
HAL Id: hal-01162281
https://hal.archives-ouvertes.fr/hal-01162281v2

Submitted on 11 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Many regression algorithms, one unified model - A
review

Freek Stulp, Olivier Sigaud

To cite this version:
Freek Stulp, Olivier Sigaud. Many regression algorithms, one unified model - A review. Neural
Networks, Elsevier, 2015, 69, pp.60-79. �10.1016/j.neunet.2015.05.005�. �hal-01162281v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49437365?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01162281v2
https://hal.archives-ouvertes.fr

Preprint of “Many Regression Algorithms, One Unified Model – A Review”

Full citation: Freek Stulp and Olivier Sigaud. Many Regression Algorithms, One Unified Model – A Review.
Neural Networks, 2015 Sep, Volume 69: 60-79

Digital Object Identifier: 10.1016/j.neunet.2015.05.005

Abstract: http://www.sciencedirect.com/science/article/pii/S0893608015001185

This is a preprint from 23.04.2015, and differs from the final published version.

c©2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

0

Many Regression Algorithms, One Unified Model – A Review

Freek Stulp

École Nationale Supérieure de Techniques Avancées (ENSTA-ParisTech)
828, Boulevard des Marchaux, 91762 Palaiseau Cedex, France

FLOWERS Research Team, INRIA Bordeaux Sud-Ouest.

freek.stulp@ensta-paristech.fr

Olivier Sigaud

Sorbonne Universités, UPMC Univ Paris 06, UMR 7222, F-75005 Paris, France
olivier.sigaud@isir.upmc.fr +33 (0) 1 44 27 88 53

Abstract

Regression is the process of learning relationships between inputs and continuous outputs from example
data, which enables predictions for novel inputs. The history of regression is closely related to the history
of artificial neural networks since the seminal work of Rosenblatt (1958). The aims of this paper are to
provide an overview of many regression algorithms, and to demonstrate how the function representation
whose parameters they regress fall into two classes: a weighted sum of basis functions, or a mixture of linear
models. Furthermore, we show that the former is a special case of the latter. Our ambition is thus to provide
a deep understanding of the relationship between these algorithms, that, despite being derived from very
different principles, use a function representation that can be captured within one unified model. Finally,
step-by-step derivations of the algorithms from first principles and visualizations of their inner workings
allow this article to be used as a tutorial for those new to regression.

Keywords: regression, locally weighted regression, Gaussian mixture regression, radial basis function
networks, Gaussian process regression

1. Introduction

Regression is the process of learning relationships
between inputs and continuous outputs from ex-
ample data, which enables predictions for novel in-
puts. This relationship is represented as a function
f : X → Y , which predicts, for instance, a per-
son’s height from their age. Here, the input space
X (age), is known as the independent variable, and
the output space Y (height) as the dependent vari-
able (Fisher, 1925). In the example, the training
data consists of concrete age and height measure-
ments for a set of people.

Regression is a form of supervised learning where
the output space is continuous, i.e. Y ⊆ RM . In
parametric regression, one assumes that the func-
tion f is well represented by a specific parameter-
ized model, for instance a linear model f(x) = aᵀx.
With a linear model, the model parameters are the

slopes a. The aim of parametric regression is to find
the parameters of the model that minimize some er-
ror on the training examples.

Another example of a parameterized model
is a Radial Basis Function Network (Park and
Sandberg, 1993), where the function is modeled
as a weighted sum of basis functions f(x) =∑E
e=1 weφe(x). If we assume that the basis func-

tions φe=1...E have pre-specified centers and widths,
the model parameters that are to be determined
through parametric regression are the weights
we=1...E , see Figure 1.

The generic scheme for parametric regression is
depicted in Figure 2. The input to the regres-
sion algorithm is the training data and a set of al-
gorithmic meta-parameters, including for instance
learning rates. Each regression algorithm assumes
a certain type of model, e.g. linear least squares
assumes a linear model. The output of the algo-

x1

xD

...

φ1

φ2

φE

...

∑
y

w
1

w2

wE

f(x) =
∑E
e=1 weφe(x)

Figure 1: Radial Basis Function Network (rbfn) with D
inputs and E radial basis functions. Unlabeled connections
have weight 1.

rithm is a vector of model parameters, which are
determined by minimizing an error measure on the
training data. Evaluating the model to make pre-
dictions for novel inputs requires both the model
(e.g. f(x) = aᵀx) and its model parameters (e.g.
a = [2 1]ᵀ). A detailed discussion of the differences
between model parameters and meta-parameters is
given in Section 2.6.

Regression
algorithm

.

.

meta-params

training data
(inputs/targets)

model params

model

Evaluate

input
(novel)

output
(prediction)

Figure 2: Generic flowchart for parametric regression.

In this article, we take a model-centric view on
regression, which means that we classify and ana-
lyze algorithms based on the model they assume,
rather than the algorithmic procedure that is used
to optimize the parameters of this model. Our first
contribution is to show that the models used in a
wide variety of regression algorithms (listed in Ta-
ble 1) fall into two main classes: a mixture of linear
models or a weighted sum of basis functions.

Our second contribution is to demonstrate that
the latter class of models (weighted sum of ba-
sis functions) is a special case of the former one
(mixture of linear models). As a consequence, and
rather strikingly, all the algorithms in Table 1 –
despite having being derived from very different
principles – use parameterized functions that can
be described by one unified model. This has been
visualized in Figure 3. Thus, these regression al-
gorithms should not be thought of as using their
own distinct model customized to the algorithmic
procedure, but rather as using models that are spe-

cial cases of the unified model. Such a perspective
provides a deeper understanding of the relationship
between these algorithms, and is a necessary step
towards model-based machine learning, as proposed
by Bishop (2013), i.e. the idea of the automated se-
lection of the adequate machine learning algorithm
given the formal description of a specific learning
problem.

training data
(inputs/targets)

unified model
+ model params

CARTCART meta

elmelm meta

i-ssgpri-ssgpr meta

irfrlsirfrls meta

svrsvr meta

gprgpr meta

krrkrr meta

rbfnrbfn meta

M5M5 meta

gmrgmr meta

xcsfxcsf meta

lwprlwpr meta

rfwrrfwr meta

lwrlwr meta

u
se

s
m

ix
tu

re
of

lin
ea

r
m

o
d

el
s

m
o

d
el

(S
ec

ti
on

4)
u

se
s

w
ei

gh
te

d
su

m
of

b
as

is
fu

n
ct

io
n

s
(S

ec
ti

on
5)

Evaluate

input
(novel)

output
(prediction)

Figure 3: The algorithms described in this paper have a
model that is either a mixture of linear models (upper block)
or a weighted sum of basis functions (lower block). Since the
former is a special case of the latter, the output of all algo-
rithms can be described by one unified model. Full algorithm
names are given in Table 1.

Despite our model-centric view, we do describe
and explain the algorithmic procedures used in dif-
ferent regression algorithms, including (regularized)
least squares, expectation-maximization, backprop-
agation, decision tree learning, and Gaussian pro-
cess regression. This is necessary to understand
why an algorithm assumes a certain type of model,
and how that model relates to the unified model we
propose. These explanations however, should not
distract from the fact that our main interest is in
the underlying model that the algorithms assume
(linear model, rbfn, model tree, Gaussian mixture
model, Gaussian process), and that all these models
are special cases of the unified model.

Explaining the algorithms also allows this arti-
cle to be used as a tutorial on regression; we pro-
vide an overview of many algorithms, show their
derivations from first principles, visualize their in-
ner workings so that novices may acquire an in-
tuitive understanding, and provide network repre-
sentations for readers with a background in arti-
ficial neural networks. Using one unified, easy to

2

Model: mixture of linear models
lwr Locally Weighted Regression

(Atkeson and Schaal, 1995)
rfwr Receptive Field Weighted Regression

(Schaal and Atkeson, 1997)
lwpr Locally Weighted Projection Regression

(Vijayakumar and Schaal, 2000)
xcsf .

(Butz and Herbort, 2008)
gmr Gaussian Mixture Regression

(Hersch et al., 2008; Calinon, 2009)
M5 Model Trees

(Quinlan, 1992)

Model: weighted sum of basis functions
rbfns Radial Basis Function Networks

(Park and Sandberg, 1993)
krr Kernel Ridge Regression

(Saunders et al., 1998)
gpr Gaussian Process Regression

(Williams and Rasmussen, 2006)
svr Support Vector Regression

(Vapnik, 1995)
irfrls Incr. Random Features Regularized Least Squares

(Gijsberts and Metta, 2011)
i-ssgpr Incr. Sparse Spectrum Gaussian Process Regr.

(Gijsberts and Metta, 2012)
CART Regression Trees

(Breiman et al., 1984)
elm Extreme Learning Machine

(Huang et al., 2006b)
BProp Backpropagation

(Werbos, 1974)

Table 1: List of algorithms presented in this article.

understand model highlights relationships between
algorithms; a key to acquiring more global under-
standing of regression methods. It is not our aim
to be exhaustive, in terms of presenting all regres-
sion algorithms and their variants. This would dis-
tract from our actual aim, which is to highlight
the similarities and differences between those algo-
rithms whose underlying model is a special case of
the unified model. For further reading, we provide
references to other tutorials and books, including
the work of Smola and Schölkopf (2004), Bishop
et al. (2006), Williams and Rasmussen (2006), and
Schmidhuber (2014).

The rest of this article is structured as follows.
In the next section, we present (regularized) linear
least squares, the classical algorithm for linear re-
gression. In Section 3, we describe how linear least
squares has been extended in two different direc-
tions. These two directions have lead to two classes
of algorithms, which generate either a mixture of
linear models or a weighted sum of basis functions.
In Section 3.3, we show that these two different
classes of models can in fact be unified, the lat-
ter being a special case of the former. Algorithms

that use these two classes of models are presented
in Section 4 and 5 respectively. In Section 6, we dis-
cuss the impact of the unifying perspective, before
concluding with Section 7.

2. Linear Least Squares

In this section, we present linear least squares
(lls) regression. We describe some variants of
the basic algorithm, including different regulariza-
tion methods, multivariate lls, and recursive least
squares. The aim of the following section – Sec-
tion 3 – is then to show how linear least squares is
used in the context of non-linear regression.

First, we formalize some of the concepts related
to parametric regression, as presented in the intro-
duction. The aim of supervised learning is to learn
a function f : X → Y from N training examples1

{(xn,yn)}Nn=1, where ∀n,xn ∈ X ∧ yn ∈ Y . In re-
gression, the output space is continuous (Y ⊆ RM).
Multivariable (resp. multivariate) regression refers
to input spaces X (resp. output spaces Y) with a
dimensionality of more than one2.

In the case of linear regression, the family of
model functions is linear, which means that f(x)
is represented as a line (1D), plane (2D) or hy-
perplane (≥3D). Formally, if the data is assumed
centered so that the hyperplane goes through the
origin, the underlying model is

f(x) = aᵀx, (1)

where a is a D × 1 vector that contains the slopes
of the linear function, as visualized in Figure 4.

x1

x2

xD

...

∑
y

a
1

a2

aD

Figure 4: Network representation of a linear model.

A popular method for determining a is the linear
least squares (lls) algorithm. It uses the vertical

1Throughout the paper, we denote scalars as lowercase
symbols (x), vectors as bold lowercase symbols (x) and ma-
trices as bold uppercase symbols (X).

2To facilitate presentation and visualizations, we mostly
use Y ⊆ R1 in this paper, i.e. the output is 1-dimensional,
and the target values yn are scalars rather than vectors. Mul-
tivariate regression is presented in Section 2.4.

3

distance between observed values yn and the pre-
dictions f(xn), which are known as the residuals:

rn = yn − f(xn) (2)

= yn − aᵀxn. (for linear models) (3)

The residuals are visualized as vertical lines in Fig-
ure 5.

Figure 5: Illustration of least squares. Black dots repre-
sent the training examples, and the thick line is the learned
function f(x). Vertical lines represent residuals.

In the lls case, the sum of the squared residuals

S(a) =

N∑
n=1

(yn − f(xn))2 (4)

=

N∑
n=1

(yn − aᵀxn)2 (5)

is minimized, which in matrix form is

S(a) = (y −Xa)ᵀ(y −Xa), (6)

with X being the N × D design matrix that com-
bines all the input vectors, and the N × 1 vector y
combining all scalar target values:

X =

x1,1 x1,2 · · · x1,D
x2,1 x2,2 · · · x2,D

...
...

. . .
...

xN,1 xN,2 · · · xN,D

 , y =

y1
y2
...
yN

 , (7)

where each row corresponds to one input/target ex-
ample. The slopes of the linear model that mini-
mize (6) are

a∗ = arg min
a

S(a) (8)

= arg min
a

(y −Xa)ᵀ(y −Xa), (9)

which is a continuously differentiable unconstrained
optimization problem. The solution of this problem
is to determine when the derivative

S′(a) = 2(a(XᵀX)−Xᵀy) (10)

is 0, which is the case when

a∗ = (XᵀX)−1Xᵀy. (11)

Thus, given the input data in X and target data in
y, the linear function that best fits the data – in
terms of minimizing the sum of squared residuals –
is f(x) = a∗ᵀx.

