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ASYMPTOTIC ANALYSIS OF A NEUMANN PROBLEM IN A
DOMAIN WITH CUSP. APPLICATION TO THE COLLISION

PROBLEM OF RIGID BODIES IN A PERFECT FLUID∗

ALEXANDRE MUNNIER† AND KARIM RAMDANI‡

Abstract. We study a two dimensional collision problem for a rigid solid immersed in a cavity
filled with a perfect fluid. We are led to investigate the asymptotic behavior of the Dirichlet energy
associated with the solution of a Laplace–Neumann problem as the distance ε > 0 between the solid
and the cavity’s bottom tends to zero. Denoting by α > 0 the tangency exponent at the contact
point, we prove that the solid always reaches the cavity in finite time, but with a nonzero velocity
for α < 2 (real shock case), and with null velocity for α � 2 (smooth landing case). Our proof is
based on a suitable change of variables sending to infinity the cusp singularity at the contact. More
precisely, for every ε � 0, we transform the Laplace–Neumann problem into a generalized Neumann
problem set on a domain containing a horizontal strip ]0, �ε[×]0, 1[, where �ε → +∞.
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1. Introduction: motivation, problem setting, and statement of the
main results. In this paper, we are interested in the asymptotic analysis of a singular
perturbed problem for the Laplace–Neumann equation in a domain Ωε depending on
a small parameter ε. The typical configuration we have in mind is the one depicted on
Figure 1, namely, the situation where Ωε is the domain located between two smooth
surfaces situated at a distance ε and touching each other at one single cusp point (the
origin) in the limit case ε = 0.

More precisely, we denote by C a smooth, open, bounded and connected set in R
2

and we assume that C is symmetric with respect to the ordinate axis, that the origin
belongs to the boundary of C, and that, near the origin, the boundary ∂C is locally
a straight line, the domain C being locally situated above ∂C. We denote by S0 a
compact, connected set, symmetric with respect to the ordinate axis as well and such
that, for some ε∗ > 0, the inclusion Sε := S0 + εe2 ⊂ C holds for every 0 < ε � ε∗

(throughout the paper, {e1, e2} stands for an orthonormal basis). With these settings,
we have Ωε := C \ Sε for every 0 � ε � ε∗ and we assume that there exists δ∗ > 0
such that Ωε is locally, near the origin, described by

{ξ := (ξ1, ξ2) ∈ R
2 : |ξ1| < δ∗, 0 < ξ2 < Hε(ξ1)},

where

Hε(ξ1) := κ|ξ1|1+α + ε,

the constants κ > 0 and α > 0 (called the tangency exponent) being given.
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Fig. 1. The symmetric domains Ωε for ε > 0 and the singular limit domain Ω0.

The Neumann problem we shall consider is the following one:

−ΔUε = Fε in Ωε,(1.1a)

∂nUε = Gε on Γε,(1.1b)

∂nUε = 0 on ∂C,(1.1c)

where Γε := ∂Sε denotes the boundary of the inclusion, n is the unit normal to ∂Ωε

directed toward the exterior of Ωε, and Fε and Gε are given functions, respectively,
defined on Ωε and Γε and satisfying the compatibility condition

(1.2)

∫
Ωε

Fε dξ +

∫
Γε

Gε ds = 0.

Our main objective in this paper is to study the asymptotic behavior of Uε as ε →
0+, and more specifically, the behavior of the associated Dirichlet energy

∫
Ωε

|∇Uε|2 dξ
as ε → 0+. For simplicity, only volume data Fε and boundary data Gε symmetric
with respect to the ordinate axis will be considered.

Let us now describe the physical problem motivating such an asymptotic analysis.

1.1. Underlying fluid-structure contact problem. We are interested in in-
vestigating the possibility of a collision between a neutrally buoyant rigid solid with
the bottom of the bounded cavity where it is immersed. In addition to the solid, the
cavity is supposed to be filled with a perfect fluid.

Sticking to the notation of the previous section, we denote by C the cavity (C has
the same properties as in the previous section), and for every time t > 0, by St the
domain occupied by the solid and by Ωt the fluid domain.

To simplify, we shall assume furthermore that at the initial time, the following
hold.

1. St=0 = Sε∗ (Sε∗ has the same properties as above, in particular, regarding
topology and symmetry).

2. The flow is irrotational, which entails, according to Helmholtz’s third theo-
rem, that it will remain irrotational for every time.

3. The flow is circulation free.
4. The velocity of the solid is vertical.

With these settings, for symmetry reasons, the motion of the solid will take place
along the ordinate axis only and St and Ωt will remain symmetric with respect to this
axis at every moment.
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In particular, the lowest point of St (which we assume, for the time being, to
be unique) has coordinates (0, ε(t)) and the velocity of the solid is therefore (0, ε′(t))
(here and subsequently, the prime denotes the time derivative).

Classically in ideal fluid theory, according to hypothesis 2 above, we introduce
at every time t � 0 the Kirchhoff potential ϕ(t, ·) related to the vertical motion of
the solid. This function solves a Laplace equation in Ωt with Neumann boundary
conditions, namely,

−Δϕ(t, ·) = 0 in Ωt,(1.3a)

∂nϕ(t, ·) = n2 on Γt,(1.3b)

∂nϕ(t, ·) = 0 on ∂C,(1.3c)

where Γt := ∂St and n = (n1, n2) stands for the unit normal to ∂Ωt directed towards
the outside of the fluid. The Eulerian velocity of the fluid reads

u(t, ·) = ε′(t)∇ϕ(t, ·) in Ωt (t � 0).

Notice at this point that the domains, and thus also the potential function, depend
on t only through ε(t). Consequently, from now on, we shall return to the notation
of the previous section and we will denote by Ωε, Sε, Γε, and ϕ(ε, ·), respectively, Ωt,
St, Γt, and ϕ(t, ·).

The dynamics governing the motion of the solid can now be derived easily from
the conservation of energy of the frictionless fluid/solid system. We denote by ms the
mass of the solid and by 	f the density of the fluid. Recall that the solid is assumed to
be neutrally buoyant, so the total energy of the system reduces to the kinetic energy
which reads merely

E(ε, ε′) :=
1

2
(ms +mf (ε))|ε′|2,

where

(1.4) mf (ε) := 	f

∫
Ωε

|∇ϕ(ε, ξ)|2 dξ

is the so-called added mass of the solid. Denoting by ε′0 < 0 the initial value of ε′(t)
(the initial velocity being (0, ε′0)), the identity E(ε(t), ε′(t)) = E(ε∗, ε′0) for every t > 0
leads to the following first order autonomous Cauchy problem for ε:

ε′(t) = ε′0

√
ms +mf (ε∗)
ms +mf(ε(t))

, t > 0,(1.5a)

ε(t)|t=0 = ε∗ > 0.(1.5b)

It is proved in [4] in a more general context that the function

ε ∈]0, ε∗] �→ mf (ε) ∈ R
+

is analytic, so there is no regularity issue as long as ε(t) > 0. Actually, classical results
for ODEs ensure that the solution exists as long as ε(t) > 0 (i.e., as long as the solid
does not touch the boundary of the cavity). Considering the Cauchy problem (1.5),
it is clear that the asymptotic behavior of the solid when getting closer to the cavity’s
bottom relies on the asymptotic behavior of mf (ε) as ε → 0+. The following cases
can occur:
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1. The added mass mf (ε) is uniformly bounded for every ε � 0. It entails that
ε′ is bounded from above by a negative constant and hence the solid will
collide with the cavity’s boundary in finite time with nonzero velocity (real
shock case).

2. The added mass mf (ε) goes to +∞ as ε goes to 0. Depending on the strength
of the blowup, two subcases are to be considered:
(a) The solid reaches the boundary of the cavity in finite time with zero

velocity (“smooth landing” case, no shock);
(b) the solution to the Cauchy problem (1.5) exists for every time t � 0. In

this case ε(t) → 0 as t → +∞ (infinite time touchdown case).
The collision problem between rigid bodies moving in a fluid has been addressed
for instance in [5, 8], and more recently in [20] where the authors prove the lack
of collision for a one dimensional model in which the fluid motion is governed by
Burgers’ equations and the solids are reduced to material points. This result has been
generalized, but for a viscous fluid driven by the Navier–Stokes equations, in two and
three dimensions in [9] and [10]. These studies assert that “frontal collisions” cannot
occur in a viscous fluid, contrary to what happens in a perfect fluid. Indeed, in [11] it
is proved that a ball immersed in a perfect fluid can hit a wall with nonzero velocity
in finite time. In the present paper, we aim to extend this result to more general two
dimensional configurations.

It is worth comparing our work with [6], where the authors consider a three
dimensional axisymmetric solid falling on a plane. The fluid is assumed to obey the
stationary Stokes equations. The purpose of the article is to study the influence of
the solid roughness and of the boundary conditions on the collision problem. There
is a striking similarity of the role played therein by the viscous energy and the one
played by the added mass in what follows. The comparison of the results is not so
easy though, since in [6] the roughness parameter is meant to tend to zero along with
the distance between the solid and the wall.

1.2. Back to the model problem: A singularly perturbed boundary
value problem. As already mentioned above, we will restrict our analysis to sym-
metric configurations (geometry, sources). For the sake of simplicity, we will use the
same notation to denote the full domains C, Sε, and Ωε and their intersections with
the half-plane {ξ1 < 0}. In addition to Γε := ∂Sε and ∂C, the boundary ∂Ωε is hence
from now on composed of Γb

ε := {(0, ξ2) : 0 < ξ2 < ε} and Γt
ε := ∂Ωε \ (∂C∪Γε ∪Γb

ε)
(see Figure 2). The analysis of problem (1.3) (in the symmetric case considered here)
leads to solving the following problem set in the half-cavity:

−ΔUε = 0 in Ωε,(1.6a)

∂nUε = n · e2 on Γε,(1.6b)

∂nUε = 0 on ∂Ωε \ Γε,(1.6c)

which is nothing but a particular case of system (1.1), specifying Fε = 0 and Gε =
n · e2.

As already mentioned concerning the general system (1.1), the main objective of
this paper is to study the convergence of the Uε solution to system (1.6) and obtain
the first order term of the asymptotics of the Dirichlet energy associated with Uε,
namely, the quantity

(1.7) Eε :=

∫
Ωε

|∇Uε(ξ)|2 dξ.
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Fig. 2. The new domain Ωε (ε � 0).

Notice that, up to a multiplicative constant, this quantity coincides with the added
mass defined in (1.4).

Deriving the asymptotics of the Dirichlet energy (1.7) requires solving two main
difficulties:

1. The solution Uε for ε > 0 and the solution U0 for ε = 0 (if it exists) are not
defined on the same domains (respectively, Ωε and Ω0) and thus, they cannot
be “compared” in a simple way.

2. The domain Ω0 is strongly singular due to the presence of a cusp at the
contact point.

A possible way to overcome the first difficulty is to artificially extend Uε inside the
solid (see, for instance, [19]), but this is far from being obvious due to the second one.
Here we propose another approach, that we first explain formally. The key ingredient
we use is a suitable change of coordinates x = Ψε(ξ) defined for every ε � 0 (i.e.,
including the limit case) such that, denoting ωε := Ψε(Ωε), we have

ωε = D ∪Rε with D ∩Rε = ∅

and where (see Figure 8)
• D is a fixed domain (i.e., independent of ε � 0);
• Rε stands for the rectangle ]0, �ε[×]0, 1[, where �ε ↗ �0 := +∞ as ε goes to
0.

Denoting by n the unit outer normal to ∂ωε and setting τ the tangent vector to ∂ωε

such that τ⊥ = n and

uε := Uε(Ψ
−1
ε ), fε := Fε(Ψ

−1
ε )| detDΨ−1

ε |,
gε := Gε(Ψ

−1
ε )|DΨ−1

ε τ |, γε := Ψε(Γε),

we will show that the general problem (1.1) is transformed into a new boundary value
problem set in ωε:

− div(Aε∇uε) = fε in ωε,(1.8a)

Aε∇uε · n = gε on γε,(1.8b)

Aε∇uε · n = 0 on ∂ωε \ γε.(1.8c)
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Notice that the compatibility condition (1.2) for the functions Fε and Gε yields∫
ωε

fε dx+

∫
γε

gε ds = 0.

Here, Aε denotes the 2 by 2 matrix with continuous coefficients defined by

(1.9) Aε :=
[
(DΨε) ◦Ψ−1

ε

][
(DΨε) ◦Ψ−1

ε

]T
| det(DΨ−1

ε )|.

The Dirichlet energy Eε defined by (1.7) takes the form

Eε =

∫
ωε

Aε∇uε · ∇uε dx.

Regarding the boundary value problem (1.8), we note the following:
1. In the new system of coordinates x = (x1, x2), comparing the solution uε

and the solution u0 is now possible since (ωε)ε�0 is an increasing sequence
of domains, all of them included in the (unbounded) domain ω0. In the new
system of coordinates, the cusp singularity is sent to infinity.

2. The operator involved is not the Laplace operator anymore but the second
order operator − div(Aε∇·) (which depends on ε � 0). However, as we will
see later, this operator is uniformly elliptic with respect to ε � 0 and x ∈ ωε.

Motivated by the physical problem (1.3), we will mainly focus on system (1.8),
obtained from system (1.6) after applying the change of variables, i.e., for a volume
source term fε = 0 and boundary data gε = DΨ−1

ε τ · e1. Recalling that the cusp is
locally described by the equation ξ2 = H0(ξ1) = κ |ξ1|1+α (with κ, α > 0), our main
result can be stated as follows.

Theorem 1. For every ε > 0, let uε be a solution to

− div(Aε∇uε) = 0 in ωε,(1.10a)

Aε∇uε · n = DΨ−1
ε τ · e1 on γε,(1.10b)

Aε∇uε · n = 0 on ∂ωε \ γε.(1.10c)

Then the following alternative holds true:
1. For α < 2: System (1.10) with ε = 0 admits a finite energy solution u0.

