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Chapter 2

High-dimensional 
lustering

Christophe Bierna
ki and Cathy Maugis-Rabusseau

2.1 Introdu
tion

High-dimensional (HD) data sets are now frequent, mostly motivated by te
h-

nologi
al reasons whi
h 
on
ern automation in variable a
quisition, 
heaper

availability of data storage and more powerful standard 
omputers for qui
k

data management possibility. All �elds are impa
ted by this general phe-

nomenon of variable number in�ation, only the de�nition of �high� being do-

main dependent. In marketing, this number 
an be of order 102, in mi
roarray

gene expression between 102 and 104, in text mining 103 or more, of order

106 for single nu
leotide polymorphism (SNP) data, et
. Note also that some-

times mu
h more variables 
an be involved, what 
an be typi
ally the 
ase with

dis
retized 
urves, for instan
e 
urves 
oming from temporal sequen
es.

Here are two related illustrations. Figure 2.1(a) displays a text mining ex-

ample

1

. It mixes Medline (1033 medi
al abstra
ts) and Cran�eld (1398 aero-

nauti
al abstra
ts) making a total of 2431 do
uments. Furthermore, all the

words (ex
luding stop words) are 
onsidered as features making a total of 9275
unique words. The data matrix 
onsists of do
uments on the rows and words

on the 
olumns with ea
h entry giving the term frequen
y, that is the number of

o

urren
es of 
orresponding word in 
orresponding do
ument. Figure 2.1(b)

displays a 
urve example. This Kneading data set 
omes from Danone Vitapole

Paris Resear
h Center and 
on
erns the quality of 
ookies and the relationship

with the �our kneading pro
ess (Lévéder et al. [2004℄). It is 
omposed by 115

di�erent �ours for whi
h the dough resistan
e is measured during the kneading

pro
ess for 480 se
onds. We noti
e that the equispa
ed instants of time in the

interval [0; 480℄ (here 241 measures) 
ould be mu
h more large than 241 if

measures were more frequently re
orded.

1

This data set is publi
ly available at ftp://ftp.
s.
ornell.edu/pub/smart.
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(a) (b)

Figure 2.1: Examples of high-dimensional data sets: (a) Text mining:

n = 2431 do
uments and the frequen
y that d = 9275 unique words o

urs in

ea
h do
ument (a whiter 
ell indi
ates a higher frequen
y); (b) Curves:

n = 115 kneading 
urves observed at d = 241 equispa
ed instants of time in

the interval [0; 480℄.

Su
h a te
hnologi
al revolution has a huge impa
t in other s
ienti�
 �elds,

as so
ietal or also mathemati
al ones. In parti
ular, high-dimensional data

management brings some new 
hallenges to statisti
ians sin
e standard (low-

dimensional) data analysis methods struggle to dire
tly apply to the new (high-

dimensional) data sets. The reason 
an be twofold, sometimes linked, involving

either 
ombinatorial di�
ulties or disastrously large estimate varian
e in
rease.

Data analysis methods are essential for providing a syntheti
 view of data sets,

allowing data summary and data exploratory for future de
ision making for

instan
e. This need is even more a
ute in the high-dimensional setting sin
e on

the one hand the large number of variables suggests that a lot of information

is 
onveyed by data but, in the other hand, su
h information may be hidden

behind their volume.

Cluster analysis is one of the main data analysis method. It aims at parti-

tioning a data set x = (x1, . . . ,xn), 
omposed by n individuals and lying in a

spa
e X of dimension d into K groups G1, . . . , GK . This partition is denoted

by z = (z1, . . . , zn), lying in a spa
e Z, where zi = (zi1, . . . , ziK)′ is a ve
tor

of {0, 1}K su
h that zik = 1 if individual xi belongs to the kth group Gk, and

zik = 0 otherwise (i = 1, . . . , n, k = 1, . . . ,K). Figure 2.2 gives an illustration

of this prin
iple when d = 2. Model-based 
lustering allows to reformulate


luster analysis as a well-posed estimation problem both for the partition z

and for the number K of groups. It 
onsiders data x1, . . . ,xn as n i.i.d. real-

izations of a mixture pdf f(·; θK) =
∑K

k=1 πkf(·;αk), where f(·;αk) indi
ates
the pdf, parameterized by αk, asso
iated to the group k, where πk indi
ates

the mixture proportion of this 
omponent (

∑K
k=1 πk = 1, πk ≥ 0) and where

θK = (πk,αk, k = 1, . . . ,K) indi
ates the whole mixture parameters. From the

whole data set x it is then possible to obtain a mixture parameter estimate θ̂K

to dedu
e a partition estimate ẑ from the 
onditional probability f(z|x; θ̂K).



