]`A /x} [D]

≡ πs1,s2 x : [{N/x}C]`s1
. [{N/x}D]`s2

≡ [{N/x} (Π y :C.D)]`s3

Case λ y :C.M ′. Then B ≡ Πx :C.D where Γ, x : A,Γ′ `m C : s1 and Γ, x : A,Γ′, y :
C `m M ′ : D. Therefore
{[N]`A /x} [λ y :C.M ′] ≡ λ y :{[N]`A /x} JCK . {[N]`A /x} [M ′]

≡ λ y :J{N/x}CK . [{N/x}M ′]`{N/x}D
≡ [{N/x} (λ y :C.M ′)]`{N/x}(Π y:C.D)

Case M ′N ′. Then B ≡ {N ′/y}D where Γ, x : A,Γ′ `m M ′ : Π y :C.D and Γ, x : A,Γ′ `m
N ′ : C. Therefore
{[N]`A /x} [M N] ≡ {[N]`A /x} [M ′] {[N]`A /x} [N ′]`C

≡ [{N/x}M ′]`{N/x}(Π y:C.D) [{N/x}N ′]`{N/x}C
≡ [{N/x}M ′N ′]`{N/x}{N ′/y}D

J

Equivalence preservation

Having proved substitution preservation, we prove that the translation preserves equivalence:
if two well-typed terms are equivalent in CC∞⊂ then their translations are equivalent in CC∞↑ .

I Lemma 4.4 (Equivalence preservation). If Γ `⊂ M : B and Γ `⊂ N : B and M ≡ N then
[M]Γ`B ≡ [N]Γ`B. If Γ `⊂ A : s and Γ `⊂ B : s and A ≡ B then JAK ≡ JBK.

Proof. By induction on the derivation of M ≡ N . The second statement derives from the
first. We show the base case (λx :C.M ′)N ′ ≡ {N ′/x}M ′. Then B ≡ {N ′/y}D where
Γ `⊂ λx :C.M ′ : Πx :C.D and Γ `⊂ N ′ : C. Therefore

[(λx :C.M ′)N ′]`{N ′/x}D ≡
(
λx : [C]`s1

. [M ′]`D
)

[N ′]`C
using Proposition 4.2

≡ {[N ′]`C /x} [M ′]`D
by β-equivalence

≡ [{N ′/x}M ′]`{N ′/x}D
using Lemma 4.3

J

TYPES’14

42 A Calculus of Constructions with Explicit Subtyping

Typing preservation

With substitution preservation and equivalence preservation at hand, we can finally prove
the main theorem, namely that the translation preserves typing.

I Lemma 4.5. The translation satisfies the following properties:
For all s ∈ S, Γ `↑ us : JA(s)K .
If Γ `↑ [A]`s : JsK then

Γ `↑ [A]`N (s) : JN (s)K .

If Γ `↑ [A]`s1
: Js1K and Γ, x : JAK `↑ [B]`s2

: Js2K then

Γ `↑ [Πx :A.B]`R(s1,s2) : JR(s1, s2)K .

If Γ `↑ type (JAK) and Γ, x : JAK `↑ [M]`B : JBK then

Γ `↑ [λx :A.M]`Π x:A.B : JΠx :A.BK .

If Γ `↑ [M]`Π x:A.B : Πx :JAK . JBK and Γ `↑ [N]`A : JAK then

Γ `↑ [M N]`{N/x}B : J{N/x}BK .

If Γ `↑ [M]`A : JAK and Γ `↑ type (B) and JAK ≡ JBK then JΓK `↑ [M]`B : JBK .

Proof. Using Lemmas 4.2, 4.3, and 4.4. J

I Theorem 4.6 (Typing preservation). If Γ `⊂ M : A then JΓK `↑ [M]Γ`A : JAKΓ. If
Γ `⊂ A : s then JΓK `↑ type (JAK).

Proof. By induction on the derivation of Γ `⊂ M : A, using Lemma 4.5. The second
statement derives from the first.

Case variable. Then (x : JAK) ∈ JΓK so JΓK `↑ x : JAK.
Case sort. By Lemma 4.5, JΓK `↑ us : JA(s)K .
Case cumulativity. By induction hypothesis, JΓK `↑ [A]`s : JsK. By Lemma 4.5, JΓK `↑
[A]`N (s) : JN (s)K .
Case product. By induction hypothesis, JΓK `↑ [A]`s1

: Js1K and JΓK , x : JAK `↑ [B]`s2
:

Js2K. By Lemma 4.5,

JΓK `↑ [Πx :A.B]`R(s1,s2) : JR(s1, s2)K .