Before continuing, we want to draw explicit at-
tention to the difference between the model used in
this section – the linear model in (1) – and the al-
gorithm used to determine the model parameters of
the model – the computations in (11). Note that to
make a prediction for a novel input xnew, we need
only to know the model (linear) and its parameters
(a), but not the algorithm used to compute a.

2.1. Least Squares and Least Deviations
The Lp-norm ‖z‖p of a D-dimensional vector z

is defined as

‖z‖p =

(
D∑
d=1

|zd|p
) 1
p

. (12)

The L2-norm is commonly known as the Euclidean
distance, and the L1-norm as the Manhattan dis-
tance.

As the name implies, linear least squares uses the
sum of squares of the residuals as the error measure
to minimize. This corresponds to the square of the
L2-norm of the residuals, and we may rewrite (9)
as

a∗ = arg min
a

(‖y −Xᵀa‖2)
2

(13)

= arg min
a

(N∑
n=1

|yn − aᵀxn|2
) 1

2

2

(14)

= arg min
a

(
N∑
n=1

|yn − aᵀxn|2
)
. (15)

Alternatively, one may minimize the L1-norm of the
residuals

a∗ = arg min
a
‖y −Xᵀa‖1 (16)

= arg min
a

(
N∑
n=1

|yn − aᵀxn|

)
. (17)

which is known as “least absolute devia-
tions” (Bloomfield and Steiger, 1980). Regression
with the L1-norm is more robust, but a disadvan-
tage is that (16) cannot be solved analytically, so
an iterative optimization approach is required.

4

2.2. Regularized Least Squares

Potential singularities in (XᵀX) may make it dif-
ficult to invert this matrix, which can result in very
large values in the vector a. A solution to this issue
is to explicitly penalize large weights, which results
in Regularized Linear Least Squares (rgls), where
(9) becomes

a∗ = arg min
a

(
λ

2
‖a‖2 +

1

2
‖y −Xᵀa‖2

)
, (18)

where λ is a parameter that determines the trade-
off between small values in a and small residuals.
Using the L2-norm for ‖a‖

‖a‖2 =

(
D∑
d=1

|ad|2
) 1

2

(19)

is called Thikonov regularization. rgls with
Thikonov regularization is known as Ridge Regres-
sion (rr). Using the same derivation as for (11),
the analytical solution to this least squares mini-
mization problem is

a∗ = (λI + XᵀX)−1Xᵀy. (20)

It is also possible to use the L1-norm

‖a‖1 =

D∑
d=1

|ad|, (21)

which has the advantage that values in a will tend
to go to zero. In the context of basis function net-
works (Section 5), the L1 norm can thus be used as
a feature selector. Here again, using the L1-norm
does not have an analytical solution as in (20). Sev-
eral algorithms for finding solutions are described
in (Tibshirani, 1996; Schmidt, 2005). In the context
of rgls, the L1-norm is known as the “least abso-
lute shrinkage and selection operator” (LASSO).

Another norm is used in Support Vector Regres-
sion (svr) methods, which we discuss in Section 5.5.
These three norms are visualized in Figure 6.

2.3. Adding offsets to the linear model

In the above, we have assumed that the data is
centered, in which case a linear model f(x) = aᵀx
suffices. If the data is not centered, an offset should
be added so that the linear model becomes f(x) =

Figure 6: Visualization of the L1, L2, and svr norm.

aᵀx + b, which we may rewrite as f(x) = [ab]
ᵀ

[x1].
In this case, the design matrix becomes

X =

x1,1 x1,2 · · · x1,D 1
x2,1 x2,2 · · · x2,D 1

...
...

. . .
... 1

xN,1 xN,2 · · · xN,D 1

 (22)

The result of fitting a linear model with offsets to
our example data – which are sampled from the
function y = 0.5x+sin(x) – is depicted in Figure 5,
where the estimated function is f(x) = 0.11x+1.18.

2.4. Multivariate regression

In multivariate regression, the output space is
multi-dimensional (Y ⊆ RM), where the output is
thus a vector, a becomes a matrix A, and the linear
model is

f(x) = Aᵀx. (23)

The design matrix of inputs is the same matrix X,
but the targets are now stored in a matrix Y, and
the least squares solution becomes

A∗ = (XᵀX)−1XᵀY. (24)

This solution is decoupled between the different
output variables, and corresponds to M separate
univariate least squares solutions:

a∗m = (XᵀX)−1Xᵀym. (25)

In the rest of this paper, we will mostly use a 1-D
output, for ease of presentation and visualization.
All examples are easily extended to the multivariate
case by applying (24) or (25).

2.5. Batch vs. Incremental Learning

Equations (11) and (20) provide a batch method
for finding the optimal weights w∗, by considering

5

the training examples all at once. In contrast, in-
cremental methods are able to update the weights
(and other parameters of the model) incrementally,
one training example at a time.

Throughout this paper, we present several mod-
els for which both batch and incremental algorithms
exist. For instance, the weights of a single-layer
feedforward network can be trained through Ex-
treme Learning Machines (batch) or backpropaga-
tion (incremental). The weights of a mixture of lin-
ear models can be updated through locally weighted
regression (batch) or receptive field weighted regres-
sion (incremental).

For least squares, the batch method in (11) and
(20) requires the inversion of a matrix, which has
complexity O(N3). In fact, incremental methods
also exist for linear least squares itself. The most
well-known is the Recursive Least Squares (rls,
Plackett, 1950), which updates the linear model
from each new example without recomputing (11)
at each step.

Alternatively, one can use the Sherman-Morrison
formula, which enables the inverse to be updated
incrementally, reducing the inversion complexity to
O(N2). However, this method is sensitive to round-
ing errors; a numerically more stable option consists
in updating the Cholesky factor of the matrix using
the qr algorithm (Gijsberts and Metta, 2012).

Another incremental approach to solving these
equations consists in optimizing the weights of a
matrix that stands for (XᵀX)−1 using gradient
methods, as in the backpropagation algorithm for
instance (see Section 5.10).

Note that the distinction between batch and in-
cremental learning is related to, but not the same
as the distinction between offline and online learn-
ing. A batch algorithm uses all the training data at
once. An incremental algorithm updates an exist-
ing model incrementally, using one training exam-
ple at a time. In offline learning, all examples are
stored and accessible, whereas in online learning a
training example is forgotten once it has been pro-
cessed. Batch learning is always off-line, because it
needs access to all the training examples at once,
and they must thus be stored in memory. Online
training always requires an incremental algorithm,
because only one data example can be considered
at a time, and the algorithm must thus be able to
update the model incrementally. However, incre-
mental learning can also be performed in an offline
setting, by providing the stored examples to the al-
gorithm one by one, but without deleting them from

memory. The term ‘online’ is often (inaccurately)
used to denote ‘incremental’ (Wilson and Martinez,
2003).

2.6. Model parameters and Meta-parameters

Figure 2 illustrates that regression algorithms as-
sume a certain type of model. Each algorithm is
designed to determine the optimal values of the pa-
rameters of this model, given an optimization crite-
rion. Meta-parameters are algorithmic parameters
that the user has to provide as an input to the al-
gorithm. An understanding of linear least squares
allows us to now give specific examples for an al-
gorithm’s model parameter and meta-parameters.
This distinction is important for later sections.

The model used in linear least squares is a linear
model, i.e. f(x) = aᵀx. The model parameters are
thus a. If we use an offset f(x) = aᵀx + b, the
model parameters are a and b. Model parameters
are all the parameters that are required to make a
prediction for a novel output.

Linear least squares has no meta-parameters;
there is no parameter the user has to tune to
make the algorithm work. But in linear least
squares with Thikonov regularization, the user has
to tune the parameter λ, which determines the
trade-off between having small values in a and hav-
ing small residuals. The parameter λ is thus a meta-
parameter of regularized linear least squares.

The important insight is that regularized lls and
‘standard’ lls use the exact same model, and thus
have the same aim: optimize the values in the
model parameter vector a. ‘Standard’ lls will al-
ways optimize a in the same way, and the values
in a will always be the same for the same training
data. With regularized lls however, the resulting
values in a depend not only on the training data,
but also on the meta-parameter λ.

The main contribution of this article is to show
that all the algorithms in Table 1 use the same uni-
fied model, and they thus all have the same aim:
optimize the values in the ‘unified model parameter
vector’. They algorithms only differ in the proce-
dure used to determine the values of the parameters
of the unified model, and in the meta-parameters
that the user must tune.

3. From Linear Least Squares to Non-linear
Regression

Linear least squares (lls) regression can be ex-
tended in two distinct ways to non-linear regression,

6

yielding two classes of algorithms:

• Algorithms that perform multiple weighted lls
regressions, using different input-dependent
weighting functions. The resulting model is a
mixture of linear models. This model is used
in lwr, rfwr, lwpr, xcsf, gmr, and M5 (see
Table 1 for full names).

• Algorithms that project the input space into
a feature space using a set of non-linear basis
functions, and performing one lls regression
in this projected feature space. The result-
ing model is a weighted sum of basis functions.
This model is used in rbfns, krr, gpr, svr,
irfrls, i-ssgpr, CART, and elm.

In this section, we first present two algorithms
– Locally Weighted Regression (lwr) and regres-
sion with Radial Basis Function Networks (rbfn)
– which are representative for each class. We have
chosen these two algorithms as representatives of
their class for pedagogical reasons, because they are
the most straight-forward extensions to linear least
squares, and thus require only little explanation be-
yond the previous section. Based on the models
used in these illustratory algorithms, we then in-
troduce the unified model. In Section 4 and 5, we
go through the algorithms in Table 1 one by one, we
highlight their relationships and demonstrate how
they all use the same unified model to represent the
parameterized function.

3.1. Locally Weighted Regression (lwr)

When performing the fitting in lls, we may pre-
fer to give certain data points more weight than
others. Thus, for each training example (xn, yn),
we define a corresponding weight wn. With these
weights, the sum of residuals is now computed as

S(a) =

N∑
n=1

wn(yn − aᵀxn)2. (26)

When minimizing S(a) with this weighting, it is
more important to minimize residuals that have
large weights. For instance, examples (xn, yn) that
have a weight of wn = 0 do not contribute at all.

Defining W to be an N ×N diagonal weight ma-
trix with Wnn = wn, and rewriting (26) in matrix
form

S(a) = (y −Xa)ᵀW(y −Xa), (27)

the weighted linear least squares solution becomes

a∗ = (XᵀWX)−1XᵀWy. (28)

The weights for each sample are typically defined
as a function of the input space through a function
φ, parameterized with θ

wn = φ(xn,θ). (29)

A commonly used weighting function is the multi-
variate Gaussian:

φ(xn,θ) = g(xn, c,Σ) with θ = (c,Σ) (30)

g(x, c,Σ) = exp
(
− 1

2 (x− c)ᵀΣ−1(x− c)
)
, (31)

where θ is a tuple containing the parameters of a
multivariate Gaussian. An example of a Gaussian
weighting function with c = π and Σ = 1.0 is plot-
ted in graph B2 of Figure 7. In B1 , the weights
wn are visualized by the thickness of the vertical
lines representing the residuals. When comparing
A1 and B1 , it becomes clear that weighting the ex-
amples can lead to a very different parameterization
of the linear model.

Again, we draw explicit attention to the fact that
the model in linear least squares and weighted linear
least squares is exactly the same (1); only the algo-
rithm used to determine the model parameters a is
different, i.e. compare (11) and (28).

Locally Weighted Regression (lwr) is an exten-
sion of weighted linear least squares, in which E
independent weighted regressions are performed on
the same data (in the design matrix X), but with
E different weight matrices We.

for e = 1 . . . E

ae = (XᵀWeX)−1XᵀWey. (32)

In practice, this usually means using the same type
of weighting function, but with different parameter
vectors θe=1...E , for instance a set of E Gaussians
with different centers ce=1...E , as depicted in graph
C2 of Figure 7.

Performing weighted least squares E times for the
different weighting functions leads to E local linear
models aᵀ

ex+be, which are visualized as dashed lines
in C1 . By choosing E Gaussian weighting functions
φe(x) = g(x, ce,Σe) with different centers ce in the
input space, each linear model is thus responsible
for fitting a different part of the data, as depicted
in C1 in Figure 7. This ‘local responsibility’ is the
reason for the name Locally Weighted Regression.

7

Figure 7: Illustration of four regression algorithms. Black dots represent the 20 training examples, and the thick (red) line is the
learned function f(x). Vertical lines represent residuals, where the thickness of these lines indicates their weight. Dashed lines
represent local models. The lower row visualizes the basis functions, where for lwr the thin line represents the unnormalized
basis functions (normalization is not necessary for the other algorithms). The right graph plots the feature space for rbfn.
Each data point in graph D3 is acquired by computing the value of both φ(x, c1) and φ(x, c2) (which can be read from D2),
and plotting y against these two values. Because the 2D feature space φ(x, c1), φ(x, c2) is of a higher dimension that the 1D
input space x, we now have a 3D plot.

The resulting model is a weighted sum of these
linear models, where the weights are determined by
the functions φ(x,θe):

f(x) =

E∑
e=1

φ(x,θe) · (aᵀ
ex). (33)

If we include the offsets be in the linear model and
use the extended design matrix as explained in Sec-
tion 2.3, we acquire the model

f(x) =

E∑
e=1

φ(x,θe) · (aᵀ
ex + be), (34)

which is visualized in Figure 8.

x1

xD

...