High-dimensional 
lustering 3

It is also possible to derive an estimate K̂ from an estimate of the marginal

probability f̂(x|K). More details on mixture models, related estimation of θK ,

z and K are given throughout Chapter ??.
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x = (x1, . . . ,xn) −→ ẑ = (ẑ1, . . . , ẑn), K̂ = 3

Figure 2.2: The 
lustering purpose illustrated in the two-dimensional setting.

Beyond the ni
e mathemati
al ba
kground it provides, model-based 
lus-

tering has led also to numerous and signi�
ant pra
ti
al su

esses in the �low-

dimensional� setting as Chapter ?? relates, with referen
es therein. Extending

the general framework of model-based 
lustering to the �high-dimensional� set-

ting is thus a natural and desirable purpose. In prin
iple, the more information

we have about ea
h individual, the better a 
lustering method is expe
ted to

perform. However the stru
ture of interest may often be 
ontained in a subset

of the available variables and a lot of variables may be useless or even harmful

to dete
t a reasonable 
lustering stru
ture. It is thus important to sele
t the

relevant variables from the 
luster analysis view point. It is a re
ent resear
h

topi
 in 
ontrast to variable sele
tion in regression and 
lassi�
ation models

(Kohavi and John [1997℄; Guyon and Elissee� [2003℄; Miller [1990℄). This new

interest for variable sele
tion in 
lustering 
omes from the in
reasingly frequent

use of these methods on high-dimensional data sets, su
h as trans
riptome data

sets.

Three types of approa
hes dealing with variable sele
tion in 
lustering have

been proposed. The �rst one in
ludes 
lustering methods with weighted vari-

ables (see for instan
e Friedman and Meulman [2004℄) and dimension redu
tion

methods. For this later, M
La
hlan et al. [2002℄ use a mixture of fa
tor analyz-

ers to redu
e the extremely high dimensionality of a gene expression problem. A

suitable Gaussian mixture family is 
onsidered in Bouveyron et al. [2007℄ to take

into a

ount the dimension redu
tion and the data 
lustering simultaneously.

In 
ontrast to this �rst method type, the last two approa
hes sele
t expli
itly

relevant variables. The so-
alled ��lter� approa
hes sele
t the variables before a


lustering analysis (see for instan
e Dash et al. [2002℄; Jouve and Ni
oloyannis

[2005℄). Their main weakness is the in�uen
e of independent sele
tion step of

the 
lustering results. In 
ontrast, the so-
alled �wrapper� approa
hes 
ombine
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variable sele
tion and 
lustering. For distan
e-based methods, one 
an 
ite

Fowlkes et al. [1988℄ for a forward sele
tion approa
h with 
omplete linkage

hierar
hi
al 
lustering, Devaney and Ram [1997℄ who propose a stepwise algo-

rithm where the quality of the feature subsets is measured with the 
obweb

algorithm or the method of Brus
o and Cradit [2001℄ based on the adjusted

Rand index for K-means 
lustering. There exists also wrapper methods in

the model-based 
lustering setting. When the number of variables is greater

than the number of individuals, Tadesse et al. [2005℄ propose a fully Bayesian

method using a reversible jump algorithm to simultaneously 
hoose the num-

ber of mixture 
omponents and sele
t variables. Kim et al. [2006℄ use a similar

approa
h by formulating 
lustering in terms of Diri
hlet pro
ess mixtures. In

Gaussian mixture model 
lustering, Law et al. [2004℄ propose to evaluate the

importan
e of the variables in the 
lustering pro
ess via �feature salien
ies� and