Case abstraction. By induction hypothesis, JΓK `↑ type (JAK) and JΓK , x : JAK `↑ [M]`B :
JBK. By Lemma 4.5,

Γ `↑ [λx :A.M]`Π x:A.B : JΠx :A.BK .

Case application. By induction hypothesis, JΓK `↑ [M]`Π x:A.B : Πx : JAK . JBK and
JΓK `↑ [N]`A : JAK. By Lemma 4.5,

JΓK `↑ [M N]`{N/x}B : J{N/x}BK .

Case conversion. By induction hypothesis, JΓK `↑ [M]`A : JAK and JΓK `↑ type (JBK).
By Lemma 4.5, JΓK `↑ [M]`B : JBK .

J

I Corollary 4.7. If WF⊂ (Γ) then WF↑ (JΓK).

Proof. By induction on Γ. J

A. Assaf 43

5 Operational semantics

We presented CC∞↑ assuming the equivalence relation≡ satisfies the equations of Definition 3.2.
In practice, such equivalence relations are defined as the congruence closure of a set of
reduction rules. In the case of CC∞⊂ , it is the closure of β-reduction −→β , which enjoys
confluence, subject reduction, and strong normalization. We now do the same for CC∞↑ .

Rewrite rules

The equations for the decoding function Ts (A) are easily oriented into rewrite rules:

TA(s) (us) −→ Us
TN (s) (↑s (A)) −→ Ts (A)

TR(s1,s2) (πs1,s2 x : A.B) −→ Πx :Ts1 (A) . Ts2 (B) .

With these rules, we can view Ts (A) as a recursively defined function that decodes terms of
type Us into types by traversing their structure.

Orienting the equations for ↑s is more delicate. In Martin-Löf’s intuitionistic type theory,
a single equation is needed to reflect equality:

↑i (πi,i x : A.B) ≡ πi+1,i+1 x : ↑i (A) . ↑i (B) .

In that case, it seems natural to orient the equation from left to right and see ↑i as a function
that recursively transforms codes in Ui into equivalent codes in Ui+1:

↑i (πi,i x : A.B) −→ πi+1,i+1 x : ↑i (A) . ↑i (B) .

While elegant, that solution does not behave well with the impredicative universe Prop.
The equation

πi+1,Prop x : ↑i (A) .B ≡ πi,Prop x : A.B

requires the rewrite rule

πi+1,Prop x : ↑i (A) .B −→ πi,Prop x : A.B

which would break confluence with the previous rule because of the critical pair

πi+1,Prop x : ↑i (πi,i y : A.B) .C.

Fortunately, we can still orient the equations in the other direction and obtain a well-
behaved system. Again, we can express this concisely using the ↑s2

s1
(A) notation.

I Definition 5.1. The equivalence relation ≡ in CC∞↑ is defined as the congruence induced
by the following set of rewrite rules:

(λx :A.M) N −→β {N/x}M
TA(s) (us) −→τ Us

TN (s) (↑s (A)) −→τ Ts (A)
TR(s1,s2) (πs1,s2 x : A.B) −→τ Πx :Ts1 (A) . Ts2 (B)

πN (s1),s2 x : ↑s1
(A) .B −→σ ↑R(N (s1),s2)

R(s1,s2) (πs1,s2 x : A.B)

πs1,N (s2) x : A. ↑s2
(B) −→σ ↑R(s1,N (s2))

R(s1,s2) (πs1,s2 x : A.B) .

In this formulation, the coercions ↑s propagate upwards towards the root of the term. This
behavior matches the idea that, when computing minimal types, the cumulativity rule should
be delayed as much as possible.

TYPES’14

44 A Calculus of Constructions with Explicit Subtyping

Properties

We show that the rewrite system −→βτσ enjoys the usual properties of confluence, subject-
reduction, and strong normalization. The last one follows from the strong normalization of
CC∞⊂ .

I Theorem 5.2 (Normalization of −→τσ). The rewrite system −→τσ is terminating.

Proof. The relation −→τ strictly decreases the total height of Ts symbols and the rela-
tion −→σ strictly decreases the total depth of ↑s symbols (while leaving the height of Ts
unchanged), therefore −→τσ is terminating. J

I Theorem 5.3 (Confluence). The rewrite system −→βτσ is locally confluent.