1

φ1

φ2

φE

∑

∑

∑...

∑
y

b 1

b2
bE

a1,1

a1,2

a
1,E

aD
,1

aD,2

aD,E

w
1

w2

wE

Figure 8: Function model in Locally Weighted Regression,
represented as a feedforward neural network. The functions
φe(x) generate the weights we from the hidden nodes – which
contain linear sub-models (aᵀ

ex + be) – to the output node.
Here, φe is an abbreviation of φ(x,θe)

Because each of the E local least squares regres-
sions is performed independently of the others, the
summation in (33) and (34) requires the weighting

functions to be normalized, i.e.
∑E
e=1 φ(x,θe) = 1.

For instance, the normalized Gaussian weighting
function is:

φ(x,θe) =
g(x, ce,Σe)∑E

e′=1 g(x, ce′ ,Σe′)
with θe = (ce,Σe).

(35)

In summary, the lwr algorithm performs several in-
dependent weighted linear least squares regressions
on the same data, but each with a different weight-
ing function, usually localized around a different
part of the input space. The result is a weighted
sum of linear models, where the models are linear,
and where the weights are determined by the (nor-
malized) weighting functions.

3.2. Regression with Radial Basis Function Net-
works (rbfns)

Instead of differently weighting each input sam-
ple – as in weighted linear least squares and lwr –
an alternative extension to lls is to project each in-
put sample into a higher-dimensional feature space
using a set of basis functions. Thus, instead of a
linear function model f(x) = aᵀx =

∑D
d=1 ad · xd

we now have

f(x) =

E∑
e=1

ae · φ(x,θe). (36)

8

Here, a is no longer of size D×1 (with D the dimen-
sionality of the input examples) but rather E × 1
(with E the number of basis functions). In the lit-
erature, it is more customary to use w (‘weights’)
instead of a; a custom which we adopt in this sec-
tion.

f(x) =

E∑
e=1

we · φ(x,θe) (37)

This model is a weighted sum of basis functions.
The term basis function is used because the sub-
functions φ(x,θe) are the ‘building blocks’, or ‘ba-
sis’, from which f(x) is constructed.

When the basis functions are radial, it is called
a Radial Basis Function Network (rbfn). This
means that the output of the basis function depends
only on the distance to a center, i.e. φ(||x− c||). A
frequently used radial basis function is a Gaussian
function, as in (31). Two Gaussian basis functions
with centers c1 and c2 are plotted in D2 in Figure 7.

In a linear model f(x) = aᵀx, the model is linear
in the parameters a and linear in the input x. In
contrast, (37) is non-linear in the input x, but it
is still linear in the parameters w. Thus, we can
readily apply lls to acquire the parameters w, even
if the resulting function f(x) is not linear.

To apply lls to optimize w, we define the pro-
jected version of the design matrix – the feature
matrix – which is N×E (one column for each basis
function feature) instead of N ×D as in (7)

Θ =

φ(x1,θ1) φ(x1,θ2) · · · φ(x1,θE)
φ(x2,θ1) φ(x2,θ2) · · · φ(x2,θE)

...
...

. . .
...

φ(xN ,θ1) φ(xN ,θ2) · · · φ(xN ,θE)

 (38)

and we get the least squares solution

w∗ = (ΘᵀΘ)−1Θᵀy. (39)

This transforms non-linear regression in the input
space into linear regression in a feature space, where
the basis functions are responsible for projecting
the input space into the feature space. The feature
space is generally of higher dimensionality than the
input space (i.e. E > D). In graph D3 of Fig-
ure 7, we visualize the projection of the data from
the 1D input space into a 2D feature space using
the two Gaussian basis functions. The plane which
minimizes the residuals is also shown. The slopes
w of this plane correspond to the weights of the

basis functions, and w1φ(x, c1) and w2φ(x, c2) are
plotted in D1 .

Note that the function can be approximated rela-
tively well with only these two basis functions; this
is because their position has been manually tuned
for this illustratory example. Several methods for
automatically tuning the number of basis functions
and their parameters are presented in Section 5.2.

In summary, non-linear regression can be
achieved by using a set of basis functions to project
the input space into a feature space, and to perform
lls in the feature space. The result is a weighted
sum of linear models, where the models are the basis
functions, and where the weights w are determined
by a single linear regression. An example of such a
model is a radial basis function network.

3.3. A Unified Model

When listing both models – a mixture of linear
models (34) and a weighted sum of basis functions
(37) – together

f(x) =

E∑
e=1

φ(x,θe)·(be + aᵀ
ex) (40)

f(x) =

E∑
e=1

φ(x,θe)· we, (41)

it becomes clear that (41) is a special case of (40)
with ae = 0 and be ≡ we. This is also illustrated in
Figure 9.

Going from a mixture of linear models (top lwr
network in Figure 9) to a sum of weighted ba-
sis functions (bottom rbfn network in Figure 9)
leads to an interesting shift of interpretation. In
an rbfn, the sub-models in the hidden nodes are
basis functions, whereas in lwr, these sub-models
are linear models. In an rbfn, the weights are
the (degenerate) lines (be=1...E), whereas in lwr,
these weights are determined by the basis functions.
Thus, the roles of the function implementing the
sub-models/weights are switched between the rep-
resentations. Due to this required shift in inter-
pretation, the relationship between the two models
may not be immediately obvious.

A closer inspection of the differences between the
models also reveals why multiple lls regressions are
necessary in lwr, whereas only one lls regression is
required in rbfn. In (40), the model is not linear
in the parameters be and ae, and lls cannot be
applied.

9

x1

xD

...

1

φ1

φ2

φE

∑

∑

∑
...

∑
y

b 1

b2

bE

a1,1

a1,2

a
1,E

aD
,1

aD,2

aD,E

w
1

w2

wE

f(x) =
∑E
e=1 φ(x,θe)(a

ᵀ
ex + be)

|
a = 0
↓

x1

xD

...

1

φ1

φ2

φE

...

∑
y

b 1

b2

bE

w
1

w2

wE

f(x) =
∑E
e=1 φ(x,θe)be

≡

x1

xD

...

φ1

φ2

φE

...

∑
y

b1

b2

bE

f(x) =
∑E
e=1 beφ(x,θe)

Figure 9: The rbfn model is a special case of the lwr model,
with model parameters a = 0. Here, φe is an abbreviation
of φ(x,θe)

In summary, the model used in lwr is a mixture
of linear models, and in rbfn it is is a weighted sum
of basis functions, the latter being a special case of
the former with a = 0. In the next two sections,
we list several algorithms that yield a mixture of
linear models (Section 4) and a weighted sum of
basis functions (Section 5). Throughout, it is im-
portant to keep in mind that the model of all these
algorithms are special cases of the unified model in
(40).

4. Model: Mixture of Linear Models

In Section 3.1 we summarized that lwr yields
a function whose underlying model is a mixture
of linear models, where the sub-models are linear,
and where the weights are determined by the (nor-
malized) weighting functions. In this section, we

describe several algorithms which yield the same
model, including Receptive Field Weighted Regres-
sion (rfwr), Locally Weighted Projection Regres-
sion (lwpr), xcsf, Gaussian Mixture Regression
(gmr), and M5.

4.1. Algorithm: Locally Weighted Regression (re-
visited)

Before turning to other algorithms, we briefly
revisit lwr to discuss its algorithmic meta-
parameters. In the lwr algorithm (Atkeson and
Schaal, 1995), the number of linear models, and the
position and center of the weighting functions are
fixed and must be specified by the user. Assuming
diagonal covariance matrices for Gaussian weight-
ing functions, this leads to 2 · E ·D parameters to
be tuned, i.e. a D-dimensional center and covari-
ance matrix diagonal for each of the E weighting
functions.

When the dimensionality of the input space is
not too large, for instance when using lwr in the
context of dynamical movement primitives (Ijspeert
et al., 2013), it may suffice to specify the number
of weighting functions per dimension (i.e. D inte-
gers), and space the centers equidistantly within the
bounds of the input data. The diagonals of the co-
variance matrices can be determined automatically
by specifying the height at which the (unnormal-
ized) weighting functions should intersect, see Fig-
ure 10 for an illustration. This reduces the number
of meta-parameters for lwr to D+1. Alternatively,
cross-validation over the training set may be used
to determine these parameters.

Figure 10: Meta-parameters for lwr: the number of weight-
ing functions (E = 3 above) whose centers are spaced
equidistantly in the range of the input data, and the inter-
section height of the unnormalized weighting functions (0.35
above).

Although proposed almost two decades ago, lwr
is still a competitive, widely-used algorithm, due to
its simplicity. Fitting results may, however, become
brittle if the input space dimensionality is high and
not enough data is available.

10

4.2. Algorithm: Receptive Field Weighted Regres-
sion

The rfwr algorithm is the incremental variant of
lwr, and it automates the choice of several model
parameters (Schaal and Atkeson, 1997). The main
differences to lwr are:

• rfwr is incremental, rather than batch, and
uses Recursive Least Squares (rls) instead of
a batch ls algorithm.

• New linear models and weighting functions –
called receptive fields – are added automati-
cally by the algorithm when needed, i.e. when
some input point is not covered by any recep-
tive field.

• The centers and covariance matrices of the re-
ceptive fields are also adapted.

This flexibility comes at the cost of having to tune
several meta-parameters, such as thresholds for re-
moving or adding receptive fields as well as first
and/or second order learning rates. These meta-
parameters control the dynamics of incremental
learning; these dynamics are often difficult to pre-
dict, let alone the influence the meta-parameters
have on the dynamics. Therefore, setting these
meta-parameters is not always easy nor intuitive.

4.3. Algorithm: Locally Weighted Projection Re-
gression

The lwpr algorithm (Vijayakumar and Schaal,
2000) is an extension of rfwr, in which a low-
dimensional affine projection is realized before fit-
ting the linear models. For 1-dimensional input
spaces, no such low-dimensional projection is pos-
sible, and lwpr becomes equivalent to rfwr (Vi-
jayakumar and Schaal, 2000). In lwpr, linear mod-
els are fitted using an iterative version of Partial
Least Squares called nipals (Geladi and Kowalski,
1986).

As outlined by Sigaud et al. (2011), lwpr is par-
ticularly interesting to perform regression when the
data lies in a limited domain - because it adds re-
ceptive fields only in this domain - in a space with
a high dimensionality - because it uses nipals to
infer reduced linear models. Therefore, it has of-
ten been used to learn mechanical models of robots
along trajectories, see Sigaud et al. (2011) for a sur-
vey. lwpr has many of the same meta-parameters
as rfwr, and thus the same difficulties in tuning
these meta-parameters apply.

4.4. Algorithm: XCSF
The xcsf algorithm (Butz et al., 2009) also uses

a mixture of linear models. The algorithm manages
a population of classifiers that contain a condition
part and a prediction part. The condition part is
usually defined as a Gaussian function which deter-
mines the area of influence of the prediction part.
The prediction part is usually a linear model. The
population of classifiers is optimized using a ge-
netic algorithm, and the corresponding local linear
models are learned using rls. Once the population
of classifiers stabilizes, a condensation operator re-
moves all the unnecessary classifiers.

A key feature of xcsf comes from the insight that
the local linear models and corresponding Gaussian
functions do not need to be defined over the full
input space, an insight which can give rise to much
more compact models, see Sigaud et al. (2011) for
details.

Additionally, lwpr uses nipals instead of rls
whereas xcsf can build local linear models in a
predetermined subdomain of the input space. As
lwpr, xcsf suffers from the necessity to empiri-
cally tune several meta-parameters, though some
of them can be set more intuitively in xcsf than
in lwpr. See Sigaud et al. (2011) for further dis-
cussion and Droniou et al. (2012a) for an empirical
comparison.

4.5. Algorithm: Gaussian Mixture Regression
The underlying assumption in Gaussian Mixture

Regression (gmr) is that the data in the joint
input×output space can be well represented by a set
of Gaussians, which is known as a Gaussian Mix-
ture Model (gmm). For an illustration of a gmm
consisting of three Gaussians, see Figure 11.

Figure 11: Left: Gaussian Mixture Model (gmm) with
3 Gaussians on the 20 example data points. This model
is acquired through unsupervised learning on the joint
input×output space. Right: Gaussian Mixture Regression,
which yield the mean and variance in the output space Y
when conditioning on the input space X.

11

Training: unsupervised learning. A notable feature
of gmr is that the training phase consists of unsu-
pervised learning. It is performed by fitting a Gaus-
sian Mixture Model (gmm) to the data with the
Expectation-Maximization (em) (Dempster et al.,
1977) algorithm. k-means clustering is commonly
used to provide a first initialization of the centers
of the Gaussians. Because em is an unsupervised
learning algorithm, there is no distinction between
an input xn and a target yn example, and they are
concatenated into one vector zn = [xᵀ

n yn]ᵀ. The
gmm represents a model of the density of the vec-
tors zn as a weighted sum of E Gaussian functions:

p(zn) =

E∑
e=1

πeN (zn;µe,Σe), with

E∑
e=1

πe = 1.

(42)

The em algorithm adjusts the priors πe and the
parameters of the Gaussian functions (the means µe
and covariance matrices Σe) that define this model,
see Ghahramani and Jordan (1993) for details. The
only meta-parameter of the training phase is E, the
number of Gaussians.