use the Minimum Message Length 
riterion. Raftery and Dean [2006℄ re
ast

the problem of 
omparing two nested variable subsets as a model 
omparison

problem and address it using Bayes fa
tor. An interesting aspe
t of their model

formulation is that irrelevant variables are not required to be independent of

the 
lustering variables. They avoid thus the unrealisti
 independen
e assump-

tion between the relevant and irrelevant variables for the 
lustering, 
onsidered

in Tadesse et al. [2005℄, Kim et al. [2006℄ and Law et al. [2004℄. In their model,

the whole irrelevant variable subset depends on the whole relevant variables

through a linear regression equation. However, some relevant variables are not

ne
essarily required to explain all irrelevant variables in the linear regression

and their introdu
tion involves additional parameters without a signi�
ant in-


rease of the loglikelihood. The related extensions proposed by Maugis et al.

[2009a,b℄ follow this remark.

Many model proposals already exist, in
luding asso
iated parameter esti-

mation and, sometimes, spe
i�
 model sele
tion strategies. We will divide

these models into 
anoni
al and non-
anoni
al ones, indi
ating if parameter


onstraints are respe
tively de�ned relatively to the initial data spa
e or rel-

atively to a transformation (a fa
torial mapping typi
ally). Before presenting

su
h models, and their related model sele
tion pro
ess, we draw what are the

pros (blessing) and the 
ons (
urse) of having many variables for performing a


luster analysis pro
ess.

2.2 HD 
lustering: Curse or blessing?

2.2.1 HD density estimation: Curse

In the previous se
tion, we provided some examples of high-dimensional data

sets. In the present se
tion, the aim is to give a somewhat more theoreti
al

de�nition of what a high-dimensional data set should be in a density estimation

setting. Su
h a de�nition will dramati
ally depends on the non-parametri
 and
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on the parametri
 
ases. It also relies on some asymptoti
 arguments. Remind

that we 
onsider a data set x = (x1, . . . ,xn), xi being des
ribed by d variables.

Non-parametri
 
ase

In the non-parametri
 situation, usually xi is 
onsidered to rely in a high-

dimensional spa
e as soon as n = o
(
ed
)
, thus as soon as the logarithm of the

sample size, lnn, is negligible beside the spa
e dimension d. A �rst justi�
ation

of this 
laim is given by Bellman [1961℄: To approximate within error ǫ > 0
a (Lips
hitz) fun
tion of d variables, about (1/ǫ)d evaluations (provided by

the sample size n. . . ) on a grid are required. A se
ond justi�
ation is also

given by Silverman [1986℄: Approximating a Gaussian distribution with �xed

Gaussian kernels and with approximate error of about 10% requires a sample

size log10 n(d) ≈ 0.6(d − 0.25). For instan
e, with d = 10, n(10) ≈ 7.105,
implying already a huge sample size for a quite moderate dimensional setting.

Parametri
 
ase

In the parametri
 situation, let Sm be a model des
ribed by Dm 
ontinuous

parameters, likely depending on the dimension d. In su
h a 
ase, the data set

x is said to rely in a high-dimensional spa
e as soon as n is small in 
omparison

to a parti
ular fun
tion g of Dm, namely n = o(g(Dm)). As an illustration

for g, we 
onsider the heteros
edasti
 Gaussian mixture with true parameter

θ∗
and K 
omponents. We note θ̂K the Gaussian MLE with K 
omponents.

In that situation, g is a linear fun
tion from the following result (Maugis and

Mi
hel [2012℄): It exists positive 
onstants κ and A su
h that

Ex[d
2
H(f(·; θ∗), f(·|θ̂K̂))] ≤ κ

[
inf
K
{KL(f(·; θ∗), f(·; θ̂K)) + pen(K)}+ 1

n

]

where dH denotes the Hellinger distan
e, KL the Kullba
k-Leibler divergen
e

and

pen(K) ≥ κ
DK

n

{
2A lnd+ 1− ln

(
1 ∧

[
DK

n
A ln d

])}
.