Proof. The rewrite rules of −→τσ are left-linear and the critical pairs are convergent,
therefore −→τσ is locally confluent. By Proposition 5.2, it is terminating and hence confluent.
Therefore its union with −→β is confluent [23]. J

I Theorem 5.4 (Subject reduction). If Γ `↑ M : A and M −→βτσ M
′ then Γ `↑ M ′ : A.

Proof. By induction on M . J

I Theorem 5.5 (Strong normalization). The rewrite system −→βτσ is strongly normalizing
for well-typed terms.

Proof. By Theorem 5.2, −→τσ is terminating, so any infinite sequence of reductions must
have an infinite number of −→β steps. If M −→τσ M

′ then |M | = |M ′|. If M −→β M
′ then

|M | −→β |M ′|. An infinite reduction sequence in CC∞↑ would therefore lead to an infinite
reduction sequence in CC∞⊂ . Moreover, according to Theorem 3.7 and Proposition 5.4, the
sequence would be well-typed. Since CC∞⊂ is strongly normalizing [11], this is impossible. J

6 Conclusion

We presented a formulation of the cumulative calculus of constructions with explicit subtyping.
We used the Tarski style of universes to solve the issues related to dependent types and
coercions. We showed that, by reflecting equality, we were able to preserve the expressiveness
of Russell-style universes.

A thorough and definitive study of the two styles remains to be done. Are the two
styles always equivalent? Can we always define an equivalence relation that reflects equality?
Can it always be oriented into well-behaved rewrite rules? Finally, how does this solution
interact with product covariance or other extensions of the theory, such as inductive types
or universe polymorphism? Our guess is that inductive types should not pose a problem.
Product covariance could be handled either by pre-expanding the terms to η-long form or
by using a more general form of coercions ↑BA where A ≤ B. The interaction with universe
polymorphism is still unclear.

Our results connect work done in pure type systems to work done in Martin-Löf’s
intuitionistic type theory. While the two theories have a clearly related core (namely the
λ-calculus with dependent types), it is less obvious if they can still be unified or if they
have definitively diverged. Pure type systems allow for a wide variety of specifications while
intuitionistic type theory has a clear and intuitive interpretation for cumulativity. We feel
that this problem deserves to be studied as the two theories form the basis for many logical

A. Assaf 45

frameworks and proof assistants. The work of Herbelin and Siles [19], and van Doorn et al
[22] already showed some progress in this direction.

A requirement for the aforementioned program is the development of a notion of cumula-
tivity in pure type systems. We can imagine extending PTS specifications with a cumulativity
relation as done by Barras, Grégoire, and Lasson for example [2, 3, 10]. However, it is unclear
if such an extension is meaningful on its own, or if it only makes sense in CC∞⊂ (which is both
a functional and complete PTS). In particular, the equations of CC∞↑ rely on the fact that
lifting inside a product cannot decrease the type of the product: R(s1, s2) ⊆ R(N (s1), s2)
and R(s1, s2) ⊆ R(s1,N (s2)). Whether this condition is essential or whether it can be
avoided is unclear. The possibility of using universes à la Tarski remains to be studied.

Finally, while our system allowed us to get rid of the implicit subsumption rule, it did so
at the expense of some complexity in the conversion rule. Whether this trade-off is beneficial
in practical applications remains to be discussed. How does the Tarski style simplify the
theoretical studies of the calculus of constructions? Can the current implementation of the
calculus of constructions like Coq or Matita benefit from it? Nevertheless, this presentation is
better suited for logical frameworks such as Dedukti, which usually do not support subtyping
as a built-in. Our work opens the way for exporting Coq proofs to such frameworks.

Acknowledgments. We thank Gilles Dowek and Raphaël Cauderlier for the discussions
leading to the ideas behind this paper and their feedback throughout its lengthy writing
process, as well as the anonymous reviewers for their various suggestions on how to improve
it.

References
1 Henk Barendregt. Lambda calculi with types. In Samson Abramsky, Dov M. Gabbay, and

Thomas S. E. Maibaum, editors, Handbook of Logic in Computer Science, volume 2, pages
117–309. Oxford University Press, 1992.

2 Bruno Barras. Auto-validation d’un système de preuves avec familles inductives. PhD
thesis, Université Paris 7, 1999.

3 Bruno Barras and Benjamin Grégoire. On the role of type decorations in the calculus of
inductive constructions. In Luke Ong, editor, Computer Science Logic, number 3634 in
Lecture Notes in Computer Science, pages 151–166. Springer Berlin Heidelberg, 2005.