Regression: conditioning on the input. As noted by
Ghahramani and Jordan (1993), the learned den-
sity can be exploited in several ways, since we can
estimate y = f(x), x = f−1(y), or any other re-
lation between two subsets of the elements of the
concatenated vector [xᵀ

n yn]ᵀ.
In regression, we are interested in predicting y =

E(y|x), the expectation of y given x. To do so,
µe and Σe can be separated in input and output
components as follows

µe = [µᵀ
e,X ,µ

ᵀ
e,Y]ᵀ and Σe =

[
Σe,X Σe,XY

Σe,Y X Σe,Y

]
,

(43)

For instance, if the dimensionality of the input
space X is 2, and that of the output space Y is
1, then Σe,X is a 2×2 sub-matrix, and Σe,Y would
be a scalar. The matrix Σe would then be of size
3× 3, being the covariance matrix of the full input
× output space.

Given the decomposition in (43), the expected
output y given an input x is then computed as

y =

E∑
e=1

he(x)(µe,Y + Σe,Y XΣ−1e,X(x− µe,X)),

(44)

with:

he(x) =
πeN (x;µe,X ,Σe,X)∑E
l=1 πlN (x;µl,X ,Σl,X)

. (45)

As a Bayesian method, an advantage of gmr over
other lwr methods is that the variance can also be
computed in the estimate of y with, see (Calinon
et al., 2007):

var(y) =

E∑
e=1

he(x)2
(
Σe,Y −Σe,Y XΣ−1e,XΣᵀ

e,Y X

)
.

(46)

Relationship to the unified model. When we rewrite
(44) for the univariate case and set aᵀ

e =
Σe,Y XΣ−1e,X and be = µe,Y − Σe,Y XΣ−1e,Xµe,X we
get

y =

E∑
e=1

φe(x)(aᵀ
ex + be), (47)

where he(x) ≡ φ(x,θe) are normalized Gaussian
functions

φ(x,θe) =
πeg(x, ce,Σe)∑E

e′=1 πe′g(x, ce′ ,Σe′)
(48)

as in (35), with the centers, widths and priors stored
in the parameter vector θe = (ce,Σe, πe). The
model in (47) is equivalent to the unified model in
(40). The relationship between the gmm and the
unified model is illustrated in Figure 12.

Note that when representing gmr with the uni-
fied model, we can no longer compute the variance
var(y) or the resulting confidence interval. This is
because the matrices required to do so (Σe,X , Σe,X

and Σe,Y X) have been compiled into ae and be.
Thus, for performing the regression from x to y the
unified model is sufficient to capture the expected
output of the gmm, but not to compute var(y).

Incremental gmr. Cederborg et al. (2010) present
a fast and incremental version of gmr named ilo-
gmr. They add to gmr a dedicated structure for
storing all the data points so as to quickly access
the points that are close to a query point. The
idea consists in performing local regression at the
query point on demand, using only a small set of
close points to build a small gmr model with only
2 or 3 Gaussian features. The resulting algorithm,
ilo-gmr, is as accurate as gmr yet performs faster.

12

Figure 12: Relationship between gmm and the unified
model. The basis functions are the (normalized) projec-
tions of the Gaussians in the gmm on the input space.
The linear models have slopes ae = Σe,Y XΣ−1

e,Y and offsets

be = µe,Y − Σe,Y XΣ−1
e,Xµe,X .

4.6. Algorithm: M5 (Model Tree Regression)

Model trees are decision trees which do not
have class labels in their leaves, but rather linear
models (Quinlan, 1992; Wang and Witten, 1997).
The classical algorithm for growing model trees is
M5 (Quinlan, 1992). In each input dimension, it
defines a decision boundary between each pair of
adjacent input examples in that dimension. If there
are N data points and the input dimensionality is
D, there are D(N − 1) decision boundaries. Each
decision boundary splits the original set S into two
subsets T1 and T2. From these boundaries, the
boundary that minimizes the standard deviation re-
duction is selected with

SDR = std(S)−
∑
i

|Ti|
|S|
× std(Ti), (49)

where std denotes the standard deviation and |...|
denotes the cardinal of a set. Equation (49) is sim-
ilar to the information gain criterion used to grow
decision trees. This splitting procedure continues
recursively until a given halting condition. After
growing the tree, it may optionally be pruned to
reduce its size. Each of E leaves in the tree is as-
sociated with a different disjoint subset Te=1...E of
the original training set S, i.e. S =

⋃E
e=1 Te and

∀eTe ⊂ S.
Within our unified model, the weighting func-

tions of a model tree are not Gaussian, but rather

box-car functions, which are 1 if the condition in
the leaf holds, and 0 otherwise. A visualization of
the model tree function representation for the ex-
ample data is shown in Figure 13.

Figure 13: Model tree representation, with linear models
(top), and non-overlapping box-car weighting functions (bot-
tom), one for each leaf in the tree.

As Figure 13 illustrates, there may be disconti-
nuities when going from one linear model to the
next. This is a consequence of using discontinuous
weighting functions, i.e. the box-car functions. To
avoid discontinuities, a smoothing procedure is usu-
ally applied when querying a model tree (Quinlan,
1992; Wang and Witten, 1997).

One of the main advantages of a model tree is
that its function representation is a tree, which can
be easily visualized and interpreted. But this ad-
vantage holds mainly with trees of limited size, and
with a large input space with many irrelevant fea-
tures (Stulp and Beetz, 2008).

The main meta-parameters for growing model
trees with M5 are the minimum number of training
examples per leaf (n), a splitting threshold on the
ratio of the standard deviation of the entire data set
and the standard deviation of the leaf under consid-
eration (σ), and whether the tree should be pruned
or not (P). Finally, a smoothing parameter k de-
termines how much the output is smoothed when
querying the model tree.

4.7. Summary

A mixture of linear models is used in lwr, rfwr,
lwpr, xcsf, gmr, and M5. Thus these algorithms
only differ in the way they tune the weighting
functions and the linear models, and in the meta-

13

parameters the user has to provide as an input to
the algorithm.

In this family, lwr is at one extreme, as all the
parameters of the weighting functions are prede-
termined by the user and the local linear models
are learned with a one batch least squares method,
whereas in lwpr and xcsf the number of linear
models and their weighting functions are adap-
tive but constrained through algorithmic meta-
parameters.

5. Model: Basis Function Network

In Section 3, we described two directions in which
standard least squares has been extended. One ex-
tension leads to a model that consists of a mixture
of linear models; algorithms that yield this model,
lwr amongst others, have been discussed in the
previous section.

In this section we turn to algorithms that yield
a weighted sum of basis functions. This model is
a special case of a mixture of linear models with
a = 0, as demonstrated in Section 3.3 and repeated
below in (50).

f(x) =

E∑
e=1

φ(x,θe)· we, (50)

In Radial Basis Function Networks (rbfns), pre-
sented in Section 3.2, the basis function φ(x,θe) is
constrained to be radial, i.e. the output of φ de-
pends only on the distance to a center: φ(||x− c||).
We refer to the most generic case – when there
are no constraints on φ – as a Basis Function Net-
work (bfn). The different models presented in this
section are all bfns, but with different basis func-
tions: rbfn uses radial basis functions, neural net-
works use mostly sigmoid or hyperbolic functions,
irfrls uses cosine functions, krls and gpr use
kernel functions, and regression trees use box-car
functions.

Because the basis function weights in all these
regression methods can be found through least
squares, in Section 5.1 we first describe three types
of design matrices used in the least squares solution.
Treating them in a separate section avoids repeat-
ing these formulae for each of the algorithms; they
are essentially the same for all.

5.1. Least Squares for Basis Function Networks

For all algorithms in this section, least squares re-
gression can be used to learn the weight associated

with each basis function. The standard and regu-
larized solutions to the least square problem from
Section 2 are repeated in (51) and (52):

w∗ = (ZᵀZ)−1Zᵀy (51)

w∗ = (λI + ZᵀZ)−1Zᵀy. (regularized) (52)

We now describe three forms that Z may take:
the design matrix, the feature matrix, or the Gram
matrix.

5.1.1. Design Matrix

In linear least squares, the matrix Z is of size
N × D, i.e. each row contains one input example,
with each column representing a different dimension
of the input space. Informally, Z may be considered
as containing the ‘raw’ input data.

Z = X =

x1,1 x1,2 · · · x1,D
x2,1 x2,2 · · · x2,D

...
...

. . .
...

xN,1 xN,2 · · · xN,D.

 (53)

5.1.2. Feature Matrix

As discussed in Section 3.2, projecting the in-
put space into a higher dimensional feature space
with E basis functions, yields an N×E feature ma-
trix (one column for each basis function feature) to
which Equations (51) or (52) are readily applicable.

Z = Θ(X) =

φ(x1,θ1) φ(x1,θ2) · · · φ(x1,θE)
φ(x2,θ1) φ(x2,θ2) · · · φ(x2,θE)

...
...

. . .
...

φ(xN ,θ1) φ(xN ,θ2) · · · φ(xN ,θE)

(54)

5.1.3. Gram Matrix (for Kernel Functions)

A kernel is a special type of basis function
which relates two elements of the input space to
each other, see Williams and Rasmussen (2006)
for their mathematical properties. In this case,
Z ≡ K(X,X) is of size N ×N , because the kernel
is evaluated on all combinations of input examples.
This matrix is known as the Gram matrix.

Z = K(X,X) =

k(x1,x1) k(x1,x2) · · · k(x1,xN)
k(x2,x1) k(x2,x2) · · · k(x2,xN)

...
...

. . .
...

k(xN ,x1) k(xN ,x2) · · · k(xN ,xN)

 .
(55)

14

Note that the same kernel function k is used for
all entries of the Gram matrix. For convenience, we
therefore drop the kernel parameters θ.

Because the Gram matrix is symmetrical, (51)
can be simplified as

w∗ = (KᵀK)−1Kᵀy (56)

= K−1y, (57)

where we use K as an abbreviation for K(X,X).
The same is possible for the regularized case, if we
replace the general Z matrix with the kernel matrix
K in (52), after some algebra we get

w∗ = (λI + K)−1y. (58)

For more details about this computation, and in
particular for a discussion about using the kernel
trick (Saunders et al., 1998) in this context, see
Williams and Rasmussen (2006).

5.1.4. Preview

Table 2 provides a preview of the algorithms pre-
sented in this section, listing which type of basis
functions they use, the type of matrix used for lin-
ear least squares, and the least squares variant they
use for batch regression. This table does not list in-
cremental methods for learning the model parame-
ters.

A
lg

o
ri

th
m

F
ea

tu
re

s?

S
iz

e
o
f
Z

?

R
eg

u
la

ri
ze

d
?

rbfn RBFs FM (E ×N) Yes
krr kernels Gram (N ×N) Yes
gpr kernels Gram (N ×N) No
irfrls cosine FM (E ×N) Yes
i-ssgpr cosine FM (E ×N) Yes
elm sigmoid FM (E ×N) No

Table 2: Design of all weighted basis function algorithms
(FM: feature matrix, RBFs: radial basis functions).

Meta-parameters and model complexity. The table
above already gives some insight into the types of
meta-parameters these algorithms have. For in-
stance, in krr and gpr each data point is the cen-
ter of one kernel. Thus, these centers depend on the
training data alone, and must not be set as meta-
parameters. When applying linear least squares to
rbfns or in irfrls, i-ssgpr or elm on the other
hand, the placement of basis functions is arbitrary,
and must thus be chosen in advance.

There are several strategies for choosing the cen-
ters of the basis functions: 1) setting them man-
ually; 2) equidistantly spacing in the range of the
input instances along each dimension; 3) randomly
sampling from the input range. 4) randomly sam-
pling from the input instances; 5) clustering the
input examples and using the cluster centers as ba-
sis function centers; In the first strategy, the cen-
ters ce=1...E are part of the meta-parameters, and
must be set by the user. In the other cases, only
E is a meta-parameter, and the centers are deter-
mined automatically. Similar strategies exist for
cosine basis functions (irfrls and i-ssgpr choose
the phases randomly) and sigmoid basis functions
(elm chooses the bias randomly).

The choice of the number of basis function E
affects the complexity of the model, and thus
bias/variance trade-off. krr and gpr take an ex-
treme position on model complexity, by using all
the training data as part of the model, thus let-
ting the “data speak for itself”. For this reason,
such algorithms are known as non-parametric re-
gression methods (Williams and Rasmussen, 2006).
Although this article focuses on parametric regres-
sion, we have nevertheless included krr and gpr
because of their similarity to rbfns and other basis
function networks presented in this section. The
disadvantage of this approach in gpr and krr is
that letting each data point speak requires patience
when there is a lot of data; it involves the inversion
of a N ×N matrix, which has complexity O(N3).

5.2. Algorithm: Regression with Radial Basis
Function Networks (revisited)

Before turning to other algorithms, we briefly re-
visit regression with rbfns to discuss its algorith-
mic meta-parameters. In rbfns, the basis functions
φ are chosen to be symmetric around some center
ce, which is therefore always a parameter of φ, i.e.
φ(x, ce, . . .). Commonly used radial basis functions
(rbfs) include the Gaussian (31). Different strate-
gies for choosing these centers were presented in
the previous section. Each of these versions yields a
slightly different algorithm, and they do not all have
the same meta-parameters. And although these al-
gorithmic variations all use the exact same model,
the algorithms may tune the values of the model
parameters in different ways, as discussed in Sec-
tion 2.6.