Moreover,

‖∇uε −∇u0‖L2(ωε) → 0 and Eε → E0 < ∞ as ε → 0+.

2. For α � 2: System (1.10) with ε = 0 has no finite energy solution and two
kinds of blowup are possible as ε → 0+ for the Dirichlet energy Eε:

(1.11) Eε ∼
ε=0

⎧⎪⎨
⎪⎩

1
3κ

−1| ln(ε)| if α = 2,

1

3
ε

3
1+α−1κ− 3

1+α
3π/(1 + α)

sin(3π/(1 + α))
if α > 2.

Let us emphasize that the behavior of the Dirichlet energy only depends on the
nature of the cusp (i.e., the constants κ and α) and not on other geometric features
of the fluid domain.

This result follows immediately from the gathering of Theorems 4 and 5 below.
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Regarding the collision problem, we claim the following.
Corollary 1. In case 1 of the theorem (α < 2), the solid will collide with the

cavity’s boundary in finite time with nonzero velocity (real shock case). In case 2
(α � 2), the solid reaches the cavity’s bottom in finite time but with null velocity
(smooth landing case).

This corollary is a restatement of Corollary 2 for the case α < 2. The case α � 2
results from the following lemma (whose proof is postponed to Appendix B) and the
estimates (1.11).

Lemma 1. Assume that Eε → +∞ as ε → 0+ and that there exists β < 2 such
that Eε = O(ε−β), then the solid reaches the cavity’s bottom in finite time but with
null velocity (smooth landing case).

Several references can be found in the literature regarding the asymptotics of the
Dirichlet problem near a tangency point of smooth components of the boundary; see,
for instance, the papers of Maz’ya, Nazarov, and Plamenevskij [13, 14, 15] and their
book [16, Chapter 14]. The Neumann problem has been investigated more recently. In
particular the singular behavior of the limit problem is derived in [17, 18] while the full
asymptotics with respect to the small parameter ε is studied in [3, 2]. In particular,
Cardone, Nazarov, and Sokolowski provide in [2] the first order asymptotics for the
Neumann problem with thin ligaments in arbitrary dimension. However these papers
deal with the case where the tangency exponent α of the cusp is an even integer 2m.

In this paper, we propose a new method to obtain the first order approximation
of the solution for the two dimensional Neumann Laplacian problem for arbitrary
tangency exponent α > 0. Our method relies on the use of a suitable change of
variables leading to the study of Neumann problems set on the domains ωε and on a
precise description of the asymptotic behavior at infinity of the solutions uε of these
problems when ε tends to 0. Let us point out the main advantages of our approach :

1. Since ωε defines an increasing sequence, the solutions uε and the (potential)
limit solution u0 can be easily compared on the domain ωε in which they are
both defined.

2. The cases ε > 0 and the limit case ε = 0 can be handled exactly in the same
way in the new geometry ωε. Indeed, using an appropriate weighted Sobolev
space (with a decaying weight as x1 → ∞), we will deal with uniformly elliptic
Neumann problems on the domains ωε for all ε � 0.

3. In the new variables, the strength of the cusp (i.e., the parameter α) appears
only in the operators and the boundary data of the Neumann problems and
does not appear in the weight used in the functional spaces. Let us also
emphasize that this makes our approach valid for arbitrary α > 0, integer or
not.

4. Finally, let us point out that our method can be, in principle, generalized
to higher dimensions. The limit problem initially set on Ωε ⊂ R

d is then
transformed into a problem set on R

d−1
+ × (0, 1).

1.3. Outline. The paper is organized as follows. In section 2 we collect some
preliminary but elementary remarks on the asymptotic behavior of the Dirichlet en-
ergy as ε tends to 0. The change of variables near the cusp and its main properties
are given in section 3. For the sake of clarity, its full construction (near and far from
the cusp) is described in Appendix A. The rest of the paper deals with the analysis of
the general boundary problems (1.8) set in ωε and obtained after applying the change
of variables to system (1.1). In section 4, we describe the functional framework used
to study the asymptotic behavior of the solutions uε of these problems as ε goes to 0.
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We introduce appropriate weighted Sobolev spaces and we prove some useful lemmas
(a trace theorem and a Poincaré–Wirtinger inequality involving constants which are
uniform with respect to ε). In section 5, we provide a well-posedness result for the
problem (1.8) with ε = 0, set in the unbounded domain ω0 and a convergence result
of uε (towards u0) in the energy space for well prepared data (i.e., data having a
suitable decay rate at infinity). These results are applied in section 6 to investigate
the asymptotic behavior of the Dirichlet energy Eε for the particular system (1.10).
We show that for α < 2 (recall that α is the coefficient describing the strength of the
cusp) and ε = 0, the Neumann datum in (1.10b) is well prepared. This leads to the
well-posedness of the limit problem and to a finite limit energy E0. On the contrary,
for α � 2, the boundary data in (1.10b) do not have the decay rate required to apply
the results of section 5. In this case, we prove the existence of a singular (nondecaying)
solution for the problem (1.10) when ε = 0 and the blowup of the Dirichlet energy Eε

as ε tends to 0+. In view of the collision issue, the first term of the asymptotics of Eε

is also given. Finally, in section 7, we show through some examples how the method
can be adapted to deal with more general configurations.

2. Some preliminary remarks on the asymptotic behavior. In order to
get a first intuition about the behavior of the solution Uε of (1.6) as ε goes to 0, we
collect here some general remarks about the problem and some comparison results
obtained thanks to elementary considerations.

First of all, we recall a result proved by Nazarov, Sokolowski, and Taskinen in [18,
section 5], providing a non existence result of finite energy solutions for problem 1.6,
when ε = 0. The proof being short, it is given for the sake of completeness.

Proposition 1. The variational formulation

(2.1)

∫
Ω0

∇U · ∇V dξ =

∫
Γ0

G0 V dσ ∀V ∈ H1(Ω0),

where G0 := n · e2 has no solution U ∈ H1(Ω0) if α � 2.
Proof. Using a contradiction argument, let us assume that there exists U ∈

H1(Ω0) satisfying the variational formulation (2.1). Given a neighborhood of the
cusp V0 ⊂ Ω0 and a function χ ∈ C∞

0 (R) with support in ]1/2, 1[ such that
∫
R
χ > 0,

define the sequence of test functions

Vk(ξ) =

{
0 if ξ ∈ Ω0 \ V0,

2
kα
2 χ(2kξ1) if ξ ∈ V0.

It can be easily checked that the sequence (Vk)k is bounded in H1(Ω0) and using the
dominated convergence theorem that

lim
k→∞

∫
Ω0

∇U · ∇Vk dξ = 0.

On the other hand, for the right-hand side of (2.1), we note that

∫
Γ0

G0 Vk dσ = 2
kα
2

∫
R

χ(2kξ1) dξ1

= 2k(
α
2 −1)

∫
R

χ(s) ds,
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Fig. 3. The partition of Ωε into O1 ∪ O2 ∪ O3.

which tends to +∞ if α > 2 and to a nonzero finite limit if α = 2, leading to a
contradiction.

The above result suggests that the limit energy E0 is infinite for α � 2. Using
the Dirichlet principle, i.e., the identity

(2.2)
1

2
Eε = max

U∈H1(Ωε)

{∫
Γε

n2U dσ − 1

2

∫
Ωε

|∇U |2 dξ
}
,

available for every ε > 0, we first prove the following energy blowup for α > 2.
Proposition 2. For every α > 2, there exists a constant Cα > 0 such that the

Dirichlet energy (1.7) satisfies

(2.3a) Eε � Cα ε
3

α+1−1 ∀ ε > 0.

In the case where the solid has locally a flat bottom (i.e., contact would occur along a
segment), there exists C∞ > 0 such that

(2.3b) Eε � C∞ε−1 ∀ ε > 0.

Remark 1. Surprisingly enough, we notice by comparison with the results of
Theorem 1 and Proposition 6 that the estimates (2.3) are sharp. Estimates (2.3)
prevent the rigid body from colliding with the cavity’s wall with nonzero velocity but
do not permit us to decide between the two remaining choices: “smooth landing” in
finite time or “infinite time touchdown.”

Proof. The main idea consists in building a suitable test function in the Dirichlet
principle (2.2). We seek this function as a piecewise polynomial. For the sake of
simplicity and unless necessary, we will drop in the notation the dependence on ε of
the quantities introduced in the proof.

Let us begin by introducing the following partition of Ωε. The set O1 and O2 are
as pictured on Figure 3 and O3 := Ωε \ (O1 ∪ O2). The constants ζ1 < 0 and ζ′1 < 0
will be specified later on.

Denoting by ζ the point (ζ1, Hε(ζ1)), we define the following polynomial functions:

W1(ξ) := − 1

2ε
(ξ21 − ξ22) and W2(ξ) :=

1

2ε
(ξ2 +Hε(ζ1))(ξ2 − h(ξ1)) +W1(ζ),

where

h(ξ1) :=
Hε(ζ1)

ζ1 − ζ′1
(ξ1 − ζ′1).
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Finally, the test function to be used in (2.2) reads

(2.4) W (ξ) :=

⎧⎪⎪⎨
⎪⎪⎩
W1(ξ) in O1,

W2(ξ) in O2,

W1(ζ) in O3.

One can easily check that W ∈ H1(Ωε) and that on the boundary Γε of the solid we
have

W (ξ) =

{
W1(ξ) on O1 ∩ Γε,

W1(ζ) otherwise on Γε.

Based on formula (2.2), we can obtain a lower bound for Eε as follows:

1

2
Eε �

∫
Γε

n2W dσ − 1

2

∫
Ωε

|∇W |2 dξ.

Since
∫
Γε

n2 dσ = 0 and W is a constant function on Γε \ Ō1, we can rewrite the
inequality above as

(2.5)
1

2
Eε �

∫
Γε∩O1

n2W1 dσ−W1(ζ)

∫
Γε∩O1

n2 dσ− 1

2

∫
O1

|∇W1|2 dξ− 1

2

∫
O2

|∇W2|2 dξ.

We can now compute explicitly every term arising in the right-hand side of this esti-
mate. We have ∫

Γε∩O1

n2W1 dσ = − 1

2ε

∫ |ζ1|

0

[
ξ21 − (Hε(ξ1))

2
]
dξ1,

and then, after some elementary algebra, we get

(2.6)

∫
Γε∩O1

n2W1 dσ =
1

ε

[
κ2|ζ1|3+2α

6 + 4α
− |ζ1|3

6

]
+

κ|ζ1|2+α

2 + α
+ ε

|ζ1|
2

.

Addressing the second term in the right-hand side of (2.5) and observing that∫
Γε∩O1

n2 dσ = |ζ1|, we get

−W1(ζ)

∫
Γε∩O1

n2 dσ =
|ζ1|
2ε

[
ζ21 − (Hε(ζ1))

2
]

=
1

2ε

[|ζ1|3 − κ2|ζ1|3+2α
]− κ|ζ1|2+α − ε

|ζ1|
2

.(2.7)

The third term is computed as follows:∫
O1

|∇W1|2 dξ =
1

ε2

∫ |ζ1|

0

∫ Hε(ξ1)

0

(ξ21 + ξ22) dξ,

and this expression leads to:

(2.8)

∫
O1

|∇W1|2 dξ =
1

ε2

[
κ|ζ1|4+α

4 + α
+

κ3|ζ1|4+3α

12 + 9α

]
+

1

ε

[
κ2|ζ1|3+2α

3 + 2α
+

|ζ1|3
3

]

+
κ|ζ1|2+α

2 + α
+ ε

[ |ζ1|
3

]
.
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For the last term of (2.5), we have

∫
O2

|∇W2|2 dξ =

∫ ζ1

ζ′
1

∫ H0(ξ1)

0

|∂ξ1W2(ξ)|2 + |∂ξ2W2(ξ)|2 dξ,

where

∂ξ1W2(ξ) = − 1

2ε
(Hε(ζ1)+ξ2)H

′
0(ξ1) and ∂ξ2W2(ξ) =

1

2ε
(Hε(ζ1)−H0(ξ1))+

1

ε
ξ2.

After a tedious but straightforward computation, we obtain that

(2.9)

∫
O2

|∂ξ1W2(ξ)| dξ =
11

48

1

ε2
(Hε(ζ1))

5

|ζ′1 − ζ1| and∫
O2

|∂ξ2W2(ξ)| dξ =
7

48

1

ε2
(Hε(ζ1))

3|ζ′1 − ζ1|.

Now, we choose ζ1 = −(ε/κ)
1

α+1 (so that Hε(ζ1) = 2ε) and ζ′1 = ζ1 − ε. Substituting
(2.6), (2.7), (2.8), and (2.9) into (2.5), we obtain the following asymptotic expansion:

∫
Γε∩O1

n2W1 dσ −W1(ζ)

∫
Γε∩O1

n2 dσ − 1

2

∫
O1

|∇W1|2 dξ − 1

2

∫
O2

|∇W2|2 dξ

=

(
α+ 1

6α+ 24

)
κ− 3

α+1 ε
3

α+1−1 + o
(
ε

3
α+1−1

)
.

For ε small enough, we get (2.3a). For a solid with a flat bottom, it suffices to replace
H0 by 0 in all the estimates and ζ1 by a small constant (such that H0 = 0 on ]ζ1, 0[),
to get the claimed result (2.3b). The proof is now complete.

The two following propositions allow comparison of the Dirichlet energy after
simple changes in the geometry.

Proposition 3. Let us denote by E
[C,S0]
ε the Dirichlet energy corresponding to

a solid of shape S0 in a cavity C. If C1 ⊂ C2 then

(2.10) E[C1,S0]
ε � E[C2,S0]

ε ∀ ε > 0.

In other words, this proposition asserts that the bigger the cavity is, the lower is
the Dirichlet energy.

Proof. For every ε > 0, we set Ωk
ε := Ck \ Sε (k = 1, 2). For every function U ∈

H1(Ω2
ε), its restriction to Ω1

ε belongs to H1(Ω1
ε) and we have the obvious inequality∫

Γε

n2U dσ − 1

2

∫
Ω2

ε

|∇U |2 dξ �
∫
Γε

n2U dσ − 1

2

∫
Ω1

ε

|∇U |2 dξ.