Thus the HD non-parametri
 and parametri
 situations are drasti
ally dif-

ferent in magnitude. However, in pra
ti
e, DK 
an be high sin
e DK ∼ d2/2 in
this Gaussian situation, 
ombined with potentially large 
onstants. For high-

lighting this fa
t, 
onsider the following two-
omponent multivariate Gaussian

mixture:

π1 = π2 =
1

2
, X1|Z11 = 1 ∼ N(0, I), X1|Z12 = 1 ∼ N(1, I), (2.1)

with a = (a . . . a)′ a real ve
tor of size d. An illustration of this setting is

displayed in Figure 2.3(a). Note that the two 
omponents are more and more

separated when d grows sin
e ‖1 − 0‖I =
√
d. However, the quality of the



6 Chapter 2

mixture density estimate degrades (the Kullba
k-Leibler divergen
e in
reases)

when dimension in
reases as it is illustrated in Figure 2.3(b) with a homos
edas-

ti
 model and with equal mixing proportions.
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(a) (b)

Figure 2.3: HD 
urse in the parametri
 density estimation 
ontext: (a) A

bivariate data set example with isodensity of ea
h 
omponent and (b) the

Kullba
k-Leibler divergen
e of the density estimate when d in
reases.

2.2.2 HD 
lustering: A mix of 
urse and blessing

Contrary to density estimation where in
reasing dimension has a 
lear negative

e�e
t, dimension may have both positive and negative e�e
ts on the 
luster-

ing task. We distinguish now whi
h fa
tors favor su
h �blessing� or �
urse�

out
omes.

Blessing fa
tors

We retrieve the model design (2.1). We display again a 
orresponding sample

in Figure 2.4(a). We have already mentioned that the two 
omponents are

more and more separated when d in
reases. The reason is that ea
h variable

uniformly provides its own separation information su
h that the asso
iated

theoreti
al error de
reases when d grows. Indeed, this error is equal to errtheo =
Φ(−

√
d/2), where Φ is the 
df of N(0, 1). We 
an see this de
rease with d by a

dash line in Figure 2.4(b). An interesting 
onsequen
e is then that the empiri
al

error rate de
reases also with d as it 
ould be noti
ed in 
ontinuous line in

Figure 2.4(b). It means that in
reasing dimension may have a positive e�e
t

on the 
lustering task as soon as all variables 
onvey meaningful information

on the hidden partition.

We propose now to illustrate more drasti
ally this positive e�e
t through a

simple fa
torial mapping visualization. We 
onsider the three following Gaus-
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Theoretical

(a) (b)

Figure 2.4: HD blessing in the 
lustering 
ontext when most variables 
onvey

independent partitioning information: (a) A bivariate data set example with

isodensity of ea
h 
omponent and (b) the theoreti
al (dash line) and the

empiri
al (
ontinuous line) error rate when d in
reases.

sians, all more and more separated when d in
reases:

π1 = π2 = π3 = 1
3 ,

X1|Z11 = 1 ∼ N(0, I), X1|Z12 = 1 ∼ N(2, I), X1|Z13 = 1 ∼ N(−2, I), .

Then Figure 2.5(a)-(d) displays a related sample of size n = 1000 for di�er-

ent dimensions on the main two axes of the Fa
torial Dis
riminant Analysis

(FDA) mapping. It 
learly appears that 
omponents are more and more easily

re
ognized when dimension in
reases, although it is a simple visualization pro-


ess. At the limit, no 
omplex 
lustering algorithm would be enough to identify


lusters. . .

Curse fa
tors

In fa
t, in
reasing dimension may have a positive e�e
t on 
lustering retrieval

only if variables inje
t some partioning information. In addition, su
h informa-

tion has to be not redundant. We illustrate now these two parti
ular features.

Firstly, we 
onsider many variables whi
h provide no separation information.

We retrieve the same parameter setting as (2.1) ex
ept that the 
omponents

are not more separated when d grows sin
e ‖µ2 − µ1‖I = 1, where µ1 = 0 is

the 
enter of the �rst Gaussian and where µ2 = (1 0 . . . 0)′ is the one of the
se
ond, thus (k = 1, 2)

X1|Z1k = 1 ∼ N(µk, I). (2.2)

A sample is displayed on Figure 2.6(a). Figure 2.6(b) shows in dash line that

the theoreti
al error rate is 
onstant (it 
orresponds to errtheo = Φ(− 1
2 )) when

the dimension in
reases, as expe
ted. Consequently, the empiri
al error rate

degrades in this situation (
ontinuous line of the same �gure).
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Figure 2.5: Fa
torial Dis
riminant Analysis (FDA) on the main two fa
torial

axes of three Gaussian 
omponents more and more separated when the spa
e

dimension in
reases: (a) d = 2, (b) d = 20, (
) d = 200 and d = 400.