For the relationship between between rbfns, reg-
ularization networks, generalized splines, and di-

15

mensionality reduction, we refer to the work by
Poggio and Girosi (1990).

5.3. Algorithm: Kernel Ridge Regression

In Kernel Ridge Regression (krr), also called
Kernel Regularized Least Squares, the basis func-
tions φ are generated from a kernel function
k(x,x′), which takes two vectors from the input
space as input. Kernel functions are such that their
output is maximal when x = x′ and decreases as
the distance ||x − x′|| increases, which provides a
locality property. An example of such a function is
the Gaussian kernel.

Using these kernel functions, regression consists
in finding the weights w of the function

f(x) =

N∑
n=1

wn · k(x,xn). (59)

To perform the regression with this approach, we
first compute the Gram matrix in (55), and then
perform regularized ridge regression with (58).

How does (59) relate to the unified model in (41)?
krr turns out to be a special case where the num-
ber of basis function is identical to the number of
data points, and where each data point is the cen-
ter of a basis function. The corresponding network
model is depicted in Figure 14. Thus, while rbfn
allows arbitrarily placed basis function centers, krr
centers one basis function around each data point.

x1

xD

...

φ1

φ2

φ3

φ4

φ5

φ6

φN

...

∑
y

w
1w
2w3w4
w5
w6

wN

f(x) =
∑N
n=1 wnφn(x)

Figure 14: The function model used in krr as a network.

5.4. Algorithm: Gaussian Process Regression

In Gaussian Process Regression (gpr), the key
idea is that the output data y = {y1, . . . , yn}, or
any subset of the output data, can be thought
of as one sample from a multivariate (n-variate)
Gaussian function (Williams and Rasmussen, 2006;
Ebden, 2008). Often, it is assumed that the mean
of this distribution is 0, i.e. the Gaussian Process
is represented as

y ∼ N (0,Σ). (60)

The covariance matrix Σ is determined by the co-
variance function or kernel. A typical choice is the
Gaussian function

k(x,x′) = σ2
f exp

(
− 1

2 (x− x′)ᵀW−1(x− x′)
)
(61)

= σ2
fg(x,x′,W), (62)

as for smooth functions, we expect in general higher
covariance between points that are closer. Here, σf
represents signal variance, and W the covariance
matrix of the Gaussian kernel. The Gaussian func-
tion g, was previously defined in (31).

For a given covariance function k and N train-
ing points {(xn, yn)}Nn=1 the corresponding Gaus-
sian Process is

y ∼ N (0,K(X,X)), (63)

where K is again the Gram matrix, as in (55).
Predicting yq for a novel input xq is done by as-

suming that the novel output yq is also sampled
from a multivariate Gaussian with

[y
yq] ∼ N (0,

[
K(X,X) k(xq,X)ᵀ

k(xq,X) k(xq,xq)

]
), and (64)

k(xq,X) = [k(xq,x1), . . . , k(xq,xn)]. (65)

Conditioning this joint distribution to predict yq
given X, y, and xq yields another multivariate
Gaussian (Ebden, 2008), which predicts the proba-
bility of observing a certain yq:

yq|X,y,xq ∼ N (k(xq,X)K(X,X)−1y,

k(xq,xq)− k(xq,X)K(X,X)−1k(xq,X)ᵀ).
(66)

Thus, the best estimate for yq is the mean, and the
uncertainty in yq is captured by the variance as

yq = k(xq,X)K(X,X)−1y (67)

var(yq) = k(xq,xq)− k(xq,X)K(X,X)−1k(xq,X)ᵀ.
(68)

Figure 15 visualizes the mean yq and variance
var(yq) of the Gaussian process over the input do-
main, given 10 and 20 data points of our example
training data. We see that for areas where no train-
ing data is available, the mean tends to go towards
zero (i.e. to the mean of the Gaussian Process) and

16

Figure 15: Mean and standard deviation (yq ±
√
var(yq))

of the Gaussian process given 10 (left) or 20 (right) example
data points.

the variance goes up. When all 20 data points are
known, the variance is very low.

The open parameters of a Gaussian Process, e.g.
the parameters σ2

f and W in (62), are known as the
hyperparameters. In our terminology, these corre-
spond to the meta-parameters of the gpr algorithm
for regression. Rather than tuning the hyperparam-
eters by hand, it is customary to tune them auto-
matically by minimizing their log likelihood on a
training dataset, i.e. argminθ log p(y|X, θ), where θ
contains all the hyperparameters. For a zero-mean
Gaussian process with Gaussian kernel as in (61)
for instance, θ contains σ2

f and W. In this case,
the only meta-parameters of the gpr algorithm are
those related to the optimization of the hyperpa-
rameters of the Gaussian process.

Relation to the Unified Model. When computing
the mean yq, K(X,X) and y depend only on the
training data, not the novel input xq. Therefore,
K(X,X)−1y can be compacted in one weight vec-
tor, which does not depend on the query xq. This
substitution of K(X,X)−1y with w∗ corresponds
exactly to the linear least squares solution in (57).
The substitution yields

yq = k(xq,X)K(X,X)−1y (69)

= k(xq,X) ·w∗ apply (57) (70)

= [k(xq,x1) . . . k(xq,xN)] ·w∗ (71)

=

N∑
n=1

wn · k(xq,xn). (72)

Thus, we see that the mean of the gpr is the same
weighted sum of basis functions as in krr (see
(59)), and the same network representation as in
Figure 14 applies. As krr, gpr may thus be con-
sidered as a special case of rbfn, where each data

point is the center of one basis function, and each
basis function has the same width, determined by
the covariance function. Such links have been pre-
viously made by Williams and Rasmussen (2006);
Williams (1998); Neal (1996). Therefore, gpr is
also a special case of the unified model in (41).
From this perspective, the only difference between
krr and gpr is that the former uses regularized
least squares, and the latter standard least squares
(with λ = 0).

Figure 16 is a repetition of Figure 15, except that
we now visualize the basis functions (bottom row)
and weighted basis functions (top row), just as was
done for rbfn in Figure 7 D1 and D2 .

Figure 16: Repetition of Figure 15, this time emphasizing
that the mean in gpr is also a weighted sum of basis func-
tions.

As gpr is a Bayesian method, it provides an
estimate of the variance var(yq). However, rep-
resenting the gpr model with the unified model
means that we can no longer compute the variance
var(y). This is because the matrices required to do
so K(X,X) and y have been reduced to the vec-
tor w∗. Thus, for performing the regression from
x to y the unified model is sufficient to capture the
gpr model, but to compute var(y) or the confi-
dence interval, it is not. The same holds for gmr,
see Section 4.5.

Non-zero mean function. Prior knowledge about a
function may be introduced in the mean of the
Gaussian process. For instance, if we know the av-
erage outside temperature at a specific location is
20◦C, we may rather set the mean of the Gaussian
process to µ = 20. The mean itself may depend
on the input, so we write µ(x), which leads to a

17

Gaussian Process:

[y
yq] ∼ N (

[
µ(X)
µ(xq)

]
,
[
K(X,X) k(xq,X)ᵀ

k(xq,X) k(xq,xq)

]
), (73)

which, when conditioned on X, y, and xq yields
(the variance estimate stays the same)

yq = µ(xq) + k(xq,X)K(X,X)−1(y − µ(X)).

(74)

Note the similarity for computing the most likely
estimate of in Gaussian mixture regression in (44).
In the unified model, adding a non-zero mean to
the Gaussian process thus means the weights w∗

become K(X,X)−1(y − µ(X)), and a bias µ(xq)
needs to be added.

Sparse and online versions of gpr. Given the cu-
bic computation cost in the number of examples
n due to the inversion of K(X,X), gpr is often
not applicable online. There are two approaches
to avoiding the full inversion of K(X,X). The
sparse approach consists in limiting n by adequately
choosing the points to remember and forgetting the
rest. A good overview of this approach can be found
in Quiñonero Candela and Rasmussen (2005). For
instance, it has been recently used in Sparse Online
Gaussian Processes (sogp), in the context of learn-
ing control policies from demonstrations (Grollman
and Jenkins, 2008).

The mixture of experts approach rather consists
in splitting the global domain of the function into
smaller regions, as done in the lwr family of meth-
ods. Such combination of ideas from both fami-
lies are taken in Local Gaussian Process Regres-
sion (Nguyen-Tuong et al., 2009), see Sigaud et al.
(2011) for details, and more recently in (Meier
et al., 2014).

5.5. Algorithm: Support Vector Regression (svr)

The L1 and L2 loss functions penalize any resid-
ual that is larger than 0. In Support Vector Re-
gression (svr) a more tolerant approach is taken.
Any residual rn = yn − f(xn) that is smaller than
a given threshold |rn| < ε is not penalized. The
region in which the residuals are zero, visualized
in Figure 17, is called the ε-insensitive tube. This
leads to the ε-insensitive loss function

Lε(r) =

{
0 if r ≤ ε
|r| − ε if r > ε

(75)

Figure 17: Linear Support Vector Regression. Data points
within the ε-insensitive tube have zero penalty, and are gray.
Those outside are the support vectors, which are black.
Adapted from (Smola and Schölkopf, 2004).

This loss function cannot be minimized ana-
lytically, and the problem is rather stated as
a constrained optimization problem (Smola and
Schölkopf, 2004)

minimize 1
2‖a‖

2 + C

N∑
n=1

(ξ+n + ξ−n), (76)

subject to

rn ≤ ε+ ξ+n
−rn ≤ ε+ ξ−n
ξ+n , ξ

−
n ≥ 0

(77)

which uses the slack variables3 ξ+n and ξ−n , which
represent the distance above or below the ε-
insensitive tube, cf. Figure 17. Informally, this
problem can be formulated as “Try to find small
slopes a, such that the distances above ξ+n or below
ξ−n the tube are minimal; ideally points lie within
the tube, because this leads to ξ+n = 0 and ξ−n = 0,
and thus zero penalty for that point.” C plays the
same role as λ in Thikonov regularization; it deter-
mines the trade-off between minimizing the residu-
als and minimizing the norm of a.

This constrained optimization problem is solved
by defining a Lagrange function that incorporates
both the term to be minimized and the constraints3.
The final result for linear svr, in which the under-

3The full understanding of the solution requires knowl-
edge of “slack variables” and “Lagrangian multipliers”. Ex-
plaining these concepts is beyond the scope of this article,
and we refer to the tutorial by (Smola and Schölkopf, 2004)
for the full derivation.

18

lying model is f(x) = aᵀx + b, is:

a =

N∑
n=1

(α+
n − α−n)xn, (78)

where α+
n and α−n are the Lagrangian multipliers in

the Lagrange function for the first two constraints
in (77). With this solution, the linear function be-
comes:

f(x) = aᵀx + b (79)

=

(
N∑
n=1

(α+
n − α−n)xn

)ᵀ

x + b (80)

=

N∑
n=1

(α+
n − α−n)〈xn,x〉+ b. (81)

The slopes a are thus represented4 as a linear com-
bination of the training examples xn=1...N .

Note that the data points inside the ε-insensitive
tube do not contribute to the computation of (80),
because α+

n and α−n are 0 for these points, and
(0− 0)xn will thus always be 0, independent of the
values in the vector xn. Since only the examples
outside the tube contribute to (81), i.e. only the
example input vectors support it, they are known
as support vectors.

Using the L2 norm in krr and gpr leads to
a dense representation, in which all example data
points are required to make a prediction, and must
be stored in the model parameters. Using the Lε
norm leads to a sparse representation, in which only
a limited number of data points – the support vec-
tors – must be stored. Thus, only the support vec-
tors are part of the model parameters.

Linear least squares is readily extended to non-
linear regression by projecting the input space into
a feature space, as explained in Section 3.2. When
applying this approach to svr by using a basis func-
tion φk=1...K(x) to project in the feature space (and
using w rather than a to denote weights instead of

4Methods for computing b are presented in (Smola and
Schölkopf, 2004).

slopes), the solution becomes

wk =

N∑
n=1

(α+
n − α−n)φk(xn), (82)

f(x) =

K∑
k=1

(
N∑
n=1

(α+
n − α−n)φk(xn)

)
φk(x) + b

(83)

=

N∑
n=1

(α+
n − α−n)〈φ(xn),φ(x)〉+ b (84)

=

N∑
n=1

(α+
n − α−n)k(xn,x) + b. (85)

This last step is the “kernel trick”, which is based
on the following insights: 1) svr only requires
dot products in the feature space 〈φ(xn),φ(x)〉.
2) certain types of kernels k(x,x′) – see Smola
and Schölkopf (2004, Section 2.3) for their prop-
erties – correspond to a dot product in a feature
space. 3) 〈φ(xn),φ(x)〉 may be replaced with
k(x,x′), which avoids computing the potentially
high-dimensional feature vector φ(x) explicitly.

The representation in (85) is compatible with the
unified model in (37) with E = N (every data point
xn is the center of a basis function φn≡e) and we =
(α+
e − α−e). The offset b can be pulled into the

weight vector by defining w0 = b and k0(.) = 1.
The meta-parameters of svr are the tolerance

parameter ε and the trade-off parameter C. An
additional parameter ν can be introduced to deal
with the trade-off between the value of ε and
model complexity, giving rise to the ν-svr algo-
rithm (Schölkopf et al., 2000).