The conclusion follows then from the Dirichlet principle (2.2).
The next proposition tells us that the Dirichlet energy can be compared for con-

figurations that are images one from the other by a global C1 diffeormorphism.
Proposition 4. Let B be a large ball containing a cavity C. For every 0 � ε � ε∗,

consider the usual configuration involving a solid S0, its domain Sε, its boundary
Γε := ∂Sε, and the fluid domain Ωε := C \ Sε.

Let H̃0 : R → R be a given C1 function. Let U be an open set containing Γε for
every ε � 0 small enough (see Figure 4).
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Ωε

ε

Γε

0

U

Fig. 4. The open set U containing the solid’s boundary for every ε � 0.

For every C1 diffeomorphism Φ : B → B such that

(2.11) Φ(ξ1, ξ2) = (ξ1, ξ2 + H̃0(ξ1)) ∀ ξ = (ξ1, ξ2) ∈ U ,
the following estimate holds true (for every ε > 0 small enough):

c1E
[C,S0]
ε � E[C̃,S̃0]

ε � c2E
[C,S0]
ε ,

where C̃ := Φ(C), S̃0 := Φ(S0), and c1 > 0 and c2 > 0 are two constants depending
only on C, S0, and Φ.

Notice that the assumption (2.11) entails that

Φ(Sε) = S̃ε and Φ(Ωε) = Ω̃ε

for every ε � 0 small enough, where Ωε := C \ Sε and Ω̃ε := C̃ \ S̃ε and that the local
parameterization of the fluid domain Ω̃ε near the origin is now given by

{ξ ∈ R
2 : |ξ1| < δ∗, H̃0(ξ1) < ξ2 < Hε(ξ1) + H̃0(ξ1)}.

Proof. Let φ : [0, 1] → Γ0 be a parameterization of the boundary of the solid when
ε = 0. Then φε = φ + εe2 is a parameterization of Γε and Φ ◦ φε a parameterization
of Γ̃ε := Φ(Γε) = ∂S̃ε for every ε � 0.

For every ε > 0 and every v ∈ H1(Ω̃ε), we have∫
Γ̃ε

n2 v dσ =

∫ 1

0

[(DΦ(φ(s))φ′(s))⊥ · e2]v(Φ(φ(s)) ds

= −
∫ 1

0

[φ′(s) ·DΦ(φ(s))Te1]v(Φ(φ(s)) ds.

From assumption (2.11), we infer that DΦ(φ(s))Te1 = e1 and therefore

(2.12)

∫
Γ̃ε

n2 v dσ =

∫
Γε

n2 ṽ dσ,

where ṽ := v ◦ Φ.
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On the other hand, we have upon the change of variables x = Φ(ξ) the identity

(2.13)

∫
Ω̃ε

|∇v|2 dξ =

∫
Ωε

A∇ṽ · ∇ṽ dx,

where A := (DΦ)−1(DΦ)−T| detDΦ|. The matrix A is positive definite and hence
there exist two positive constants λ1 and λ2 such that

λ1|X |2 � A(ξ)X ·X � λ2|X |2

for every X ∈ R
2 and every ξ ∈ C. A straightforward calculation shows that we have

λ1 � 1 � λ2. Gathering (2.12) and (2.13), we get∫
Γ̃ε

n2 v dσ − 1

2

∫
Ω̃ε

|∇v|2 dξ =

∫
Γε

n2 ṽ dσ − 1

2

∫
Ωε

A∇ṽ · ∇ṽ dx.

Then, since λ1 � 1,∫
Γε

n2 ṽ dσ − 1

2

∫
Ωε

A∇ṽ · ∇ṽ dx � λ1

(∫
Γε

λ−1
1 n2 ṽ dσ − 1

2

∫
Ωε

|∇ṽ|2 dx
)

� λ1 max
ṽ∈H1(Ωε)

(∫
Γε

λ−1
1 n2 ṽ dσ − 1

2

∫
Ωε

|∇ṽ|2 dx
)
.

According to (2.2), we have

max
ṽ∈H1(Ωε)

(∫
Γε

λ−1
1 n2 ṽ dσ − 1

2

∫
Ωε

|∇ṽ|2 dx
)

=
1

2

∫
Ωε

|∇ṽ∗|2 dx,

where ṽ∗ solves

−Δṽ∗ = 0 in Ωε,

∂nṽ
∗ = λ−1

1 n2 on Γε,

∂nṽ
∗ = 0 on ∂C.

By linearity, we obviously have∫
Ωε

|∇ṽ∗|2 dx = λ−2
1 E[C,S0]

ε .

Summing up, we have proved that∫
Γ̃ε

n2 v dσ − 1

2

∫
Ω̃ε

|∇v|2 dξ � 1

2
λ−1
1 E[C,S0]

ε ,

and thus

(2.14) E[C,S0]
ε � λ1E

[C̃,S̃0]
ε .

Remarking that Φ−1 enjoys the properties required for Φ to get (2.14), we deduce
that we also have

E[C̃,S̃0]
ε � λ−1

2 E[C,S0]
ε .

The claim of the proposition follows.
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S1
ε

Γ1
ε

Ω1
ε

ε

Ω2
ε

ε

S2
ε

Γ2
ε

Ω3
ε

ε

S3
ε

Γ3
ε

Fig. 5. According to Proposition 4, the Dirichlet energy behaves similarly as ε → 0+ for all of
these cases.

Ω1
ε

ε

S1
ε

Γ1
ε

Ω2
ε

ε

S2
ε

Γ2
ε

Fig. 6. Another example of two configurations where, according to Proposition 4, the Dirichlet
energy can be compared as ε → 0+ (notice on this example how we take advantage of working with
a half-configuration and then recover a full configuration by symmetry).

Typical illustrations of the above result are given in Figures 5 and 6.
Application. Combining Propositions 2, 3, and 4, we can deduce an estimate

for the case where the bottom of the solid is concave (see Figure 7, on the right) and
where there are two contact points for ε = 0. Indeed, with the notation of Figure 7,
according to Proposition 3, for every ε > 0 we have

E
[C1,S1

0 ]
ε � E

[C2,S2
0 ]

ε

and according to Proposition 4, there exists a constant c > 0 such that

cE
[C2,S2

0 ]
ε � E

[C3,S3
0 ]

ε .

Using now Proposition 2, we infer the existence of a constant C > 0 such that

Cε−1 � E
[C3,S3

0 ]
ε .

Consequently, the energy blowup is no greater in case 3 than in case 1.
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Ω1
ε

ε

S1
ε

Γ1
ε

Ω2
ε

S2
ε

Γ2
ε

Ω3
ε

S3
ε

Γ3
ε

ε

Fig. 7. The energy blowup in these 3 cases can be compared thanks to Propositions 3 and 4.

Ωε

ε

Γε

1
δ

γε

�ε

Rε

D

Vε

0 0

ε ↘ 0

ε ↘ 0

Ψε

Fig. 8. The domain Ωε and its image ωε by Ψε. In particular, D := Ψε(Ωε \ Vε) does not
depend on ε � 0.

3. From the physical domain to the semi-infinite strip. In this section,
we describe the change of coordinates x = Ψε(ξ), 0 � ε � ε∗, used in the sequel to
transform the Laplace–Neumann problem (1.8) set on Ωε into an elliptic Neumann
problem set on ωε := Ψε(Ωε) = D ∪ Rε (see Figure 8), where D is a fixed domain
and Rε =]0, �ε[×]0, 1[. Our change of variables is a generalization to the case ε > 0 of
the one introduced by Ibuki [12] and used later by Grisvard in [7] and Acosta et al.
in [1] to study the well-posedness and the regularity of Laplace problems in domains
with cusps (in other words this corresponds in our problem to the limit case ε = 0).
The full description of the diffeomorphism Ψε ∈ C1(Ωε, ωε) is given in Appendix A.
For the sake of clarity, we only give here its definition on some neighborhood of the
contact region. More precisely, for every ε � 0 and given δ < 0 small enough, let

(3.1) Vε := {ξ ∈ R
2 : δ < ξ1 < 0, 0 < ξ2 < Hε(ξ1)} ⊂ Ωε.

Then, we set in Vε

(3.2) Ψε(ξ) =

⎛
⎝ ρε(ξ1)

ξ2
Hε(ξ1)

⎞
⎠ ∀ξ ∈ Vε,
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where the function ρε : [δ, 0[→ R
+ is given by

(3.3) ρε(ξ1) :=

∫ ξ1

δ

ds

Hε(s)
.

Introducing

�ε := lim
ξ1→0+

ρε(ξ1),

we note that �ε < +∞ for ε > 0 and �0 := +∞. More precisely, based on the identity∫ +∞

0

ds

s1+α + 1
=

π/(α+ 1)

sin(π/(α + 1))
,

we can easily verify that

(3.4) �ε ∼
ε=0

ε−
α

α+1κ− 1
α+1

(
π/(α+ 1)

sin(π/(α+ 1))

)
.

Setting Rε := Ψε(Vε), we get

(3.5) Rε =]0, �ε[×]0, 1[.

We define the reciprocal function to ρε as being

(3.6) με := ρ−1
ε : [0, �ε[→ [δ, 0[.

When ε = 0, the function με can be made explicit and we have

(3.7) μ0(x1) = −(ακ)−
1
α (x1 + x̂1)

− 1
α ,

where x̂1 = (ακ)−1|δ|−α. For all ε � 0, the function Ψ−1
ε admits the following

expression in Rε:

(3.8) Ψ−1
ε (x) =

(
με(x1)

x2Hε(με(x1))

)
∀x ∈ Rε.

We collect, in the following lemma, some properties of the function με (ε � 0) that
will be useful in what follows.

Lemma 2.

1. The following uniform convergence result holds true:

(3.9) ‖με − μ0‖C0([0,
ε]) → 0 as ε → 0+.

2. There exist three positive constants C1, C2, and C3, depending on α, κ, and
δ only, such that, for every ε � 0 and every x1 ∈ [0, �ε[,

|με(x1)| � C1(1 + x1)
− 1

α ,(3.10a)

|Hε(με)| � C2(1 + x1)
−1− 1

α ,(3.10b)

|H ′
0(με)| � C2(1 + x1)

−1.(3.10c)

The proof in postponed to Appendix B.
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In Appendix A, we explain how to define Ψε in Ωε \ Vε in such a way that
Ψε(Ωε \ Vε) defines a domain D which is independent of ε (see Figure 8).

Notice that �ε ↗ +∞ (= �0) as ε ↘ 0+ and therefore that we have the nice
inclusion properties

ε′ > ε ⇒ ωε′ ⊂ ωε ∀ ε, ε′ � 0.

Proposition 5. The following convergence property holds:

(3.11a) ‖Ψ−1
ε −Ψ−1

0 ‖C1(ωε) → 0 as ε → 0+.

Moreover, if α > 1, we also have

(3.11b) ‖Ψ−1
ε −Ψ−1

0 ‖C2(Rε)
→ 0 as ε → 0+.

Proof. We focus on the convergence on the rectangle Rε, the rest the proof being
given in Appendix A.

For all ε � 0, recall that the expression of the function Ψ−1
ε in Rε is given in

(3.8).
We have μ′

ε = Hε(με), μ′′
ε = H ′

0(με)Hε(με), and μ′′′
ε = H ′′

0 (με)Hε(με)
2 +

H ′
0(με)

2Hε(με) for all ε � 0. Since the functions H0 and H ′
0 are bounded and uni-

formly continuous on the compact [δ, 0] (because α > 0), and the same holds true for
H ′′

0 if α > 1, the conclusion follows from (3.9).
We can now make explicit the matrix Aε, arising in the statement of the Neumann

problem (1.8) (at least in the rectangle Rε), based on formulas (1.9) and (3.8):

(3.12) Aε(x) = Id + x2H
′
0(με(x1))

(
0 −1

−1 x2H
′
0(με(x1)

)
(ε � 0, x ∈ Rε).

We claim the following.
Lemma 3.

1. The following convergence result holds true:

(3.13a) ‖Aε − A0‖C0(ωε) → 0 as ε → 0+.

If α > 1, we also have

(3.13b) ‖Aε − A0‖C1(Rε)
→ 0 as ε → 0+.

2. There exist two constants 0 < λ1 < λ2, independent of ε � 0, such that

(3.14) λ1|X |2 � Aε(x)X ·X � λ2|X |2 ∀X ∈ R
2, ∀x ∈ ωε.

Proof. The convergences (3.13) are a straightforward consequence of Proposi-
tion 5.

The definition (1.9) of Aε (ε � 0) entails that Aε(x) is positive definite for every
ε � 0 and every x ∈ ωε. Since the eigenvalues depend continuously on the matrix, it
suffices to prove (3.14) for ε = 0 to get the conclusion of the lemma. We would be
done if ω0 were compact. The way out consists in computing the expression of the
eigenvalues of A0 in R0. Indeed, we get

λj(x) = Fj(|x2H
′
0(με(x1))|), j = 1, 2,

where

F1(X) := 1 +
1

2
X

[
X −

√
X2 + 4

]
, F2(X) := 1 +

1

2
X

[
X +

√
X2 + 4

]
,

and F1(X) � λ1 := F1((α + 1)κ|δ|α) > 0 and F2(X) � λ2 := F2((α + 1)κ|δ|α) for
every X ∈ [0, (α+ 1)κ|δ|α]. The proof is now complete.
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4. Functional framework. The domain ωε being bounded for ε > 0 and
− div(Aε∇·) being an elliptic operator, problem (1.8) is a well-posed Neumann prob-
lem for every ε > 0, the solution being uniquely defined in H1(ωε), up to an additive
constant (and provided the compatibility condition is satisfied). In order to study the
well-posedness of this system when ε = 0, we need to introduce a suitable functional
framework since the domain ω0 is infinite in the x1 direction. More precisely, for every
ε � 0 and every β ∈ R, we introduce on ωε and ∂ωε, respectively, the measures

dνβ(x) :=

{
(1 + x1)

β dx if x ∈ Rε,

dx if x ∈ D,
and dνSβ (x) :=

{
(1 + x1)

β dx1 if x ∈ γR
ε ,

ds if x ∈ γD
ε ,

where γR
ε := {(x1, 1) : 0 < x1 < �ε} and γD

ε := γε \ γR
ε .