Se
ondly, we 
onsider a 
ase where many variables provide separation, but

redundant information, in the following sense: It is the same parameter setting

as before for the �rst dimension ex
ept for all other ones

X1j = X11 + εj , where εj
iid∼ N(0, 1) (j = 2, . . . , d). (2.3)

See a data example in Figure 2.7(a). Thus, 
omponents are not more separated

when d grows sin
e ‖µ2−µ1‖Σ = 1, Σ denoting the 
ommon 
ovarian
e matrix

of ea
h Gaussian 
omponent, and µk denoting the 
enter of the 
omponent

k = 1, 2 (note that both µk andΣ 
ould be easily 
omputed from Equation (2.2)

and (2.3)). Consequently, errtheo = Φ(− 1
2 ) is 
onstant and the empiri
al error

in
reases with d, as illustrated in Figure 2.7(b) with previous 
onventions.

2.2.3 Intermediate 
on
lusion

In 
ase where variables have important blessing 
onsequen
es for the 
lustering

performan
e, it is important to perform the 
lustering task in the whole data
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Figure 2.6: HD 
urse in the 
lustering 
ontext when variables 
onvey no

partitioning information: (a) A bivariate data set example with isodensity of

ea
h 
omponent and (b) the theoreti
al (dash line) and the empiri
al

(
ontinuous line) error rate when d in
reases.
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(a) (b)

Figure 2.7: HD 
urse in the 
lustering 
ontext when variables 
onvey

redundant partitioning information: (a) A bivariate data set example with

isodensity of ea
h 
omponent and (b) the theoreti
al (dash line) and the

empiri
al (
ontinuous line) error rate when d in
reases.

spa
e. In parti
ular, ��lter� methods performing variable sele
tion before the


lustering task have to be ex
luded, the risk of removing dis
riminant features

being too large. The remaining question is then whi
h �wrapper� methods to be

used? Su
h methods should �manage� with priority the fa
t that some variables

have negative e�e
ts for 
lustering. The general answer is to design spe
i�


parsimonious models for 
lustering, the most emblemati
 ones relying on some

variable sele
tion prin
iple. We will see also several alternative strategies, in

parti
ular variable 
lustering (to not be mingled with individual 
lustering, our

primary task), aiming at assigning di�erent roles (�
lusters�) to the variables.

Su
h a prin
iple is quite widespread in fa
t (in the 
anoni
al data spa
e or in
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a transformed spa
e) even if it is not often initially des
ribed with this point

of view.

Behing this model design whi
h is the �rst step of high-dimensional model-

based 
lustering, the question of model sele
tion is then asked. In some situa-

tions, traditional model sele
tion 
riteria 
ould be dire
tly applied. However, in

many 
ases, two kinds of di�
ulties may happen. Firstly, the number of 
om-

peting models avoids to enumerate all possible models whi
h 
ompete. Typi-


ally, in a variable sele
tion 
ontext the number of possibilities is 
ombinatorial.

In su
h a 
ase, strategies for designing an intelligent path in a relevant subset

of models is a possible answer. Se
ondly, validity of traditional model sele
tion


riteria themselves 
an be 
hallenged, requiring some original proposals.

In the rest of this 
hapter, we will give an overview of the main high-

dimensional 
lustering methods. We will systemati
ally highlight novelty of

the proposed models, possible 
onne
tions between them (variable sele
tion or

variable 
lustering, initial spa
e or non-
anoni
al spa
e) and issues for model

sele
tion (
riteria and strategies of use).

2.3 Non-
anoni
al models

As dis
ussed previously, models designed for high-dimensional 
lustering rely

on parsimonious de�nition of related parameters. In this se
tion, we fo
us

on situations where parsimony is inje
ted through parameters de�ned in a

transformed feature spa
e, 
alled here non-
anoni
al feature spa
e. We 
onsider

this 
ase before the 
anoni
al feature spa
e situation (next se
tion) sin
e it is

somewhat related to the pioneering idea of �