5.6. Algorithm: irfrls

To circumvent the kernel expansion problem
present in krr and gpr, Rahimi and Recht (2007)
propose to approximate the Gram matrix K with a
set of random features, giving rise to Random Fea-
tures Regularized Least Squares (rfrls).

Gijsberts and Metta (2011) present an incremen-
tal version of rfrls, named irfrls hereafter and
i-rfrr in (Gijsberts and Metta, 2012). Though
the authors present their algorithm starting from
krr, from the perspective of this paper the rela-
tionship to rbfns is stronger. Indeed, with respect
to rbfns, the key idea behind irfrls is that any
function can be approximated arbitrarily well as a
weighted sum of cosine functions, as outlined by
the theory underlying the Fourier Transform (see

19

Droniou et al. (2012b) for a presentation of irfrls
based on its relationship to Fourier Transform).
Thus, instead of using Gaussian kernels as in rbfns,
f(x) is as a set of E cosine functions

f(x) =

E∑
e=1

we · φ(x,ωe, ψe) (86)

=

E∑
e=1

we · cos(ωᵀ
ex + ψe). (87)

The basis functions are defined by randomly draw-
ing their multidimensional frequency ω and phase
ψ using ω ∼ N (0, 2γI) and ψ ∼ U(0, 2π).

As in all other rbfn-like methods, the main
meta-parameter in irfrls is the number of features
E, that is easy to tune considering a trade-off be-
tween the model accuracy and the time complexity.
The other two meta-parameters of irfrls are λ, the
regularization parameter and γ, the variance over
the period of the random cosine features. Experi-
ments on several databases confirm that rfrls and
irfrls can be set close to krr with a small enough
processing time. Indeed, irfrls shows interesting
practical performances (Droniou et al., 2012a) and
its computation time is independent of the learning
data.

To summarize, irfrls is a basis function network
approach that uses randomly sampled features, as
elm and certain variants of rbfn do. But it uses
cosine features instead of radial or sigmoid features.

5.7. Algorithm: I-SSGPR

In order to approximate a function, krr uses (59)
whereas gpr uses (67). A quick way to describe i-
ssgpr is to say that it applies to gpr the same
idea that irfrls applies to krr: instead of using
one kernel per data point, it draws a collection of
random cosine feature functions and then it solves
the resulting – non-regularized – linear least square
problem into the projected domain. Actually, i-
ssgpr also inherits from the gpr framework the ca-
pability to optimize most of meta-parameters using
the marginal likelihood (Williams and Rasmussen,
2006), so the only meta-parameter that remains to
be tuned is E.

5.8. Algorithm: CART (Regression Trees)

Regression trees (Breiman et al., 1984) are a spe-
cial case of model trees for which the slopes of the

linear model are zero (a = 0), i.e. the leaf con-
tains only one continuous value (b). Thus model
trees and regression trees follow our classification
between a mixture of linear models (model trees),
and a weighted sum of basis functions (regression
trees), the latter being a special case of the former
with degenerate linear models with a = 0.

Figure 18: Regression tree model, with degenerate linear
models (top), and box-car basis functions (bottom).

Because model trees and regression trees are
grown using very similar algorithms (M5 and
“CART learning”, respectively), and have essen-
tially the same advantages and disadvantages, we
refer to Section 4.6 for the full discussion.

Orr et al. (2000) use regression trees to initialize
a radial basis function network, thus highlighting
the similarity between these two representations.

5.9. Algorithm: Extreme Learning Machine (elm)

The Extreme Learning Machine (elm) is a
batch regression algorithm for training the weights
of a Single-Hidden Layer Feedforward Network
(slfn) (Huang et al., 2006b, 2011). An slfn is
an Artificial Neural Network (ann) that has one
input layer, one hidden layer, and one output layer,
as depicted in Figure 19. The representation5 of an

5We follow the convention by Bishop (1995), where wji

denotes the weight from layer i to layer j. For consistency
with the rest of the paper, we use d for the input layer,
e for the hidden layer, and use only one output node for
ease of presentation. Furthermore, we use different symbols
for the weights in the different layers (v for input→hidden,
w for hidden→output) to facilitate the explanation of apply-
ing least squares to learning w.

20

slfn is

f(x) =

E∑
e=1

weψ

(
D∑
d=1

vedxd

)
, (88)

=

E∑
e=1

weψ (ze) , (89)

where ze =
∑D
d=1 vedxd is the input to the acti-

vation function ψ, which is often chosen to be sig-
moid (ψ(ze) = (1+e−ze)−1) or hyperbolic (ψ(ze) =
tanh(ze)). The model is easily extended to have
multiple output nodes (Bishop, 1995).

x1

xD

...

∑
ψ1

∑
ψ2

∑
ψE

...

∑
y

v11

v21

v
E
1

v 1
D

v2D

vED

w
1

w2

wE

Figure 19: Single-Hidden Layer Feedforward Network with
D inputs and E hidden nodes. A bias may be introduced
by adding an input neuron with input 1, but it has been left
out for clarity.

The elm algorithm for determining the weights
of the slfn is essentially the same as when using
rbfns for regression, i.e. they both perform batch
linear least squares on a projected feature space.
In the elm approach, the basis function parame-
ters ve=1...E are first set randomly, and are then
used to generate the feature matrix Θ(X) (Huang
et al., 2006b). Least squares (39) is then used to
determine the parameters w.

Some extensions to elms include growing the
number of hidden nodes incrementally (Huang
et al., 2006a) – whereby hidden nodes may be pre-
selected from a random set (Huang and Chen, 2008)
– or extending them to the complex domain (Huang
et al., 2008).

The slfn model (88) used in elms is readily
made compatible with the unified model by pulling
the weights from the input layer to the output layer
into the activation function, i.e.

f(x) =

E∑
e=1

weφ(x,ve). (90)

Thus, from the model-centric perspective taken in
this paper, a slfn is a special case of a basis func-

tion network6 (and thus the unified model), where
the basis function must have the form

φ(x,ve) = ψ

(
D∑
d=1

vedxd

)
= ψ (〈ve,x〉) , (91)

where 〈ve,x〉 denotes the inner product between ve
and x.

5.10. Algorithm: Backpropagation

An incremental approach to optimizing the con-
nection weights in an artificial neural network is the
backward propagation of errors (Werbos, 1974), or
simply backpropagation. This algorithm first prop-
agates an input xn forwards through the network
(from the input to the output layer), and computes
the error 1

2 (yn−f(xn))2 at the output node. It then
propagates this error backwards through the net-
work, and updates the weights in each layer through
gradient descent. Although backpropagation is usu-
ally associated with artificial neural networks that
use sigmoid or hyperbolic activation functions, the
algorithm is also applicable to radial basis func-
tion networks (Poggio and Girosi, 1990; Schwenker
et al., 2001a).

In Figure 20, we depict one neuron of an ann,
agnostic of whether it is in a hidden or an output
layer. The local rule for updating one weight of one
such neuron is:

wji ← wji + αδjui (92)

where δj is the error between the actual output of
the neuron and the target output, ui is the input
from neuron i to neuron j, and α is the learning
rate. This rule is acquired7 by computing the par-
tial derivative of the error of the neuron w.r.t. the
weight ∂E

∂wji
.

If the node is an output node, the error δj de-
pends on the residual rn = yn − f(x), i.e.

δj = ψ′j(zj)(yn − f(xn)). (93)

If the node is a hidden node, δj is defined in terms
of errors δk of neurons in the subsequent layer, i.e.

δj = ψ′j(zj)

K∑
k=1

δkwkj . (94)

6The relationship between radial basis function networks
and multi-layer feedforward networks is further discussed in
Section 5.10.4.

7For a full derivation of the backpropagation rules, we re-
fer to (Bishop, 1995). Here, we provide only a brief summary
of the resulting rules.

21

u1

u2

uD

...

∑

zj =
∑D
i=1 wjiui

ψj(zj) oj
w
j1

wj2

w j
D

Figure 20: Detailed view of one node in a artificial neural
network. If the neuron is in a hidden layer, the output of
the neuron oj will be the input for another neuron.

This recursive rule for computing δ is what propa-
gates errors from the back (where the errors corre-
spond to the residuals at the output neuron) to the
front of the network (the input layer).

So far, we have presented backpropagation as an
incremental algorithm, i.e. it is able to update the
weights incrementally with (92), one training ex-
ample at a time. However, a batch version exists
also, which updates the weights at once, given all
the available data:

wji ← wji + α

N∑
n=1

δn,jun,i (batch version). (95)

In mini-batch learning, the weights are updated
with (95), but using sub-batches of size K <
N (Wilson and Martinez, 2003). Incremental and
standard batch training can thus be seen as special
cases with K = 1 and K = N respectively. Wil-
son and Martinez (2003) show that using batch or
mini-batch for backpropagation on a speech recog-
nition task provides no advantage over incremental
learning in terms of learning accuracy or speed.

5.10.1. Backpropagation for slfns

In the slfn depicted in Figure 19, there is only
one hidden layer, and the output node does not
have an activation function (it is identity, and
thus ψ′(ze) = 1). When applying the local up-
date rule (92) to update the weight we, we have

δ = yn − f(xn) from (93), and ue =
∑D
d=1 vedxd,

which results in

we ← we + α(yn − f(x))

D∑
d=1

vedxd. (96)

If we keep the weights ve=1...E fixed, and only the
weights to the output are thus to be trained, (96)
is an incremental gradient-based alternative to the
batch least squares used in elm.

For the weights from the input layer to the hidden
layer, δd = ψ′(zd)δewe and ud = xd, which yields
the update rule

ved ← ved + αψ′(zd)δewexd. (97)

Comparison of elm and Backpropagation. Huang
et al. (2011) show that training elms with random
features and least squares is much faster than with
backpropagation. It has lower computational cost
than using gradient back-propagation, despite the
cubic cost of computing the inverse (XᵀX)−1.

Rahimi and Recht (2008) analyze the advantages
of using random features instead of backpropaga-
tion. They show that, although being much easier
to obtain, random features can generate close to op-
timal solutions if numerous enough. This analysis is
also at the heart of the design of irfrls and i-ssgpr
(see Sections 5.6 and 5.7). A complementary analy-
sis comes from Widrow et al. (2013), who examine
under which conditions training a network bene-
fits from backpropagation or not. Schwenker et al.
(2001a) use a combination of both least squares
batch learning and incremental backpropagation.

References to empirical comparisons between
elm, backpropagation, and other algorithms are
given in Section 6.2.

5.10.2. Backpropagation for Multi-Layer Feedfor-
ward Networks (mlffs)

The network visualized in Figure 19 is easily ex-
tended to incorporate more than one hidden layer.
Following the notation by Poggio and Girosi (1990),
the function representation of such multi-layer feed-
forward networks (mlffs) is

f(x) =

E∑
e=1

weψ

(
D∑

d=1

vedψ

(
. . . ψ

(
C∑

c=1

udcxc

)
. . .

))
.

(98)

An advantage of the backpropagation algorithm
is that it optimizes all of the weights in the network
from output to input with the generic update rule
(92), and thus readily extends to multi-layer net-
works. In the multivariate, high-dimensional case,
Friedman and Stuetzle (1981) propose an advanced
gradient descent algorithm for networks with sev-
eral layers. In contrast, the least squares approach
used in elms can only be used to tune the weights
from the final hidden layer to the output layer, be-
cause these are the only weights which are linear
with respect to the output.

22

Deep Neural Networks (DNN) (Bengio, 2009) are
networks, typically feedforward, that have many
hidden layers. This allows more abstract features
to be represented in the hidden layers. Gradient
backpropagation is also used for tuning the weights
of the network, though a first stage of unsupervised
learning is commonly used to preshape those fea-
tures (Schmidhuber, 2014; Bengio et al., 2013), to
avoid the vanishing gradient problem (Hochreiter
et al., 2001). DNNs are more commonly used for
classification, where they outperform their shallow
counterpart. Whether this superiority extends to
regression is still an open question. Even for clas-
sification, understanding the reasons for the supe-
riority of DNNs is an active topic of investigation.
Researchers who address these questions tend to
use elementary basis functions that are piecewise
linear rather than nonlinear, because it provides a
better grip on their composition (Pascanu et al.,
2013). These investigations are too recent to be
properly covered in this review, so the reader is re-
ferred to Pascanu et al. (2013); Alain and Bengio
(2013); Dauphin et al. (2014) for more references to
this quickly evolving domain.

Our unified model can in principle be used to
represent a DNN, if we consider all the layers up
to the final layer of a DNN to be the implementa-
tion of a rather complex basis function (consisting
of weighted compositions of the basis functions in
preceding layers). However, this shallow perspec-
tive does not capture the dynamics of learning the
weights in preceding layers through backpropaga-
tion, nor does it provide insight in the relations to
other types of regression algorithms.

5.10.3. Backpropagation for Recurrent Neural Net-
works (rnns)

In feedforward networks, only connections to
nodes in subsequent layers are allowed. Recurrent
neural networks do not have this constraint, and
connections to nodes in previous layers or nodes
within a layer are possible. This leads rnns to
have an internal state, which changes over time
even if the input does not change. Backpropagation
through time is a generalization of backpropagation,
enabling this gradient-based method to be applied
to rnns (Werbos, 1988). Due to the cycles in rnns,
and the internal state that arises from them, rnns
cannot be captured by the unified model.