Since the cases β = −2 and β = 2 will play a particular role, we set

dm = dν−2, dm−1 = dν2, dσ = dνS−2, and dσ−1 = dνS2 .

We will denote by m (respectively, σ) the density function such that dm = m(x)dx
(respectively, dσ = σ(s)ds).

Throughout, L1(ωε, dνβ), L
2(ωε, dνβ), L

1(γε, dν
S
β ), and L2(γε, dν

S
β ) stand for

the Lebesgue spaces of integrable and square-integrable functions, respectively, for
the measures dνβ and dνSβ .

For every ε � 0 and every β ∈ R, we define the weighted Sobolev spaces

H1(ωε, dνβ) :=
{
u ∈ L2(ωε, dνβ) : ∂xiu ∈ L2(ωε), i = 1, 2

}
.

In the particular case β = 2, we also set

(4.1) H1
N (ωε, dm) =

{
u ∈ H1(ωε, dm) :

∫
ωε

u dm = 0

}
.

This space is well-defined (regarding the L1 condition for ε = 0), as will be verified
in Lemma 6 below.

Since ωε is bounded for ε > 0, the space H1(ωε, dνβ) coincides with the classical
Sobolev space H1(ωε) (with equivalent norms) for every β ∈ R. However, the use
of the weight is more convenient as it will allow us to obtain estimates (in the trace
theorems, for the continuity and the coercivity) involving constants which are uniform
with respect to ε � 0.

The introduction of the spaceH1
N (ωε, dm) is motivated by the following definition

of solutions.
Definition 1 (finite energy solution). For ε � 0, let fε ∈ L2(ωε, dm

−1) and
gε ∈ L2(γε, dσ

−1) satisfying the compatibility condition

(4.2)

∫
ωε

fε dx+

∫
γε

gε ds = 0.

Then, a function uε ∈ H1
N (ωε, dm) is called a finite energy solution to system (1.8) if

(4.3)

∫
ωε

Aε∇uε · ∇v dx =

∫
ωε

fεv dx+

∫
γε

gεv ds ∀ v ∈ H1
N (ωε, dm).
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The corresponding Dirichlet energy is defined by

(4.4) Eε :=

∫
ωε

Aε∇uε · ∇uε dx.

Remark 2. When ε = 0, we have f0/m ∈ L2(ω0, dm) and g0/σ ∈ L2(γ0, dσ). We
can rewrite (4.2) as: ∫

ω0

f0
m

dm+

∫
γ0

g0
σ

dσ = 0,

which indeed makes sense according to Lemma 6 stated below.
Remark 3. Since fε and gε satisfy the compatibility condition (4.2), we can

equivalently replace H1
N (ωε, dm) by H1(ωε, dm) in the statement of problem 4.3 for

every ε � 0.
Remark 4. It can be easily checked that for data satisfying in the physical do-

main the (classical) conditions F0 ∈ L2(Ω0) and G0 ∈ L2(Γ0), we have necessar-
ily f0 ∈ L2(ω0, dν2+2/α) and g0 ∈ L2(γ0, dν1+1/α). It is also worth noticing that
L2(ω0, dν2+2/α) ⊂ L2(ω0, dm

−1) for all α > 0, while L2(γ0, dν1+1/α) ⊂ L2(γ0, dσ
−1)

for α � 1. In particular, (nonzero) constant functions are in L2(γ0, dσ
−1) only for

α < 2.
In the rest of this section, we collect some useful results about the functional

space H1
N (ωε, dm) (trace theorems, Poincaré inequality, extension operator from ωε

to ω0), paying very careful attention to ensure that the constants appearing in these
continuity estimates are independent of ε � 0. These results will be used in section 5
to study the well-posedness of the variational problem (4.3) for ε = 0.

Note that H1(ω0, dm) contains functions like x �→ ln(1 + |x|), which tend to +∞
as |x| → +∞. However, we have the following density result.

Lemma 4. The space

(4.5) E(ω0) = {u|ω0 : u ∈ C∞
0 (R2)}

is dense in H1(ω0, dm).
Proof. For every integer n � 1, define the cutoff function χn on ω0 by setting

χn(x) = 1 in D and, for every x = (x1, x2) ∈ R0,

χn(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1 if x1 � n,

1− ln

(
1 + x1

1 + n

)
if n < x1 � N(n),

0 if x1 > N(n),

where

N(n) := (n+ 1)e− 1.

Let u be in H1(ω0, dm) and set un = uχn. We have∫
ω0

|∇(u− un)|2 dx =

∫
ω0

|∇u− χn∇u − u∇χn)|2 dx

� 2

(∫
ω0

(1− χn)|∇u|2 dx+

∫
ω0

u2|∇χn|2 dx
)
.
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Let O+
n = {x1 > n} ∩R0 and O−

n = ω0 \ O+
n . We deduce from the last estimate that∫

ω0

|∇(u − un)|2 dx � 2

(∫
O+

n

|∇u|2 dx+

∫
O+

n

u2 dm

)
,

and hence ‖∇(u − un)‖L2(ω0) goes to 0 as n goes to +∞. Since ‖u − un‖L2(ω0,dm)

obviously goes to 0 as well, we get that ‖u− un‖H1(ω0,dm) tends to 0.
Now, given η > 0, fix n large enough such that

(4.6) ‖u− un‖H1(ω0,dm) � η,

and let M be an integer larger that N(n). Classical density results for the standard
Sobolev space H1(O−

M , dm) on the bounded domain O−
M ensure the existence of v ∈

C∞
0 (R2) such that

(4.7) ‖un − v‖H1(O−
M ,dm) � η.

In particular, this implies that on the rectangle R :=]N(n),M [×]0, 1[ we have

(4.8) ‖v‖H1(R,dm) � η.

Set then u∗ = θv ∈ C∞
0 (R2), where θ ∈ C∞

0 (R) is a (one dimensional) cutoff function
satisfying 0 � θ(x1) � 1 for all x1 ∈ R, θ(x1) = 1 for x1 < N(n), θ(x1) = 0 for
x1 > M . Then, we have

‖un − u∗‖2H1(ω0,dm) = ‖un − u∗‖2
H1(O−

N(n)
,dm)

+ ‖u∗‖2
H1(O+

N(n)
,dm)

= ‖un − v‖2
H1(O−

N(n)
,dm)

+ ‖θv‖2H1(R,dm)

� ‖un − v‖2
H1(O−

M ,dm)
+ ‖θv‖2H1(R,dm).

Using (4.7) and (4.8), the last inequality shows that

‖un − u∗‖H1(ω0,dm) � Cη

for some constant C > 0 (depending only on θ). Combining this estimate with (4.6)
yields

‖u− u∗‖H1(ω0,dm) � (C + 1)η

which concludes the proof, since η is arbitrary.
The following lemma explains why the case β = 2 plays a particular role in the

analysis.
Lemma 5. For any real number β, we have the following continuous embedding:

H1(ω0, dνβ) ↪→ H1(ω0, dm).

Proof. The result would be obvious if ω0 were bounded. For the sake of simplicity
and without loss of generality, we only show that

H1(R0, dνβ) ↪→ H1(R0, dm),

which is equivalent to proving that the continuous embedding,

H1(R0, dνβ) ↪→ L2(R0, dm),
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holds true. Let n be an integer greater than 3 and let u be in C1(Rn) where, for every
k > 0, Rk denotes the rectangle {0 < x1 < k} ∩ R0. Define the cutoff function χ in
R0 by

χ(x) =

⎧⎪⎪⎨
⎪⎪⎩
1 if 0 � x1 < 1,

2− x1 if 1 � x1 < 2,

0 if 2 � x1,

and set v = uχ and w = u(1− χ). We have

(4.9)

∫
Rn

u2 dm � 2

(∫
R2

v2 dm+

∫
Rn

w2 dm

)
.

On the one hand, ∫
R2

v2 dm � C

∫
R2

v2 dνβ � C

∫
R2

u2 dνβ ,

where the constant C depends only on β. On the other hand, for every x ∈ Rn,

|w(x)|2 = 2

∫ x1

0

w(s, x2)∂x1w(s, x2) ds,

and hence∫
Rn

|w|2 dm = 2

∫ 1

0

∫ n

0

∫ x1

0

w(s, x2)∂x1w(s, x2)(1 + x1)
−2 ds dx1 dx2.

Invoking Fubini’s theorem, we get∫
Rn

|w|2 dm = 2

∫ 1

0

∫ n

0

w(s, x2)∂x1w(s, x2)

(∫ n

s

(1 + x1)
−2 dx1

)
ds dx2,

and the Cauchy–Schwarz inequality leads to

∫
Rn

|w|2 dm � 2

(∫
Rn

|∇w|2 dx
)1/2

(∫
Rn

u2

(∫ n

s

(1 + x1)
−2 dx1

)2

ds dx2

)1/2

.

Noticing that for every n � 3,(∫ n

s

(1 + x1)
−2 dx1

)2

� (1 + s)−2,

and hence(∫
Rn

|w|2 dm
)1/2

� 2

(∫
Rn

|∇w|2 dx
)1/2

= 2

(∫
Rn

|(1− χ)∇u − u∇χ|2 dx
)1/2

� 23/2
(∫

Rn

|∇u|2 dx
)1/2

+ 23/2
(∫

R2

u2 dx

)1/2

� 23/2
(∫

Rn

|∇u|2 dx
)1/2

+ C

(∫
R2

u2 dνβ

)1/2

,
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where the constant C depends on β only. In (4.9), we get

∫
Rn

u2 dm � C

(∫
Rn

|∇u|2 dx+

∫
R2

u2 dνβ

)1/2

,

where C = C(β). Since C1(Rn) is dense in H1(Rn), we deduce that this estimate
still holds true for every u ∈ H1(Rn).

Let now u be any function in H1(ω0, dνβ) and denote it by un = u|Rn ∈ H1(Rn).
Applying the last estimate to un and letting n go to +∞, we obtain the claimed
result.

Remark 5. Let β1 and β2 be two real numbers such that β1 � β2. It is obvious
to check that

H1(ω0, dνβ1) ↪→ H1(ω0, dνβ2).

Then, it follows from Lemma 5 that for every β � −2, we have H1(ω0, dνβ) =
H1(ω0, dm).

The next result shows in particular that the average of functions of H1(ω0, dm)
can be considered, and therefore the space H1

N (ωε, dm) introduced in (4.1) is well
defined for ε = 0.

Lemma 6. For every β < −3/2, we have the following continuous embedding:

(4.10) L2(ω0, dm) ↪→ L1(ω0, dνβ) and L2(γ0, dσ) ↪→ L1(γ0, dν
S
β ).

Proof. One can simply observe that for every u in L2(ω0, dm), we have∫
R0

|u(x)|(1 + x1)
β dx =

∫
R0

|u(x)|(1 + x1)
−1(1 + x1)

β+1 dx

� ‖u‖L2(R0,dm)

(∫
R0

(1 + x1)
2β+2 dx

)1/2

.

The conclusion follows for the first embedding in (4.10). The second embedding is
proved exactly the same way.

In order to establish a convergence result as ε tends to 0, we need to be able to
extend functions defined on ωε to ω0 in such a way that the extension operator is
uniformly bounded with respect to ε. The following result provides the existence of
such an operator.

Lemma 7 (extension operator). For every ε > 0 small enough, there exists an
extension operator

Tε : H
1(ωε, dm) → H1(ω0, dm),

such that

‖Tε u‖H1(ω0,dm) �
√
3‖u‖H1(ωε,dm).

Proof. Since D ⊂ ωε for every ε � 0, it is sufficient to define Tε from H1(Rε, dm)
to H1(R0, dm).

For every ε > 0, set

�∗ε := �ε(2− e−1) + (1− e−1),
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and let χε be the cutoff function defined in R0 as follows:

χε(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1 if x1 < �ε,

1 + ln

(
1 +

�ε − x1

�ε + 1

)
if �ε � x1 < �∗ε,

0 if �∗ε � x1.

Note that 0 � χε(x) � 1 for every x ∈ R0. Moreover, for ε > 0 small enough, the
quantity �−ε := 2�ε − �∗ε is positive and for every x ∈ R0 such that x1 > �−ε we have

(4.11) |χ′
ε(2�ε − x1)|2 = σ(x1) = (1 + x1)

−2.

For every u ∈ H1(Rε, dm), we define Tεu in R0 as follows:

(Tεu)(x) =

⎧⎪⎪⎨
⎪⎪⎩
u(x1, x2) if x1 � �ε,

χε(x1)u(2�ε − x1, x2) if �ε � x1 < �∗ε,

0 if �∗ε � x1.

It can be easily verified that Tεu ∈ H1
loc(R0). Moreover, we have∫

R0

|∇(Tεu)|2 dx

=

∫
Rε

|∇uε|2 dx

+

∫
R0∩{
ε<x1<
∗ε}

|∂x1χε(x)u(2�ε − x1, x2)− χε(x)∂x1u(2�ε − x1, x2)|2 dx

+

∫
R0∩{
ε<x1<
∗ε}

|∂x2u(2�ε − x1, x2)|2 dx.

Applying the change of variables x′
1 = 2�ε − x1 in the last two integrals of the right-

hand side and using the Cauchy–Schwarz inequality, we get by using (4.11) that∫
R0

|∇(Tεu)|2 dx �
∫
Rε

|∇uε|2 dx+2

∫
R0∩{
−ε <x1<
ε}

u2 dm+2

∫
R0∩{
−ε <x1<
ε}

|∇u|2 dx.

Consequently

(4.12)

∫
R0

|∇(Tεu)|2 dx � 3‖u‖2H1(Rε,dm).