4 Mathieu Boespflug and Guillaume Burel. CoqInE: Translating the calculus of inductive
constructions into the λΠ-calculus modulo. In Proof Exchange for Theorem Proving–Second
International Workshop, PxTP, page 44, 2012.

5 Denis Cousineau and Gilles Dowek. Embedding pure type systems in the lambda-Pi-
calculus modulo. In Simona Ronchi Della Rocca, editor, Typed Lambda Calculi and Ap-
plications, number 4583 in Lecture Notes in Computer Science, pages 102–117. Springer
Berlin Heidelberg, 2007.

6 Herman Geuvers and Freek Wiedijk. A logical framework with explicit conversions. Elec-
tronic Notes in Theoretical Computer Science, 199:33–47, February 2008.

7 Robert Harper and Robert Pollack. Type checking, universe polymorphism, and typical
ambiguity in the calculus of constructions draft. In J. Díaz and F. Orejas, editors, TAP-
SOFT’89, number 352 in Lecture Notes in Computer Science, pages 241–256. Springer
Berlin Heidelberg, 1989.

8 Robert Harper and Robert Pollack. Type checking with universes. Theoretical Computer
Science, 89(1):107–136, October 1991.

9 Hugo Herbelin and Arnaud Spiwack. The Rooster and the Syntactic Bracket. In Ralph
Matthes and Aleksy Schubert, editors, 19th International Conference on Types for Proofs

TYPES’14

46 A Calculus of Constructions with Explicit Subtyping

and Programs (TYPES 2013), volume 26 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 169–187, Dagstuhl, Germany, 2014. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik.

10 Marc Lasson. Réalisabilité et paramétricité dans les systèmes de types purs. PhD thesis,
Ecole normale supérieure de Lyon, 2012.

11 Zhaohui Luo. CC∞⊂ and its meta theory. Laboratory for Foundations of Computer Science
Report ECS-LFCS-88-58, 1988.

12 Zhaohui Luo. ECC, an extended calculus of constructions. In Fourth Annual Symposium
on Logic in Computer Science, 1989. LICS’89, Proceedings, pages 386–395, June 1989.

13 Zhaohui Luo. Computation and Reasoning: A Type Theory for Computer Science. Oxford
University Press, Inc., New York, NY, USA, 1994.

14 Zhaohui Luo. Notes on universes in type theory. Lecture notes for a talk at Institute
for Advanced Study, Princeton (http://www.cs.rhul.ac.uk/home/zhaohui/universes.
pdf), 2012.

15 Per Martin-Löf and Giovanni Sambin. Intuitionistic type theory, volume 17. Bibliopolis
Naples, 1984.

16 Erik Palmgren. On universes in type theory. In Twenty-five years of constructive type
theory, pages 191–204. Oxford University Press, October 1998.

17 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations
of Mathematics. http://homotopytypetheory.org/book, Institute for Advanced Study,
2013.

18 Ronan Saillard. Dedukti: a universal proof checker. In Foundation of Mathematics for
Computer-Aided Formalization Workshop, 2013.

19 Vincent Siles and Hugo Herbelin. Pure type system conversion is always typable. Journal
of Functional Programming, 22(02):153–180, 2012.

20 The Coq Development Team. The Coq Reference Manual, version 8.4, August 2012. Avail-
able electronically at http://coq.inria.fr/doc.

21 L. S. van Benthem Jutting, J. McKinna, and R. Pollack. Checking algorithms for pure type
systems. In Henk Barendregt and Tobias Nipkow, editors, Types for Proofs and Programs,
number 806 in Lecture Notes in Computer Science, pages 19–61. Springer Berlin Heidelberg,
1994.

22 Floris van Doorn, Herman Geuvers, and Freek Wiedijk. Explicit convertibility proofs in
pure type systems. In Proceedings of the Eighth ACM SIGPLAN International Workshop
on Logical Frameworks & Meta-languages: Theory & Practice, LFMTP’13, pages 25–36,
New York, NY, USA, 2013. ACM.

23 Vincent van Oostrom. Confluence for Abstract and Higher-Order Rewriting. PhD thesis,
Vrije Universiteit, Amsterdam, 1994.

http://www.cs.rhul.ac.uk/home/zhaohui/universes.pdf
http://www.cs.rhul.ac.uk/home/zhaohui/universes.pdf
http://homotopytypetheory.org/book
http://coq.inria.fr/doc

	Introduction
	The cumulative calculus of constructions
	Explicit subtyping
	Completeness
	Operational semantics
	Conclusion