5.10.4. Comparison of rbfns and mlffs

Bishop (1995, Section 5.8) summarizes some of
the differences between rbfns and mlffs. rbfns
use radial basis functions, which take the distance
to a center as an input. Each basis function is
thus a localized representation, and only a few basis
functions are active for a given input. In contrast,
an mlff is a distributed representation, because
the sigmoid function – which splits the input space
into an active and inactive spaces – activates many
of the hidden units. Furthermore, rbfns typically
have only one layer of hidden units, whereas mlffs
often have many hidden layers (Bishop, 1995). Fi-
nally, rbfns weights are typically trained in two
phases – randomly setting or preshaping features
and then performing batch least squares – although
backpropagation has been applied also (Schwenker
et al., 2001a; Poggio and Girosi, 1990). On the
other hand, mlffs are typically trained with back-
propagation, because least squares can only be ap-
plied to the last layer of mlffs. Dorffner (1994)
discusses these differences in greater details, before
introducing a more general class of conic basis func-
tions that encompasses radial basis functions and
sigmoid activation functions. The paper also dis-
cusses the interest of combining both families of
functions in the same approximator, as in (Cohen
and Intrator, 2002).

Apart from standard activation functions such as
Gaussian, hyperbolic or sigmoidal functions, many
other families of basis functions can be used. One
can even evolve the activation function of neurons
with evolutionary techniques, sometimes leading to
higher performance than sigmoidal activation func-
tions (Augusteijn and Harrington, 2004). However,
as noted by Dorffner (1994), finding the right class
of activation functions might be very problem de-
pendent or give rise to the curse of dimensional-
ity. One can also use neural units whose activation
function is of higher order than a sigmoidal function
applied to a weighted sum of inputs. The represen-
tational power and learning complexity of several
instances of this family of networks, such as prod-
uct unit networks, is studied in (Schmitt, 2002).

5.11. Summary
All the algorithms listed in this section use the

same function model

f(x) =

E∑
e=1

φ(x,θe)· we, (99)

23

which is a special case of the unified model in (41)
with a = 0. However, different algorithms use dif-
ferent instantiations of (99), as listed in Table 2.

In krr and gpr, the number of basis functions
is taken to be N whereas in all other algorithms
this is an arbitrary parameter E. Additionally, in
gpr and krr, the basis functions are centered on
the data points whereas in rbfns, they can be ei-
ther regularly placed to pave the input space or
drawn randomly. In all models but anns, irfrls
and i-ssgpr, it is standard to use Gaussian basis
functions (that combine the kernel and radial basis
function properties), whereas irfrls and i-ssgpr
use cosine basis functions and anns more often use
sigmoids or hyperbolic functions.

Some types of anns are special cases of the
unified model (slfn) and some are not (rnns).
The backpropagation algorithms is applicable to all
anns, whereas least squares is only applicable to
slfns. The latter case, known as the elm, is very
similar to training rbfns. For further connections
between these methods, the reader is referred to
Smola and Schölkopf (2004), who examine the re-
lationship between svr and anns.

6. The Unified Model Revisited

All the algorithms discussed in this paper use the
same generic function model in (41), but different
algorithms use special cases of this generic model.
In this section, we reconsider the relationships be-
tween the two main classes of models. Furthermore,
we list, for the different algorithms, which model
parameters must be pre-specified by the user, and
which are determined by the algorithm itself.

6.1. Classification based on Special Cases of the
Unified Model

Figure 21 presents a classification of the regres-
sion algorithms presented in this paper, based on
what type of special case of the unified model they
use. Note that this perspective considers only the
model used to represent the function, and treats the
algorithmic process as a black-box. For instance,
least squares and weighted least squares output the
exact same representation (one linear model), even
if they use different methods to compute it, and
may thus yield different parameterizations of this
model.

This model-based perspective on the algorithm
leads to several observations, some straightforward,
and some rather intriguing.

• Least squares is special case of weighted least
squares, with w = 1

• Weighted least squares is a special case of Lo-
cally Weighted Regression with E = 1

• Gaussian process regression, which uses stan-
dard least squares, is the Bayesian interpreta-
tion of krr, which rather uses regularized least
squares.

• The model used in Gaussian process regression
is a radial basis function network with a po-
tentially infinite number of hidden basis func-
tions (Williams, 1998; Neal, 1996).

• irfrls is a basis function network that uses
(non-radial) randomly generated cosine basis
function. Its excellent performance in practice
raises interesting questions, because irfrls
differs from all other algorithms in this paper
but artificial neural networks in two important
ways: it uses global (cosine) rather than lo-
cal (radial) basis functions, and it generates
their parameters randomly, rather than from
the data.

• regression trees are to rbfns (both using a
weighted sum of basis functions) what model
trees are to lwr (both using a mixture of lin-
ear models), except that the trees use box-car
basis functions. Thus, even though regression
and model trees are learned using the same al-
gorithm, the underlying model they learn be-
longs to a different class.

6.2. Meta-Parameters and Empirical Comparisons

Regression algorithms differ in the number of
meta-parameters that need to be set. For instance,
for lwr, the number of basis functions, as well as
their centers and widths, must be specified by the
user. For gmr, gpr and i-ssgpr, on the other
hand, only the number of basis functions must be
set. For completeness, Table 3 summarizes the
meta-parameters for the different algorithms. The
first column lists the regression algorithms, and the
second column the underlying algorithm used for
the linear model estimation(s). Column 3-5 lists the
model-parameters related to the number, position,
and size of the basis functions. Model-parameters
that must be pre-specified by the user – and are
thus also meta-parameters of the algorithm – are
highlighted in gray. Model-parameters that are au-
tomatically determined by the algorithm are left
white. For example, in elm the number of basis

24

Mixture of linear models
(unified model)

f(x) =
∑E
e=1 φ(x,θe) · (aᵀ

ex+be)

sub-models: aᵀ
ex + be

weights: φ(x,θe)

gmr (Gaussian Mixture R.)

Gaussia
n BFs lwr (Locally Weighted R.)

rfwr (Receptive Field Weighted R.)

lwpr (Locally Weighted Projection R.)

xcsf
Any BFs

M5 (Model Trees)
Box-car BFs

Linear model

f(x) = aᵀx + b

E = 1

lls (Linear Least Squares)

(Weighted Linear Least Squares)

Weighted sum of basis functions

f(x) =
∑E
e=1 φ(x,θe) · be

sub-models: φ(x,θe)

weights: be

a = 0

rbfn (Radial Basis Function Network)

Radial φ(||x−
c||)

krr (Kernel Ridge R.)

gpr (Gaussian Process R.)Kernel φ(x,x
′)

irfrls
i-ssgpr

Cosine BFs

CART (Regression Trees)

Box-car BFs

elm (Extreme Learning Machine)

Backpropagation

Sigmoid
φ(〈x,w〉)

Figure 21: Classification of regression algorithms, based only on the model used to represent the underlying function.

functions is a meta-parameter that must be spec-
ified by the user (gray cell), whereas the centers
of the basis functions are determined automatically
through random sampling (white cell). The final
column lists any further meta-parameters which are
used for training, but not stored in the model pa-
rameters.

The settings of these meta-parameters can
greatly influence the result of fitting, and they of-
ten depend on properties of the data. Exhaustive
empirical comparisons are beyond the scope of this
paper; our aim is to show that a wide variety of al-
gorithms use different instances of the same unified
model. In Table 4, we provide references to papers
in which comparisons between the algorithms pre-
sented in this article are made.

7. Conclusion

In this article, we have described two main
classes of models that regression algorithms use –
a weighted sum of basis functions and a mixture
of linear models – and shown that the former is a
special case of the latter. Therefore, rather than
viewing every algorithm as using a different model,
we see them as variations on a common theme,
whereby these variations include the use of different
basis functions, or using degenerate linear models

with a = 0. This view thus forms a strong bridge
between seemingly disparate regression algorithms
in the field of machine learning, among which many
ann models.

Going from a weighted sum of basis functions and
a mixture of linear models requires a shift of inter-
pretation. In the former, the sub-models are basis
functions, and the weights are (degenerate) lines.
But in a mixture of linear models, the sub-models
are linear models, and the weights are determined
by the basis functions. Due to this shift in inter-
pretation, it may not be immediately obvious that
the two models are the same.

A further insight is that, in a mixture of linear
models, both the basis functions φ(xn,θe) and the
linear model aᵀ

ex + be depend on x. Since we can-
not regress against both at the same time. This
is why lwr must perform multiple weighted linear
regressions. By contrast, with a sum of weighted
basis functions, the weights are linear with respect
to the output of the basis functions, and can thus
be learned in one least squares regression.

What are the implications of having a unified
model for all these algorithms? First of all, it allows
us to clearly separate questions about models from
those about algorithms. As to the models, is it bet-
ter to use global (e.g. sigmoid, cosine) or local (e.g.
radial) features? When is it better to assume local

25

A
lg

o
ri

th
m

L
in

ea
r

m
o
d

el
es

ti
m

.

N
u

m
b

er
o
f

B
F

s
(E

)

P
o
si

ti
o
n

o
f

B
F

s
(c

e
)

S
iz

e
o
f

B
F

s
(Σ

e
)

A
lg

o
ri

th
m

ic
p

a
ra

m
et

er
s

Model: Mixture of Linear Models
lwr LS fixed fixed fixed
rfwr RLS adap. indiv. adap. many
lwpr NIPALS adap. indiv. adap. many
xcsf RLS adap. adap. adap. many
gmr EM fixed adap. adap.
M5 LS adap. adap. adap. n, σ, P , k
Model: Weighted Sum of Basis Functions
rbfn LS fixed fixed fixed
krr (RG)LS indiv. indiv. fixed λ
gpr LS indiv. indiv. fixed k(.)
svr CO adap. indiv. fixed ε
irfrls RLS fixed rand. rand. γ, λ
i-ssgpr RLS fixed rand. rand.
CART LS adap. adap. adap. n, σ, P , k
elm LS fixed rand. rand.
BProp N/A fixed adap. adap. α

Table 3: Gray: meta-parameters of the algorithms (partial
model specifications in columns 3-5 and further algorithmic
parameters in column 6) which the user must set. White:
model parameters that the algorithm determines itself. Ab-
breviations: adap.=adapted, indiv.=from individual train-
ing examples, rand.=randomly sampled, CO=constrained
optimization.

linearity – and thus use a model based on locally
weighted lines – or use weighted basis functions?
Which types of models are easier to optimize in on-
line learning, e.g. through backpropagation or re-
inforcement learning? What is the effect of mixing
different types of basis functions (Augusteijn and
Harrington, 2004)? Orthogonal question related
only to algorithms are: How should features be gen-
erated (Rahimi and Recht, 2008) – should they be
randomly generated, preshaped through unsuper-
vised learning, or optimized through constrained
optimization or backpropagation? In which con-
text should we use which norm? This work provides
a conceptual framework in which to address these
questions more clearly.

From our perspective, research topics whose full
potential has not yet been explored include

• using weighted linear models with global fea-
tures for weighting,

• deriving a locally weighted regression variant of
Support Vector Regression based on its specific

Reference Algorithms compared
(Atkeson and Schaal, 1995) lwr, mlffs
(Schaal and Atkeson, 1997) rfwr, mlffs, ls
(Vijayakumar and Schaal, 2000) lwpr, rfwr
(Schwenker et al., 2001a) elm, BProp, svr
(Williams and Rasmussen, 2006) lwpr, gpr, ls
(Grollman and Jenkins, 2008) sogp, lwpr
(Nguyen-Tuong et al., 2009) lgp, lwpr, svr, gpr
(Cederborg et al., 2010) lgp, lwpr, gmr, svr, gpr
(Lammert et al., 2010) lwr, mlffs
(Huang et al., 2011) elm, BProp, svr
(Gijsberts and Metta, 2012) gpr, lwpr, i-ssgpr
(Droniou et al., 2012a) xcsf, lwpr, irfrls
(Munzer et al., 2014) lwr, gmr, rbfn, irfrls

Table 4: List of articles, and the algorithms between which
they make empirical comparisons.

norm, which does not seem to exist,

• mixing initial batch learning with subsequent
incremental learning, as done by (Schwenker
et al., 2001b),

• and investigating which types of regression al-
gorithms yield models instances that are eas-
ily optimized in a reinforcement learning con-
text (Munzer et al., 2014).

This latter topic is highly relevant to robotics,
where skill learning is often split in two phases:
1) imitation: initializing a model of human mo-
tion from observations of human movement (Cali-
non, 2009; Stulp et al., 2012) through offline batch
regression 2) reinforcement learning: optimize the
model (incrementally or with mini-batch) with re-
spect to a cost function through trial and error ex-
ploration (Stulp et al., 2012; Marin et al., 2011).

A very pragmatic advantage of a unified model
arose whilst implementing several of the algorithms
presented here. The classes representing the models
of the different algorithms became so similar that it
was an obvious step to implement a routine for cast-
ing them all to a unified model, which greatly sim-
plified the code, and made it easier to exchange al-
gorithms. This is not merely a low-level implemen-
tation advantage though. On a more abstract level,
such modularity is an important pre-condition for
realizing the vision of model-based machine learn-
ing (Bishop, 2013).