On the other hand, we also have∫
R0

|Tεu|2 dm �
∫
Rε

|uε|2 dm+

∫
R0∩{
−ε <x1<
ε}

|χε(2�ε − x1, x2)|2|u(x)|2 dm

� 2‖u‖2L2(Rε,dm).

The announced estimate then follows immediately by combining (4.12) and the last
inequality.

Lemma 8 (uniform trace mapping). Let E(ω0) be the functional space defined by
(4.5). Then, the mapping

u ∈ E(ω0) �→ u|γ0 ∈ L2(γ0, dσ)
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can be uniquely extended as a linear continuous operator:

Λ0 : u ∈ H1(ω0, dm) → L2(γ0, dσ).

Moreover, denoting by Λε the usual trace mapping from H1(ωε) into L2(γε) for ε > 0,
there exists a constant C > 0 (independent of ε � 0) such that, for every ε � 0,

(4.13) ‖Λε(u)‖L2(γε,dσ) � C‖u‖H1(ωε,dm).

Proof. Classically, it is sufficient to prove the existence of Λ0 defined as an appli-
cation from H1(R0, dm) into L2(γR

0 , dσ). For every u ∈ E(R0), we have

|u(x1, 1)|2 =

∫ 1

0

d

ds
(|u(x1, s)|2s)ds

= 2

∫ 1

0

∂x2u(x1, s)u(x1, s)sds+

∫ 1

0

|u(x1, s)|2 ds.

Multiplying both sides of this equality by (1 + x1)
−2, integrating from 0 to +∞ with

respect to x1, and using the Cauchy–Schwarz inequality, we get

∫
γR
0

u2(x1, 1) dσ � 2

(∫
R0

|∂x2u|2 dx
)1/2 (∫

R0

u2 dνβ

)1/2

+

∫
R0

u2 dm,

where β = −4. According to Remark 5, we deduce that there exists a constant C > 0
such that ∫

γR
0

u2(x1, 1) dσ � C‖u‖2H1(R0,dm).

We conclude the existence of Λ0 by recalling the density of E(ω0) into H1(ω0, dm)
proved in Lemma 4.

To get the uniform estimate (4.13), we write that, for every u ∈ H1(ωε) and using
Lemma 7,

‖Λε(u)‖L2(γε,dσ) � ‖Λ0(Tεu)‖L2(γ0,dσ) � C̃‖Tεu‖H1(ω0,dm) � C‖uε‖H1(ωε,dm),

where C̃ and C are positive constants independent of ε � 0. The proof is now
complete.

Lemma 9 (Poincaré–Wirtinger inequality). There exists a constant C > 0 (in-
dependent of ε) such that for every ε � 0

(4.14) ‖u‖L2(ωε,dm) � C‖∇u‖L2(ωε) ∀u ∈ H1
N (ωε, dm).

Proof. The result is proved in two steps. Using a direct calculation, we first show
that this inequality holds on the (finite or semi-infinite) strip Rε :=]0, �ε[×]0, 1[ with
C =

√
2:

(4.15) ‖u‖L2(Rε,dm) �
√
2‖∇u‖L2(Rε) ∀u ∈ H1

N (Rε, dm).

Next, we prove by contradiction that inequality (4.15) implies (4.14).
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Let u be a function in C1(Rε) or E(R0) if ε = 0. For every x = (x1, x2) and
x′ = (x′

1, x
′
2) in Rε, we have

u(x1, x2)− u(x′
1, x

′
2) = u(x1, x2)− u(x′

1, x2) + u(x′
1, x2)− u(x′

1, x
′
2)

=

∫ x1

x′
1

∂x1u(s, x2) ds+

∫ x2

x′
2

∂x2u(x
′
1, s) ds.

Multiplying by
[
(1 + x1)

2m(Rε)
]−1

and integrating the last equation with respect to
x1 from 0 to �ε, we get

(4.16)
1

m(Rε)

∫ 
ε

0

(1 + x1)
−2u(x1, x2) dx1 − u(x′

1, x
′
2)

=
1

m(Rε)

∫ 
ε

0

(∫ x1

x′
1

∂x1u(s, x2) ds

)
(1 + x1)

−2 dx1 +

∫ x2

x′
2

∂x2u(x
′
1, s) ds.

Applying Fubini’s theorem to the first term of the right-hand side, we get

∫ 
ε

0

(∫ x1

x′
1

∂x1u(s, x2) ds

)
(1+x1)

−2 dx1 =

∫ 
ε

x′
1

∂x1u(s, x2)

(∫ 
ε

s

(1 + x1)
−2 dx1

)
ds.

Integrating now (4.16) with respect to x2 from 0 to 1, we deduce that

∣∣∣∣u(x′)− 1

m(Rε)

∫
Rε

u(x) dm

∣∣∣∣
� 1

m(Rε)

∫
Rε

|∂x1u(s, x2)|(1 + s)−1 ds dx2 +

∫ 1

0

|∂x2u(x
′
1, s)| ds.

According to the Cauchy–Schwarz inequality, we get∣∣∣∣u(x′)− 1

m(Rε)

∫
Rε

u(x) dm

∣∣∣∣
2

� 2

[
1

m(Rε)
‖∂x1u‖2L2(Rε)

+

∫ 1

0

|∂x2u(x
′
1, s)|2 ds

]
,

and then, multiplying by (x′
1 + 1)−2 and integrating with respect to x′ on ωε, we

obtain∫
Rε

∣∣∣∣u(x′)− 1

m(Rε)

∫
Rε

u(x) dm

∣∣∣∣
2

dm(x′) � 2
[
‖∂x1u‖2L2(Rε)

+ ‖∂x2u‖2L2(Rε)

]
,

which shows that (4.15) holds true.
Now, we show by contradiction that (4.14) also holds. If not, there would exist

two sequences (εn)n�1 ↘ 0 and (un)n�1, with un ∈ H1
N (ωn, dm) (for the sake of

clarity, we set ωn := ωεn throughout the proof), such that

‖un‖L2(ωn,dm) = 1,(4.17a)

‖∇un‖L2(ωn) → 0 as n → +∞.(4.17b)

On the one hand, setting un := 1
m(Rn)

∫
Rn

un dm, the function defined on Rn := Rεn

by un − un obviously satisfies vn ∈ H1
N (Rn, dm) and, thanks to (4.15) and (4.17b),

‖un − un‖L2(Rn, dm) �
√
2‖∇un‖L2(Rn) → 0 as n → +∞,
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and thus

(4.18) ‖un − un‖H1(Rn, dm) → 0 as n → +∞.

Moreover, using the Cauchy–Schwarz inequality and (4.17a), we have

|un| = 1

m(Rn)

∫
Rn

|un| dm � 1√
m(Rn)

� 1√
m(R1)

< ∞.

Consequently, there exists a constant UR ∈ R such that the sequence of real numbers
(un)n�1 converges (up to a subsequence) to UR. According to (4.18), this shows that

(4.19) ‖un − UR‖H1(Rn, dm) → 0 as n → +∞.

On the other hand, on the domain D = ωn \ Rn, we immediately get from (4.17a)
and (4.17b), using the compactness of the injection from H1(D) into L2(D), that (up
to a subsequence) there exists a constant UD ∈ R such that

(4.20) ‖un − UD‖H1(D) → 0 as n → +∞.

The continuity of the trace of un ∈ H1
N (ωn, dm) through the interface ∂D ∩ ∂Rn

implies that UR = UD := U . Since un ∈ H1
N (ωn, dm), this common value U is

necessarily zero, as

0 =

∫
ωn

un dm =

∫
D

un dm+

∫
Rn

un dm → (m(D) +m(R0))U as n → +∞.

But this fact contradicts (4.17a), (4.19), and (4.20).

5. Some abstract well-posedness and convergence results. We are now
in position to prove the well-posedness of the Neumann problem in the unbounded
domain ω0 and a convergence result as ε tends to 0. Applying the Riesz representation
theorem, we immediately get by the Poincaré–Wirtinger inequality (see Lemma 9) the
following well-posedness and uniqueness result.

Theorem 2. For every f0 ∈ L2(ω0, dm
−1) and every g0 ∈ L2(γ0, dσ

−1) satisfy-
ing the compatibility condition∫

ω0

f0 dx+

∫
γ0

g0 ds = 0,

there exists a unique finite energy solution u0 ∈ H1
N (ω0, dm) (in the sense of Defin-

tion 1) to problem (4.3) when ε = 0.
Remark 6 (regularity of the solutions). Investigating the maximal regularity for

the solution u0 in terms of weighted Sobolev spaces is out of the range of our study.

However, we can mention the following very basic result: In case g0 ∈ H
1/2
loc , then it is

classical to verify that u0|Rn ∈ H2(Rn) for every n � 0 (recall thatRn :=]0, n[×]0, 1[).
Moreover, still for every n � 0, the function un

0 := u0|Rn satisfies

− div(A0∇un
0 ) = f0 in L2(Rn) and A0∇un

0 · n = g0 in H1/2(γn
0 ),

where γn
0 is the upper boundary of Rn.

As already mentioned in the beginning of the previous section, the existence and
uniqueness of a solution uε ∈ H1

N (ωε, dm) for problem (4.3) when ε > 0 is classical.
So, let us now investigate the convergence of uε as ε → 0+.
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Notice that all functions fε ∈ L2(ωε, dm
−1) and gε ∈ L2(γε, dσ

−1) can be seen as
functions of L2(ω0, dm

−1) and L2(γ0, dσ
−1), respectively, by setting fε := 0 in ω0\ωε

and gε := 0 on γ0 \ γε.
Theorem 3. For every ε � 0, let fε ∈ L2(ωε, dm

−1) and gε ∈ L2(γε, dσ
−1)

be given such that the compatibility condition (4.2) is satisfied and denote by uε ∈
H1

N (ωε, dm) the unique solution to problem (4.3).
Assume that

(5.1) fε → f0 in L2(ω0, dm
−1) and gε → g0 in L2(γ0, dσ

−1).

Then, under the convergence result (3.13a), we have

‖∇(u0 − uε)‖L2(ωε) → 0 as ε → 0+,(5.2a) ∣∣∣∣
∫
ω0

A0∇u0 · ∇u0 dx−
∫
ωε

Aε∇uε · ∇uε dx

∣∣∣∣ → 0 as ε → 0+.(5.2b)

Proof. Throughout this proof, C will denote a constant that may change from
line to line, but that is independent of ε.

Taking v = uε ∈ H1(ωε, dm) in (4.3) (see Remark 3), we get that∫
ωε

Aε∇uε · ∇uε dx � ‖fε‖L2(ω0,dm−1)‖uε‖L2(ωε,dm) + ‖gε‖L2(γ0, dσ−1)‖uε‖L2(γε, dσ).

Since Aε is positive definite uniformly (with respect to ε) according to Lemma 3, and
since the continuity of the trace operator and the Poincaré–Wirtinger constants are
uniform with respect to ε � 0 as well (as asserted in Lemmas 8 and 9), we obtain that

‖∇uε‖2L2(ωε)
� C(‖fε‖L2(ω0,dm−1) + ‖gε‖L2(γ0, dσ−1))‖∇uε‖L2(ωε),

and therefore, using again Lemma 9,

(5.3) ‖uε‖H1(ωε,dm) � C ∀ ε � 0.

Specifying now v = u0|ωε − uε ∈ H1(ωε, dm) in (4.3), we get

(5.4)

∫
ωε

Aε∇uε · (∇u0 −∇uε) dx =

∫
ωε

fε(u0 − uε) dx+

∫
γε

gε(u0 − uε) ds.

On the other hand, taking v = u0 − Tεuε ∈ H1(ω0, dm) in (4.3) when ε = 0, where
Tε is the extension operator introduced in Lemma 7, we get

(5.5)

∫
ω0

A0∇u0 · (∇u0 −∇Tεuε) dx =

∫
ω0

f0(u0 − Tεuε) dx+

∫
γ0

g0(u0 − Tεuε) ds.

Setting ωc
ε := ω0 \ ωε = [�ε,+∞[×]0, 1[ and γc

ε = γ0 \ γε and subtracting (5.4) from
(5.5), we obtain

(5.6)

∫
ωε

A0(∇u0 −∇uε) · (∇u0 −∇uε) dx

= −
∫
ωε

(A0 − Aε)∇uε · (∇u0 −∇uε) dx−
∫
ωc

ε

A0∇u0 · (∇u0 −∇Tεuε) dx

+

∫
ωε

(f0 − fε)(u0 − uε) dx+

∫
γε

(g0 − gε)(u0 − uε) ds

+

∫
ωc

ε

f0(u0 − Tεuε) dx+

∫
γc
ε

g0(u0 − Tεuε) ds.
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Lemma 7 together with the estimate (5.3) ensure that ‖Tεuε‖H1(ωε,dm) � C for every
ε � 0. On the other hand, taking into account the convergence result (3.13a) and the
hypothesis (5.1) in (5.6), we get∫

ωε

A0(∇u0 −∇uε) · (∇u0 −∇uε) dx −→ 0 as ε → 0+,

and (5.2a) follows with (3.14).
To prove now (5.2b), we write that∫

ω0

A0∇u0 · ∇u0 dx−
∫
ωε

Aε∇uε · ∇uε dx =

∫
ωε

A0(∇u0 −∇uε) · (∇u0 +∇uε) dx

+

∫
ωε

(A0 − Aε)∇uε · ∇uε dx,

and the conclusion follows, invoking again the same aforementioned boundedness and
convergence arguments.

6. Application to the collision problem. The weak formulation of system
(1.10) reads, for every ε � 0,

(6.1)

∫
ωε

Aε∇uε · ∇v dx =

∫
Γε

gεv ds ∀ v ∈ H1
N (ωε, dm),

where gε =DΨ−1
ε τ ·e1. This quantity can be made explicit on γR

ε ={(x1, 1) : 0<x1 < �ε}
using the expression (3.8) of Ψ−1

ε . Thus we get

gε = Hε(με) on γR
ε .