Acknowledgments

This work was partially supported by the Eu-
ropean Commission, within the CoDyCo project
(FP7-ICT-2011-9, No.600716), and has received
funding from the European Unions Horizon 2020

26

research and innovation programme under grant
agreement No 640891. We thank Vincent Padois,
Nicolas Perrin, Ryan Lober and Mathieu Lefort for
proofreading earlier versions of this article. Thank
you Ajaya Kumar Pani for pointing out an error in
the first paragraph (we switched “dependent” and
“independent”), which we have corrected in this
version.

References

Alain, G., Bengio, Y., 2013. What Regularized Auto-
Encoders Learn from the Data Generating Distribution.
arXiv 1211.4246v4.

Atkeson, C. G., Schaal, S., 1995. Memory-based neural net-
works for robot learning. Neurocomputing 9 (3), 243–269.

Augusteijn, M. F., Harrington, T. P., 2004. Evolving transfer
functions for artificial neural networks. Neural Computing
& Applications 13 (1), 38–46.

Bengio, Y., 2009. Learning deep architectures for AI. Foun-
dations and Trends in Machine Learning 2 (1), 1–127.

Bengio, Y., Courville, A., Vincent, P., 2013. Representation
learning: A review and new perspectives. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 35 (8),
1798–1828.

Bishop, C. M., 1995. Neural Networks for Pattern Recogni-
tion. Oxford University Press.

Bishop, C. M., 2013. Model-based machine learning. Philo-
sophical Transactions of the Royal Society A 371, 1–17.

Bishop, C. M., et al., 2006. Pattern recognition and machine
learning. Vol. 1. springer New York.

Bloomfield, P., Steiger, W., 1980. Least absolute devia-
tions curve-fitting. SIAM Journal on Scientific Computing
1 (2), 290–301.

Breiman, L., Friedman, J., Olshen, R., Stone, C., 1984. Clas-
sification and Regression Trees. Wadsworth and Brooks,
Monterey, CA.

Butz, M. V., Herbort, O., 2008. Context-dependent predic-
tions and cognitive arm control with XCSF. In: Confer-
ence on Genetic and Evolutionary Computation. ACM,
pp. 1357–1364.

Butz, M. V., Pedersen, G. K. M., Stalph, P. O., 2009. Learn-
ing sensorimotor control structures with XCSF: redun-
dancy exploitation and dynamic control. In: Conference
on Genetic and Evolutionary Computation. ACM, pp.
1171–1178.

Calinon, S., 2009. Robot programming by demonstration.
EPFL/CRC Press.

Calinon, S., Guenter, F., Billard, A., 2007. On learning, rep-
resenting, and generalizing a task in a humanoid robot.
IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics 37 (2), 286–298.

Cederborg, T., Li, M., Baranes, A., Oudeyer, P.-Y., 2010.
Incremental local online Gaussian mixture regression for
imitation learning of multiple tasks. In: IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems.
pp. 267–274.

Cohen, S., Intrator, N., 2002. A hybrid projection-based and
radial basis function architecture: initial values and global
optimisation. Pattern Analysis & Applications 5 (2), 113–
120.

Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K., Gan-
guli, S., Bengio, Y., 2014. Identifying and attacking the

saddle point problem in high-dimensional non-convex op-
timization. In: Advances in Neural Information Process-
ing Systems. pp. 2933–2941.

Dempster, A. P., Laird, N. M., Rubin, D. B., 1977. Maxi-
mum likelihood from incomplete data via the EM algo-
rithm. Journal of the Royal Statistical Society. Series B
(Methodological), 1–38.

Dorffner, G., 1994. A unified framework for MLPs and
RBFNs: Introducing conic section function networks. Cy-
bernetics and Systems 25 (4), 511–554.

Droniou, A., Ivaldi, S., Padois, V., Sigaud, O., 2012a. Au-
tonomous online learning of velocity kinematics on the
icub: A comparative study. In: Intelligent Robots and
Systems (IROS), 2012 IEEE/RSJ International Confer-
ence on. pp. 3577–3582.

Droniou, A., Ivaldi, S., Stalph, P., Butz, M., Sigaud, O.,
2012b. Learning velocity kinematics: Experimental com-
parison of on-line regression algorithms. In: Proceedings
Robotica. pp. 15–20.

Ebden, M., 2008. Gaussian processes for regression: A quick
introduction. Tech. rep., Department on Engineering Sci-
ence, University of Oxford.

Fisher, R., 1925. Statistical methods for research workers.
Oliver & Boyd.

Friedman, J. H., Stuetzle, W., 1981. Projection pursuit re-
gression. Journal of the American statistical Association
76 (376), 817–823.

Geladi, P., Kowalski, B., 1986. Partial least squares regres-
sion: A tutorial. Analytica Chimica Acta 185, 1–17.

Ghahramani, Z., Jordan, M. I., 1993. Supervised learning
from incomplete data via an EM approach. In: Advances
in Neural Information Processing Systems 6. pp. 120–127.

Gijsberts, A., Metta, G., 2011. Incremental learning of robot
dynamics using random features. In: IEEE International
Conference on Robotics and Automation. pp. 951–956.

Gijsberts, A., Metta, G., 2012. Real-time model learning us-
ing incremental sparse spectrum gaussian process regres-
sion. Neural Networks.

Grollman, D., Jenkins, O. C., 2008. Sparse incremental
learning for interactive robot control policy estimation.
In: IEEE International Conference on Robotics and Au-
tomation. pp. 3315–3320.

Hersch, M., Guenter, F., Calinon, S., Billard, A., 2008. Dy-
namical system modulation for robot learning via kines-
thetic demonstrations. IEEE Transactions on Robotics
24 (6), 1463–1467.

Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J.,
2001. Gradient flow in recurrent nets: the difficulty
of learning long-term dependencies. In: Kremer, Kolen
(Eds.), A Field Guide to Dynamical Recurrent Neural
Networks. IEEE Press.

Huang, G.-B., Chen, L., 2008. Enhanced random search
based incremental extreme learning machine. Neurocom-
puting 71 (16-18), 3460–3468.

Huang, G.-B., Chen, L., Siew, C. K., 2006a. Universal ap-
proximation using incremental constructive feedforward
networks with random hidden nodes. IEEE Transactions
on Neural Networks 17 (4), 879–892.

Huang, G.-B., Li, M.-B., Chen, L., Siew, C. K., 2008. In-
cremental extreme learning machine with fully complex
hidden nodes. Neurocomputing 71 (4-6), 576–583.

Huang, G.-B., Wang, D. H., Lan, Y., 2011. Extreme learn-
ing machines: a survey. International Journal of Machine
Learning and Cybernetics 2 (2), 107–122.

Huang, G.-B., Zhu, Q.-Y., Siew, C.-K., 2006b. Extreme

27

learning machine: theory and applications. Neurocomput-
ing 70 (1), 489–501.

Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P.,
Schaal, S., 2013. Dynamical movement primitives: learn-
ing attractor models for motor behaviors. Neural compu-
tation 25 (2), 328–373.

Lammert, A. C., Goldstein, L., Iskarous, K., 2010. Locally-
weighted regression for estimating the forward kinematics
of a geometric vocal tract model. In: INTERSPEECH.
pp. 1604–1607.

Marin, D., Decock, J., Rigoux, L., Sigaud, O., 2011. Learn-
ing cost-efficient control policies with xcsf: generalization
capabilities and further improvement. In: Proceedings of
the 13th annual Conference on Genetic and Evolutionary
Computation. ACM, pp. 1235–1242.

Meier, F., Hennig, P., Schaal, S., 2014. Local gaussian re-
gression. arXiv preprint arXiv:1402.0645.

Munzer, T., Stulp, F., Sigaud, O., 2014. Non-linear regres-
sion algorithms for motor skill acquisition: a comparison.
In: Proceedings JFPDA. pp. 1–16.

Neal, R. M., 1996. Bayesian Learning for Neural Networks.
Springer-Verlag.

Nguyen-Tuong, D., Seeger, M., Peters, J., 2009. Model
learning with local gaussian process regression. Advanced
Robotics 23 (15), 2015–2034.

Orr, M. J. L., Hallam, J., Takezawa, K., Murray, A. F.,
Ninomiya, S., Oide, M., Leonard, T., 2000. Combining
regression trees and radial basis function networks. Int. J.
Neural Syst. 10 (6), 453–465.

Park, J., Sandberg, I. W., 1993. Approximation and radial-
basis-function networks. Neural computation 5 (2), 305–
316.

Pascanu, R., Montúfar, G., Bengio, Y., 2013. On the
number of inference regions of deep feed forward net-
works with piece-wise linear activations. arXiv preprint
arXiv:1312.6098.

Plackett, R. L., 1950. Some theorems in least squares.
Biometrika 37, 149–157.

Poggio, T., Girosi, F., 1990. Networks for approximation and
learning. Proceedings of the IEEE 78 (9).

Quiñonero Candela, J., Rasmussen, C. E., 2005. A unifying
view of sparse approximate Gaussian process regression.
Journal of Machine Learning Research 6, 1939–1959.

Quinlan, R. J., 1992. Learning with continuous classes. In:
5th Australian Joint Conference on Artificial Intelligence.
World Scientific, Singapore, pp. 343–348.

Rahimi, A., Recht, B., 2007. Random features for large-scale
kernel machines. In: Advances in neural information pro-
cessing systems. pp. 1177–1184.

Rahimi, A., Recht, B., 2008. Weighted Sums of Random
Kitchen Sinks: Replacing minimization with randomiza-
tion in learning. In: Advances in Neural Information Pro-
cessing Systems 21. pp. 1313–1320.

Rosenblatt, F., 1958. The perceptron: A probabilistic model
for information storage and organization in the brain. Psy-
chological review 65 (6), 386–408.

Saunders, C., Gammerman, A., Vovk, V., 1998. Ridge re-
gression learning algorithm in dual variables. In: (ICML-
1998) Proceedings of the 15th International Conference
on Machine Learning. Morgan Kaufmann, pp. 515–521.

Schaal, S., Atkeson, C. G., 1997. Receptive field weighted re-
gression. Tech. Rep. TR-H-209, ATR Human Information
Processing Laboratories.

Schmidhuber, J., 2014. Deep learning in neural networks:
An overview. arXiv preprint arXiv:1404.7828.

Schmidt, M., 2005. Least squares optimization with l1-norm
regularization. Tech. rep., CS542B Project Report.

Schmitt, M., 2002. On the complexity of computing and
learning with multiplicative neural networks. Neural Com-
putation 14 (2), 241–301.

Schölkopf, B., Smola, A., Williamson, R., Bartlett, P.,
2000. New support vector algorithms. Neural computa-
tion 12 (5), 1207–1245.

Schwenker, F., Kestler, H. A., Palm, G., May 2001a. Three
learning phases for radial-basis-function networks. Neural
Netw. 14 (4-5), 439–458.

Schwenker, F., Kestler, H. A., Palm, G., 2001b. Three learn-
ing phases for radial-basis-function networks. Neural net-
works 14 (4), 439–458.

Sigaud, O., Salaün, C., Padois, V., 2011. On-line regression
algorithms for learning mechanical models of robots: a
survey. Robotics and Autonomous Systems 51, 1117–1125.

Smola, A. J., Schölkopf, B., 2004. A tutorial on support
vector regression. Statistics and computing 14 (3), 199–
222.

Stulp, F., Beetz, M., June 2008. Refining the execution of
abstract actions with learned action models. Journal of
Artificial Intelligence Research (JAIR) 32, 487–523.

Stulp, F., Theodorou, E., Schaal, S., 2012. Reinforcement
learning with sequences of motion primitives for robust
manipulation. IEEE Transactions on Robotics 28 (6),
1360–1370, King-Sun Fu Best Paper Award of the IEEE
Transactions on Robotics for the year 2012.

Tibshirani, R., 1996. Regression shrinkage and selection via
the lasso. Journal of the Royal Statistical Society (Series
B) 58, 267–288.

Vapnik, V., 1995. The Nature of Statistical Learning Theory.
Springer, New York,.

Vijayakumar, S., Schaal, S., 2000. Locally weighted projec-
tion regression: An O(n) algorithm for incremental real
time learning in high dimensional space. In: Proceedings
of the Seventeenth International Conference on Machine
Learning (ICML 2000). Vol. 1. pp. 288–293.

Wang, Y., Witten, I. H., 1997. Induction of model trees for
predicting continuous classes. In: Poster papers of the 9th
European Conference on Machine Learning. Springer.

Werbos, P. J., 1974. Beyond regression: New tools for predic-
tion and analysis in the behavioral sciences. Ph.D. thesis,
Harvard University.

Werbos, P. J., 1988. Generalization of backpropagation with
application to a recurrent gas market model. Neural Net-
works 1 (4), 339–356.

Widrow, B., Greenblatt, A., Kim, Y., Park, D., 2013. The
no-prop algorithm: A new learning algorithm for multi-
layer neural networks. Neural Networks 37, 182–188.

Williams, C. K., Rasmussen, C. E., 2006. Gaussian processes
for machine learning. MIT Press.

Williams, C. K. I., Jul. 1998. Computation with infinite neu-
ral networks. Neural Comput. 10 (5), 1203–1216.

Wilson, D. R., Martinez, T. R., 2003. The general inef-
ficiency of batch training for gradient descent learning.
Neural Networks 16 (10), 1429–1451.

28