Notice that although the expression of the matrix Aε depends on α (i.e., on the nature
of the cusp) and on ε � 0, this dependence is somehow irrelevant regarding the well-
posedness of problem (6.1) because, as asserted by Lemma 3, the matrix is always
uniformly elliptic and therefore the left-hand side of (6.1) always defines a symmetric,
elliptic bilinear form on H1

N (ωε, dm), according to Lemma 9.
All of the relevant information regarding the well-posedness of problem (6.1) is

carried by the boundary data gε. Considering Theorem 2, a sufficient condition for
problem (6.1) to be well-posed when ε = 0 is g0 ∈ L2(γ0, dσ

−1) while, according to
Theorem 3, the convergence of the solution uε toward u0 and of the Dirichlet energy
Eε toward E0 is ensured if gε → g0 in L2(γ0, dσ

−1). These conditions are easy to
check and lead us to distinguish two cases, a subcritical case α < 2 and a supercritical
case α � 2. Let us emphasize that the critical value 2 is nothing but the dimension,
and this is in agreement with the results of [2, 18].

6.1. The subcritical case α < 2.
Theorem 4. When α < 2, the following assertions hold true:
1. Well-posedness of the limit problem: The Neumann boundary value problem

(6.1) is well-posed for ε = 0. In particular, the corresponding Dirichlet energy
E0 is finite.

2. Convergence of solutions: ‖∇uε −∇u0‖L2(ωε) → 0 as ε → 0+, where uε and
u0 are the solutions to problem (6.1) for ε > 0 and ε = 0, respectively.

3. Convergence of the Dirichlet energy: The Dirichlet energy Eε corresponding
to problem (6.1) with ε > 0 tends to E0, the finite Dirichlet energy of the
problem when ε = 0.



4388 ALEXANDRE MUNNIER AND KARIM RAMDANI

Considering the implication of this result for the physical problem of collision, we
deduce that the added mass (1.4) is bounded uniformly in ε � 0. Using this estimate
in (1.5), we get that the velocity of the solid is bounded from below and therefore we
have the following.

Corollary 2. When α < 2, the solid meets the cavity’s wall in finite time with
nonzero velocity (real shock case).

Proof of Theorem 4. As already mentioned, the first point of the theorem is a
straightforward consequence of Theorem 2. Indeed, applying Theorem 2 with f0 = 0
and g0 = H0(μ0), we get existence and uniqueness of a solution if g0 ∈ L2(γ0, dσ

−1).
Considering (3.7), we deduce that:

g0 ∼
x1=+∞ κ− 1

αα−1− 1
αx

−1− 1
α

1 ,

and requiring g0 to be in L2(γ0, dσ
−1) leads to α < 2.

The two remaining points result from Theorem 3. It suffices to prove that
gε := Hε(με) (extended by 0 on ]�ε,+∞[) converges to g0 := H0(μ0) in L2(γ0, dσ

−1).
According to Lemma 2, we get that gε tends to g0 a.e. on R+ and that

|gε − g0|2 � C(1 + x1)
−2− 2

α

for some constant C > 0 independent of ε � 0. The conclusion follows from the
dominated convergence theorem.

6.2. The supercritical case α � 2. When α � 2, the boundary term g0 :=
H0(μ0) in problem (6.1) is not anymore in L2(γ0, dσ

−1), preventing us from reasoning
as in the previous section.

Actually, we already know, from Proposition 1, that problem (6.1) (when ε = 0)
does not admit a finite energy solution in this case and from Proposition 2 that
Eε → +∞ as ε → 0+.

In order to derive the first term in the asymptotic expansion of Eε when ε goes
to 0 in this case, we proceed as follows. For every ε � 0 we seek an ansatz us

ε to uε,
containing all the information about the asymptotic behavior at infinity of uε as ε → 0
(which corresponds to the blow up of the Dirichlet energy in the physical domain).
Equivalently, in the physical domain, this ansatz contains all the information about
the appearance of the cusp singularity at the contact point. In particular, us

ε will be
shown to satisfy

(6.2)

∫
ωε

Aε∇us
ε · ∇us

εdx → +∞ as ε → 0+.

This is why we call this ansatz the singular part of the solution (which is a slight
abuse of language since uε is smooth and has finite Dirichlet energy for every ε > 0),
and we will refer to ur

ε := uε − us
ε as the regular part of uε.

The ansatz us
ε will be derived by adapting to our semi-infinite strip the multiscale

expansion method used in [2, 18] to obtain the singular behavior near the contact
point (in the physical domain). More precisely, for every ε � 0, the ansatz us

ε will be
constructed such that the following properties hold true:

• The function us
ε is smooth, supported in Rε, and extended by 0 in D, and

the quantity Aε∇us
ε · n vanishes on the boundary ∂ωε \ γε. This implies in

particular that for every ε > 0, the function us
ε satisfies the weak formulation

(4.3) with source terms (fs
ε , g

s
ε) ∈ L2(ωε, dm

−1)× L2(γε, dσ
−1), where f s

ε :=
− div(Aε∇us

ε) in ωε and gsε := Aε∇us
ε · n on γε.
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• If we set
(6.3)
f r
ε := − div(Aε∇ur

ε) = −f s
ε in ωε and grε := Aε∇ur

ε·n = gε−gsε on γε,

then for ε = 0, f r
0 ∈ L2(ω0, dm

−1), gr0 ∈ L2(γ0, dσ
−1), and the following

convergences hold true:

‖f r
ε − f r

0‖L2(ωε,dm−1) → 0 and ‖grε − gr0‖L2(γε,dσ−1) → 0 as ε → 0+.

Then, according to Lemma 6 and since f r
ε and grε satisfy the compatibility condition

for every ε > 0 (this follows from the fact that us
ε is smooth and

∫
ωε

gε ds = 0), we

can pass to the limit in (4.2) to get∫
ω0

f r
0 dx+

∫
γ0

gr0 ds = 0.

Consequently, for every ε � 0, ur
ε is a solution (in the sense of Definition 1) of

problem (4.3) with the source terms (f r
ε , g

r
ε) given by (6.3). On the other hand, the

properties of f r
ε and gεr ensure, thanks to Theorem 3, that ur

0 ∈ H1
N (ω0, dm) and that

‖∇ur
ε −∇ur

0‖L2(ωε) = ‖∇uε −∇(us
ε + ur

0)‖L2(ωε) → 0 as ε → 0+.

Considering the limit problem (ε = 0), this construction will provide a natural solution

u0 = us
0 + ur

0,

which does not belong to H1(ω0, dm), leading us to supplement Definition 1 with the
following.

Definition 2 (infinite energy solution). Let ur
0 ∈ H1

N (ω0, dm) be a solution to
system (1.8) (for ε = 0) with volume source term f r

0 ∈ L2(ω0, dm
−1) and boundary

data gr0 ∈ L2(ω0, dσ
−1) satisfying the compatibility condition

(6.4)

∫
ω0

f r
0dx+

∫
γ0

gr0ds = 0.

Let us
0 be a smooth function, supported in R0 (and extended by 0 in D) with infinite

Dirichlet energy, and such that A0∇us
0 · n = 0 on ∂ω0 \ γ0 and denote

fs
0 := − div(A0∇us

0) in ω0 and gs0 := A0∇us
0 · n on γ0.

Then the function

u0 := us
0 + ur

0,

set in ω0 is called an infinite energy solution to system (1.8) (for ε = 0) with volume
source term f0 := f r

0 + f s
0 and boundary data g0 := gr0 + gs0.

Remark 7. The (smooth) function us
0 is required to be supported in R0 in order

to ensure that the expression of the volume source term fs
0 makes sense. Indeed, the

entries of the matrix A0 are only supposed to be continuous in D whereas they are
C1 in R0.

We can now give the expression of the ansatz us
ε: Let χ be a smooth cutoff

function defined in ω0 such that χ = 1 in ]1,+∞[×]0, 1[, χ is independent of x2 in
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]0, 1[×]0, 1[, and χ = 0 in D. For every ε � 0, we define the function us
ε in ωε by

setting

(6.5) us
ε(x) = χ(x)

[
−

∫ x1

0

με(s) ds+
1

2
x2
2 [Hε(με(x1))− με(x1)H

′
0(με(x1))]

]
,

for every x ∈ ωε. The following lemma, the proof of which is given in Appendix B,
asserts that the Dirichlet energy indeed blows up as ε goes to 0+.

Lemma 10. The Dirichlet energy of us
ε behaves as follows when ε → 0+:

(6.6)

∫
ωε

Aε∇us
ε · ∇us

εdx ∼
ε=0

⎧⎪⎨
⎪⎩

1
3κ

−1| ln(ε)| if α = 2,

1

3
ε

3
1+α−1κ− 3

1+α
3π/(1 + α)

sin(3π/(1 + α))
if α > 2.

Theorem 5. When α � 2, the following assertions hold true:
1. There exists a function ur

0 ∈ H1(ω0, dm) such that

‖∇uε −∇(us
ε + ur

0)‖L2(ωε) → 0 as ε → 0+.

2. The function u0 := us
0 + ur

0 is an infinite energy solution to system (1.10)
(with ε = 0), in the sense of Definition 2.

3. The Dirichlet energy of uε behaves as the Dirichlet energy of us
ε as ε → 0+.

Proof. For the sake of clarity, we provide a constructive proof to explain how to
obtain the ansatz (6.5). Our method can be seen as an adaptation for every ε � 0 of
the multiscale expansion method used in [18] in the case ε = 0.

First, recall that the system (1.8) under consideration reads

− div(Aε∇uε) = 0 in ωε,(6.7a)

Aε∇uε · n = gε on γε,(6.7b)

Aε∇uε · n = 0 on ∂ωε \ γε,(6.7c)

where we have set

gε(x) = DΨ−1
ε τ · e1 = Hε(X

1
ε ), X1

ε := με(x1).

On the rectangle Rε, we have

(6.8)

− div(Aε∇uε)(x)

= −∂2
x2
1
uε(x) + 2x2H

′
0(X

ε
1)∂

2
x1x2

uε(x) −
[
1 +

(
x2H

′
0(X

ε
1)
)2]

∂2
x2
2
uε(x)

+H ′
0(με)∂x1uε − x2

[
2H ′

0(X
ε
1 )

2 +H ′′
0 (X

ε
1)Hε(X

ε
1)
]
∂x2uε(x).

We seek an approximate solution to system (6.7) in Rε in the form

(6.9) ûs
ε(x) = vε(X

ε
1) +Hε(X

ε
1)Vε(X

ε
1 , x2) ∀x = (x1, x2) ∈ Rε,

where the functions vε and Vε need to be determined. With (6.8) we get

(6.10a) − div(Aε∇ûs
ε)(x) = −Hε(X

ε
1)

[
∂2
x2
2
Vε(X

ε
1 , x2) +Hε(X

ε
1)v

′′
ε (X

ε
1)
]
+ f̂ s

ε (x),
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where
(6.10b)

f̂s
ε (x) := −Hε(X

ε
1)
{
H ′′

0 (X
ε
1)Hε(X

ε
1)Vε(X

ε
1 , x2) + x2

2H
′
0(X

ε
1)

2∂2
x2
2
Vε(X

ε
1 , x2)

+ 2H ′
0(X

ε
1)Hε(X

ε
1)[∂x1Vε(X

ε
1 , x2)− x2∂

2
x1x2

Vε(X
ε
1 , x2)]

− x2H
′′
0 (X

ε
1)Hε(X

ε
1)∂x2Vε(X

ε
1 , x2) +Hε(X

ε
1)

2∂2
x2
1
Vε(X

ε
1 , x2)

}
.

On γR
ε , i.e., for x = (x1, 1), 0 < x1 < �ε, or equivalently δ < Xε

1 < 0, we have

(6.10c) Aε∇ûs
ε · n(x1, 1) = Hε(X

ε
1)
[
− v′ε(X

ε
1)H

′
0(X

ε
1) + ∂x2Vε(X

ε
1 , 1)

]
+ r̂sε(x),

where
(6.10d)

r̂sε(x) := Hε(X
ε
1)
{
H ′

0(X
ε
1)

2[∂x2Vε(X
ε
1 , 1)−Vε(X

ε
1 , 1)]−Hε(X

ε
1)H

′
0(X

ε
1)∂x1Vε(X

ε
1 , 1)

}
.

On the lower boundary {(x1, 0) : 0 < x1 < �ε}, we have

(6.10e) Aε∇ûs
ε · n(x1, 0) = Hε(X

ε
1 )∂x2Vε(X

ε
1 , 0).

Finally, on the vertical right boundary {(�ε, x2) : 0 < x2 < 1} we get

(6.10f) Aε∇ûs
ε · n(�ε, x2) = ε[v′ε(0) + ε∂x1Vε(0, x2)].

The function ûs
ε is supposed to be an ansatz for uε, so in view of the expressions

(6.10), we seek the functions vε and Vε in order to cancel the “leading” (i.e., less
decreasing) terms in (6.10a). We also want the Neumann boundary conditions for ûε

to approximate “at best” the boundary conditions of uε. This leads to the following
one dimensional Neumann system that must be satisfied for every fixed δ < Xε

1 < 0:

−∂2
x2
2
Vε(X

ε
1 , ·) = Hε(X

ε
1)v

′′
ε (X

ε
1) on ]0, 1[,(6.11a)

∂x2Vε(X
ε
1 , 1) = 1 + v′ε(X

ε
1)H

′
0(X

ε
1),(6.11b)

∂x2Vε(X
ε
1 , 0) = 0.(6.11c)

The compatibility condition, necessary for this system to admit solutions, reads

Hε(X
ε
1 )v

′′
ε (X

ε
1 ) + 1 + v′ε(X

ε
1)H

′
0(X

ε
1) = 0, δ < Xε

1 < 0.

It can been rewritten as

d2

dx2
1

(vε(με(x1))) = −μ′
ε(x1).

We choose the solution of this ODE that vanishes at x1 = 0:

(6.12) vε(με(x1)) = −
∫ x1

0

με(s) ds.

We deduce that

−Hε(X
ε
1)v

′′
ε (X

ε
1) = 1 + v′ε(X

ε
1)H

′
0(X

ε
1) =

Hε(X
ε
1)−Xε

1H
′
0(X

ε
1)

Hε(Xε
1)

,
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whence we infer the expression of Vε:

(6.13) Vε(x1, x2) =
1

2
x2
2

[
Hε(X

ε
1)−Xε

1H
′
0(X

ε
1)

Hε(Xε
1)

]
,

and then the expression of ûs
ε in Rε thanks to (6.9):

(6.14) ûs
ε(x1, x2) = −

∫ x1

0

με(s) ds+
1

2
x2
2 [Hε(X

ε
1)−Xε

1H
′
0(X

ε
1)] .

Reconsidering now the expressions (6.10a) and (6.10c), we have by construction

− div(Aε∇ûs
ε) = f̂ s

ε in ωε, Aε∇ûs
ε · n = r̂sε + gε := ĝsε on γR

ε , and Aε∇ûs
ε · n = 0 on

the lower and right boundaries of Rε (according, respectively, to (6.10e) and (6.10f)).
Recalling that χ is the cutoff function introduced above Lemma 10, we can define us

ε

in the whole domain ωε by setting

us
ε(x) := χ(x)ûs

ε(x) (x ∈ ωε),

and we recover the announced expression (6.5).
It remains to verify now that us

ε indeed carries the singular part of uε. Straight-
forward computation leads to:

− div(Aε∇us
ε) = f s

ε in ωε,

Aε∇us
ε · n = gsε on γε,

Aε∇us
ε · n = 0 on ∂ωε \ γε,

where

f s
ε = [− div(Aε∇χ)ûs

ε − 2Aε : (∇χ⊗∇ûs
ε)] + χf̂ s

ε in ωε,(6.15a)

gsε = [ûs
ε(Aε∇χ) · n] + χĝsε on γε.(6.15b)

The function ur
ε := uε − us

ε satisfies

− div(Aε∇ur
ε) = f r

ε in ωε,(6.16a)

Aε∇ur
ε · n = grε on γε,(6.16b)

Aε∇ur
ε · n = 0 on ∂ωε \ γε,(6.16c)

where

(6.17) f r
ε = −f s

ε in ωε and grε = gε − gsε on γε.

For every ε > 0 the functions fs
ε and gsε satisfy the compatibility condition (they are

defined as being, respectively, the divergence and the flux across the boundary of the
smooth vector field Aε∇us

ε). Moreover,
∫
γε

gε ds = 0 for every ε � 0. We deduce that

f r
ε and grε satisfy the compatibility condition as well (for every ε > 0).

The following lemma ensures that the ansatz function us
ε does the job it has been

designed for.
Lemma 11. The function f r

0 belongs to L2(ω0, dm
−1), the function gr0 belongs to

L2(γ0, dσ
−1), and they satisfy the compatibility condition (6.4). Moreover, we have

the following convergence results:

(6.18) ‖f r
ε − f r

0 ‖L2(ωε,dm−1) → 0 and ‖grε − gr0‖L2(γε, dσ−1) → 0 as ε → 0+.

The proof is postponed to Appendix B.
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To complete the proof of the two firsts points of the theorem, it suffices now to
apply Theorem 3.

Finally, the last remaining point results from the second triangular inequality,

∣∣∣∣∣
(∫

ωε

Aε∇uε · ∇uε dx

) 1
2

−
(∫

ωε

Aε∇us
ε · ∇us

ε dx

) 1
2

∣∣∣∣∣ �
(∫

ωε

Aε∇ur
ε · ∇ur

ε dx

) 1
2

,

together with Lemma 10 and again Theorem 3. The proof of the theorem is now
complete.

7. Back to miscellaneous cases of section 2. In section 2 we state some
results allowing comparison of the Dirichlet energy for different configurations, some
of them not being covered by our general study. We show in this section that the
method used to determine the asymptote of the Dirichlet energy in the previous section
can be adapted to the case where the bottom of the solid is locally flat (referred to as
“the flat case” in what follows).

7.1. The flat case. We shall now focus on the cases depicted on the left of
Figure 6, i.e., where the bottom of the solid is locally flat. Being more specific, we
consider the case where the function Hε has the following expression (hereafter, in
addition to the already defined constants, δ′ is a negative number such that δ < δ′ <
0):

Hε(ξ1) =

{
Ĥε(ξ1 − δ′) if δ � ξ1 < δ′,

ε if δ′ � ξ1 < 0,

where Ĥε(ξ1) := κ|ξ1|1+α + ε with α > 2. Denoting δ̂ := δ − δ′ < 0, we can define,

associated with Ĥε and δ̂, the functions ρ̂ε, μ̂ε, Ψ̂ε, and Ψ̂−1
ε based on formulas (3.3),

(3.6), (3.2), and (3.8). We will also need the constant �̂ε := limξ1→0+ ρ̂ε(ξ1) . Observe
now that, corresponding to Hε and using the very same formula as above, we get

ρε(ξ1) =

{
ρ̂ε(ξ1 − δ′) if δ � ξ1 < δ,′

1
ε (ξ1 − δ′) + �̂ε if δ′ � ξ1 < 0,

with �ε := ρε(0) = �̂ε − δ′
ε (�0 = +∞). Notice that the function ρε=0 is only defined

for δ � ξ1 < δ′. For ε � 0, the inverse of ρε defined on [0, �ε[ reads

με(x1) =

{
μ̂ε(x1) + δ′ if 0 � x1 < �̂ε,

ε(x1 − �̂ε) + δ′ if �̂ε � x1 < �ε.

We deduce that, for every ε � 0,

(7.1)

Hε(με(x1)) =

{
Ĥε(μ̂ε(x1)) if 0 � x1 < �̂ε,

ε if �̂ε � x1 < �ε,

H(k)
ε (με(x1)) =

{
Ĥ

(k)
ε (μ̂ε(x1)) if 0 � x1 < �̂ε,

0 if �̂ε � x1 < �ε,
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where k � 1 stands for the derivative of order k (if well-defined). On the rectangle
Rε, we get

Ψ−1
ε = Ψ̂−1

ε +

(
δ′

0

)
in R̂ε =]0, �̂ε[×]0, 1[ and

Ψ−1
ε (x) = ε

(
x1 − �̂ε

x2

)
+

(
δ′

0

)
in [�̂ε, �ε[×]0, 1[.

According to formula (1.9), we deduce that

(7.2) Aε =

{
Âε in R̂ε :=]0, �̂ε[×]0, 1[,

εId in [�̂ε, �ε[×]0, 1[.

Notice once more that R̂ε=0 = Rε=0 =]0,+∞[×]0, 1[. Considering (7.2), we deduce
that the conclusions of Lemma 3 still hold true. This convergence result is required in
Theorem 3, while all the results of section 4 are completely independent of the change
of variables. We can now jump directly to the computation of the ansatz function.
The general expression (6.5) leads to, in our case,

us
ε(x) =

⎧⎨
⎩
ûs
ε(x)− δ′χ(x)

[
x1 +

1
2x

2
2Ĥ

′
0(μ̂ε(x1))

]
if x ∈ ω̂ε,

− ∫ 
̂ε
0

μ̂ε(s) ds+
ε
2 (x

2
2 − x2

1 + 2x1�ε − �̂2ε) if x ∈ [�̂ε, �ε[×]0, 1[,

where ûs
ε is the ansatz for the problem corresponding to Ĥε and χ the cutoff function

defined above identity (6.5). The mirror image of Lemma 10 is the following.
Lemma 12. The Dirichlet energy of us

ε behaves as follows when ε → 0+:∫
ωε

Aε∇us
ε · ∇us

ε dx ∼
ε=0

|δ′|3
3

ε−1.

Unlike the other cases, neither κ nor α appear in the expression of the leading
term in the asymptotic expansion of the energy. They would probably play a role in
lower order terms only. This observation lead us to think that the technical condition
α > 2 has to be understood as a regularity assumption for the solid’s boundary and
is not related to the “strength” of the cusp of the fluid domain when ε = 0.

We can now claim the following.
Proposition 6. Theorem 5 is true for the flat case. In particular, the Dirichlet

energy behaves as follows when ε goes to 0:

(7.3) Eε ∼
ε=0

|δ′|3
3

ε−1.

Proof. It suffices to verify that Lemma 11 and more precisely that the expressions
(B.5) are in the appropriate function spaces. There is a subtlety here because the
decay properties (3.10) are not true in our case. However, with (7.1) and (B.5) and
since there is at least one derivative of H0 in every product arising in the right-hand
side of the expressions (B.5), it can be verified that we still get enough decay rate to
get the conclusion.

Considering the problem of collision, we can apply Lemma 1 to get the following.
Proposition 7. In the flat case, the solid reaches the cavity’s bottom in finite

time with null velocity (smooth landing case).
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7.2. Other cases. Combining (7.3) with the results of section 2, we can easily
deduce the following:

• In the situation depicted in the right of Figure 6, the solid will collide with
the outer boundary in finite time with null velocity (smooth landing case).

• In both configurations in the right of Figure 7, the solid will behave the same
way when approaching the outer boundary and reach it in finite time. It is not
possible (without further computations) to determine whether the velocity is
null or not at the touching time.

Appendix A. Construction of the change of variables. In this section, we
aim to construct the diffeomorphisms Ψε (0 � ε � ε∗) earlier introduced in section 3.

Recall the definitions (3.1) of Vε (0 � ε � ε∗). Since we need to emphasize the
dependence on δ, we denote it rather Vε(δ) in this section and we recall that Ψε has
already been defined in Vε(δ) in section 3.

To simplify the construction, there is no loss of generality in assuming that (up
to a rescaling) H0(δ) = 1.

Let us define Ψ̂ε := Ψε + δe1 and notice that, on the left vertical boundary of
Vε(δ), we have

Ψ̂((δ, ξ2)) =

(
δ,

ξ2
1 + ε

)
(0 < ξ2 < 1 + ε).

Starting from this observation, our leading idea is to extend Ψ̂ε (rather than Ψε) as
a perturbation of the identity in Ωε \ Vε(δ). We proceed in several steps.

Step 1. We introduce an open cover (Uk)1�k�3 of Ωε (see Figure 9), such that
1. Ωε ⊂ U1 ∪ U2 ∪ U3 for every ε � 0 small enough;
2. there exists δ′′ < δ′ < δ such that

Vε(δ
′) ⊂ U1 ⊂ Vε(δ

′′) and Uk ∩ Vε(δ
′) = ∅ (k = 2, 3)

for every ε � 0 small enough;
3. Γε ∩ U3 = ∅ for every ε � 0 small enough.

Consider (χk)1�k�3 a partition of unity subordinated to the open cover Uk (k = 1, 2, 3)

and let us define Ψ̂k
ε (k = 1, 2, 3), three functions, respectively, defined in U1, U2, and

U3 and out of which we are going to build Ψ̂ε.
Step 2. (construction of Ψ̂1

ε). For every ε � 0, we define the function

(A.1a) ρ̂ε(ξ1) = δ +

∫ ξ1

δ

Fε(t) dt (δ′′ < ξ1 < 0),

where the function Fε ∈ C0([δ′′, 0[) is given by

(A.1b) Fε(t) =

⎧⎪⎪⎨
⎪⎪⎩
1 if ξ1 < δ′,
ε

1+ε

(
a t2 + b t+ c

)
+ 1 if δ′ < ξ1 � δ,

Hε(t)
−1 if ξ1 > δ,

with

(A.1c) a = − 3

(δ − δ′)2
, b =

2 (δ + 2 δ′)

(δ − δ′)2
, c = − δ′(2δ + δ′)

(δ − δ′)2
.

We set �̂ε := ρ̂ε(0) (ε > 0) and �̂0 := +∞.
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0

ε

δ′

U1

U2

U3

δδ′′ 0δ′

U1

U2

U3

δδ′′

Fig. 9. The open cover (Uk)1�k�3 of Ωε (for ε > 0 and ε = 0).

�ε

1

x2 = H0(x1)

δδ′

�ε

x1

ξ1δ′ δ

x1 = ξ1

δ

δ′ 0

δ′′

δ′′
δ′′

Fig. 10. Graph of the functions ρ̂ε (left) and Ĥ0 (right).

For ε � 0 small enough, Fε is positive and we denote by μ̂ε :]δ′′, �̂ε[→]δ′′, 0[ the
inverse of ρ̂ε.

Define now a C1 function Ĥ on ]δ′′, 0], as on Figure 10, satisfying in particular

Ĥ0(ξ1) =

{
H0(ξ1) if ξ1 > δ,

1 if ξ1 < δ′.

The function Ψ̂1
ε is defined on Vε(δ

′′) as follows:

(A.2a) Ψ1
ε(ξ) =

(
ρ̂ε(ξ1)

κε(ξ)ξ2 − εχ2(ξ)

)
,

where

(A.2b) κε(ξ) =
Ĥ0(ρ̂ε(ξ1)) + εχ2(ξ)

Hε(ξ1)
.
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Step 3. We introduce Ψ̂2
ε = Id− εe2 and Ψ̂3

ε = Id (ε � 0) and we claim that the
function Ψ̂ε defined by

Ψ̂ε :=
3∑

k=1

χkΨ̂
k
ε ,

fulfilled the requirements. More precisely, setting Ψε = Ψ̂ε − δe1 (ε � 0), we have the
following.

Proposition 8. The function Ψε enjoys the following properties:
1. For every ε � 0, the set D := Ψε(Ωε \ Vε(δ)) is independent of ε.
2. For every ε � 0, Ψε is C1, invertible, and Ψ−1

ε is C1.
3. ‖Ψ−1

ε −Ψ−1
0 ‖C1(D) → 0 as ε → 0+.

Proof. Since Ψ̂ε and Ψε only differ in a translation, the proof is carried out with
Ψ̂ε instead of Ψε.

The first point is easily verified by computing the image of the boundary of
Ωε \ Vε(δ). Indeed, denoting

V̂ε := {(x1, x2) ∈ Ωε : δ′′ < x1 < δ, 0 < ξ2 < Hε(ξ1)},
we have

Ψ̂ε(Γε ∩ V̂ε) = {x = (x1, x2) ∈ R
2 : δ′′ < x1 < δ, x2 = Ĥ0(x1)},

Ψ̂ε(Γε ∩ U2) = Γ ∩ U2,

Ψ̂ε(Γ
′
ε ∩ (U3 ∪ V̂ε)) = Γ′ ∩ (U3 ∪ V̂ε).

For the second and third points of the proposition, we proceed as follows:
a. We prove that Ψ̂ε : Vε(δ

′) �→ R′
ε, where

R′
ε := {(x1, x2) ∈ R

2 : δ′ < x1 < �ε, 0 < x2 < Ĥ0(x1)},
is a C1 diffeomorphism by studying its inverse, which can be made ex-
plicit. With the expression of this inverse, we also prove rather easily that
‖Ψ̂−1

ε − Ψ̂−1
0 ‖C1(R

′
ε)

→ 0 as ε → 0+.

b. By noticing that Ψ̂ε is a C1, ε-perturbation of the identity in Ωε \ Vε(δ
′), we

prove that Ψ̂ε is also a C1 diffeomorphism from Ωε \ Vε(δ
′) onto its image

and that ‖Ψ̂−1
ε − Ψ̂−1

0 ‖C1(Ψε(Ωε\Vε(δ′)))
→ 0 as ε → 0+.

c. We get the conclusion of the proposition by remarking that

(A.3) detDΨ̂ε �= 0 in Ωε

and

(A.4) Ψ̂ε(Vε(δ
′)) ∩ Ψ̂ε(Ωε \ Vε(δ

′)) = ∅.

The inverse of Ψ̂ε in Vε(δ
′) is

(A.5) Ψ̂−1
ε (x) =

(
μ̂ε(x1)

Hε(μ̂ε(x1))

Ĥ0(x1)
x2

)
.

Following the lines of the proof of Proposition 5, we verify that Ψ̂ε : Vε(δ
′) �→ R′

ε is
indeed a C1 diffeomorphism and that ‖Ψ̂−1

ε − Ψ̂−1
0 ‖C1(R

′
ε)

→ 0 as ε → 0+.
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Let us denote now Uε := Ωε \ Vε(δ
′). With our construction, we get, for every

ξ ∈ Uε,

(A.6) Ψ̂ε(ξ) = ξ + εFε(ξ),

where

Fε(ξ) :=

[
χ1(ξ)

χ2(ξ)− 1

Hε(ξ1)
ξ2 − χ2(ξ)− χ1(ξ)χ2(ξ)

]
.

Since Fε is Lipschitz continuous uniformly in ε for every ε small enough, we deduce
that Ψ̂ε is one-to-one in Uε for every ε small enough. Finally Ψ̂ε is a bijection from Uε

onto its image. From expression (A.6), according to the local inversion theorem, we
get that Ψ̂−1

ε is also C1. Using once again (A.6), it is clear that ‖Ψ̂ε− Ψ̂0‖C1(Uε)
→ 0

as ε → 0+ with Ψ̂0 = Id.
It remains to address the convergence of Ψ̂−1

ε into Ψ̂−1
0 = Id in Ψ̂(Uε). On the

one hand, we have

(A.7) ‖Ψ̂−1
ε − Id‖L∞(Ψ̂ε(Uε)

= ‖Ψ̂ε − Id‖L∞(Uε)
= ε‖Fε‖L∞(Uε)

.

On the other hand, we have

(A.8) DΨ̂ε(ξ) = Id + εDFε(ξ)

and thus, since DFε is clearly uniformly bounded with respect to ε in L∞(Uε) by
some constant C, its inverse is given via the Neumann series

(DΨ̂ε(ξ))
−1 = Id + εGε(ξ)

with

Gε(ξ) = −
+∞∑
k=0

(−ε)kDFε(ξ)
k+1

provided ε is small enough, or more precisely for ‖εDFε‖L∞(Uε)
< 1. For such ε, we

can write that

‖DΨ̂−1
ε − Id‖L∞(Ψ̂ε(Uε)

= ‖(DΨ̂ε ◦ Ψ̂−1
ε )−1 − Id‖L∞(Ψ̂ε(Uε)

= ‖(DΨ̂ε)
−1 − Id‖L∞(Uε)

= ε‖Gε‖L∞(Uε)

≤ ε‖DFε‖L∞(Uε)

� Cε.(A.9)

Gathering the estimates (A.7) and (A.9), we finally get

‖Ψ̂−1
ε − Ψ̂−1

0 ‖C1(Ψ̂ε(Uε))
→ 0 as ε → 0+.

We prove (A.3) by direct computation, using (A.5) for ξ ∈ Vε(δ
′) and (A.8) for

ξ ∈ Ωε \ Vε(δ
′). Notice in particular that (A.8) remains true “up to the boundary”

between Vε(δ
′) and Ωε \ Vε(δ

′). The nonoverlapping property (A.4) is easily verified
and the proof is now complete.
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Appendix B. Proofs of technical results.
Proof of Lemma 2. One easily checks that the function Fε := με − μ0 is positive

on [0, �ε], which leads to

|με| � |μ0|,
and (3.10a) follows from (3.7). Moreover, we have F ′

ε = H0(μ0)[Gε − 1], where

Gε :=
Hε(με)

H0(μ0)
.

Straightforward computations lead to

G′
ε = Gε[H

′
0(με)−H ′

0(μ0)],

which is a positive function on [0, �ε]. Since Gε(0) = 1+ ε/H0(δ) > 1, we deduce that
F ′
ε > 0 and then that

‖με − μ0‖C0([0,
ε]) = −μ0(�ε),

and (3.9) follows with (3.7) and (3.4).
Still from (3.7) and (3.4), we infer that

Gε(�ε) ∼
ε=0

[
α

π/(α+ 1)

sin(π/(α+ 1))

]1+ 1
α

,

whence we deduce that, on [0, �ε], we have

|Hε(με)| � CH0(μ0)

for some constant C > 0 dependent on α only. Combining this estimate again with
(3.7) and (3.4), we get (3.10b).

Finally, since |με| � |μ0|, we have

|H ′
0(με)| � |H ′

0(μ0)|,
and (3.10c) follows, using (3.7) and (3.4). The proof is now complete.

Proof of Lemma 1. Let us recall that the Cauchy problem (1.5) we are dealing
with can be rewritten as

ε′(t) = ε′0F (ε(t), ε∗), t > 0,(B.1a)

ε(t)|t=0 = ε∗(B.1b)

with

F (ε, ε∗) :=

√
ms +mf (ε∗)
ms +mf (ε)

,

and ε∗ > 0 and ε′0 < 0 are given. As already mentioned, it is proved in [4] that the
function

ε ∈]0, ε∗[�→ mf (ε) ∈ R
+

is analytic and hence the function F (·, ε∗) :]0, ε∗[→ R
+ has the same regularity.



4400 ALEXANDRE MUNNIER AND KARIM RAMDANI

The hypothesis Eε → +∞ as ε → 0+ entails that F (·, ε∗) → 0 as ε → 0+

and therefore that the velocity of the solid tends to 0 when approaching the outer
boundary; real shock cannot occur in this case.

The hypothesis Eε = O(ε−β) means that there exists 0 < ε† < ε∗ and C > 0 such
that

Eε < Cε−β (0 < ε < ε†).

This estimate entails that, for a different positive constant still denoted by C,

(B.2) F (ε, ε∗) > Cε
β
2 (0 < ε < ε†).

On the other hand, the function F (·, ε∗) is bounded from below on the compact [ε†, ε∗]
by some constant c > 0. We deduce that ε′(t) < cε′0 as long as ε(t) > ε†. To simplify,
let us relabel t = 0 the time for which ε(t) = ε† (this time being no greater than
εη/(cε

′
0)).

Using now the estimate (B.2) in the Cauchy problem, now restated as

ε′(t) = ε′0F (ε(t), ε∗), t > 0,

ε(t)|t=0 = ε†,

we deduce that (changing again the value of the positive constant C)

ε(t) �
[
Cε′0t+ (ε†)−

β
2 +1

] 2
2−β

,

and therefore, the solid meets the cavity’s wall in finite time.
Proof of Lemma 10. The Dirichlet energy of us

ε is decomposed as follows:

∫
ωε

|∇us
ε(x)|2 dx =

∫
ωε\]1,
ε[×]0,1[

|∇us
ε(x)|2 dx+

∫ 
ε

1

∫ 1

0

|∇us
ε(x1, x2)|2 dx2dx1.

The first integral in the right-hand side is uniformly bounded for ε � 0, so let us focus
on the latter.

In ]1, �ε[×]0, 1[, we have

∂x1u
s
ε(x) = −με(x1)

[
1 +

1

2
x2
2H

′′
0 (με(x1))Hε(με(x1))

]
,

∂x2u
s
ε(x) = x2 [Hε(με(x1))− με(x1)H

′
0(με(x1))] .

Expending |∂x1u
s
ε(x)|2 + |∂x2u

s
ε(x)|2, and using the estimates (3.10), we obtain that

the only remaining term which is not uniformly bounded (with respect to ε � 0) by
a function in L1(ω0) is∫ 
ε

1

∫ 1

0

|με(x1)|2 dx2dx1 =

∫ 
ε

1

|με(x1)|2 dx1.

The change of variables ξ1 = με(x1) leads to∫ 
ε

1

|με(x1)|2 dx1 =

∫ 0

με(1)

ξ21 dξ1
κ|ξ1|1+α + ε

.
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Setting now ζ = κ
1

α+1 ξ1/ε
1

α+1 , we can transform the expression above into∫ 0

με(1)

ξ21 dξ1
κ|ξ1|1+α + ε

= κ− 3
α+1 ε

3
1+α−1

∫ 0

β(ε)

ζ2 dζ

|ζ|1+α + 1
,

where β(ε) := κ− 1
1+αμε(1)ε

− 1
1+α . We have now to distinguish, according to the value

of α,

(B.3)

∫ 0

β(ε)

ζ2 dζ

|ζ|1+α + 1
=

⎧⎨
⎩
∫ 0

β(ε)
dζ

|ζ|+1 +
∫ 0

β(ε)
|ζ|−1
|ζ|3+1 dζ if α = 2,∫ 0

−∞
ζ2 dζ

|ζ|1+α+1 − ∫ β(ε)

−∞
ζ2 dζ

|ζ|1+α+1 if α > 2.

We deduce that, when α = 2,∫ 0

β(ε)

ζ2 dζ

|ζ|1+α + 1
∼
ε=0

| ln |β(ε)|| ∼
ε=0

1

3
| ln(ε)|.

When α > 2, since the second term in (B.3) tends to 0 with ε, we are led to compute
the value of ∫ +∞

0

x2 dx

x1+α + 1
.

Yet another change of variable, namely, y = x3, allows us to do that. We finally get∫ +∞

0

x2 dx

x1+α + 1
=

1

3

∫ +∞

0

dy

y
1+α
3 + 1

=
1

3

3π/(1 + α)

sin(3π/(1 + α)
.

The proof is then complete.
Proof of Lemma 11. We observe first that f r

ε = 0 in D and grε = 0 in γD
ε for every

ε � 0 because of the cutoff function χ and hence ωε can be replaced by Rε and γε by
γR
ε in (6.18). Recall that (identities (6.17) and (6.15))

f r
ε = [div(Aε∇χ)ûs

ε + 2Aε : (∇χ⊗∇ûs
ε)]− χf̂ s

ε in ωε,(B.4a)

grε = [−ûs
ε(Aε∇χ) · n+ (1− χ)gε]− χr̂sε on γε.(B.4b)

Using the expressions (6.12) and (6.13) of vε and Vε in (6.10b) and (6.10d), we get,
for every x ∈ Rε,
(B.5a)

f̂ s
ε (x1, x2) = x2

2

[
3

2
Hε(X

ε
1)

2H ′′
0 (X

ε
1) +

1

2
Xε

1Hε(X
ε
1)

2H ′′′
0 (Xε

1)

− 3Xε
1Hε(X

ε
1)H

′
0(X

ε
1)H

′′
0 (X

ε
1)− 3Hε(X

ε
1)H

′
0(X

ε
1)

2 + 3Xε
1H

′
0(X

ε
1)

2

]
,

and for every x ∈ γR
ε ,

(B.5b) r̂sε(x) =

[
1

2
Xε

1Hε(X
ε
1 )H

′
0(X

ε
1)H

′′
0 (X

ε
1) +Hε(X

ε
1)H

′
0(X

ε
1)

2 −Xε
1H

′
0(X

ε
1)

3

]
.

Observing that |H ′′
0 (με)| and |H ′′′

0 (με)| are uniformly bounded (because α > 2), we
deduce, according to the estimates (3.10), that the functions

x �→ |f̂ s
ε (x)|2(1 + x1)

2 and x �→ |r̂sε(x)|2(1 + x1)
2,



4402 ALEXANDRE MUNNIER AND KARIM RAMDANI

are uniformly (in ε � 0) bounded by a function belonging to L1(R0) and L1(γR
0 ),

respectively. Invoking again Lemma 2 and applying the dominated convergence the-
orem, we get that

‖f̂s
ε − f̂ s

0‖L2(Rε,dm−1) → 0 and ‖r̂sε − r̂s0‖L2(γR
ε , dσ−1) → 0 as ε → 0+.

Using Proposition 5, we deduce that − div(Aε∇χ) converges uniformly in ]0, 1[×
]0, 1[ to − div(A0∇χ) and since, in addition, ûs

ε converges in C1([0, 1]2) to ûs
0, we get,

according to the identities (B.4), that

‖f r
ε − f r

0‖L2(Rε,dm) → 0 as ε → 0+.

We proceed similarly to show the second convergence result.
We know (see above Lemma 11) that f r

ε and grε satisfy the compatibility condition
(4.2) for every ε > 0. Lemma 6 and the convergence results above allow us to pass to
the limit in (4.2). The proof is now complete.
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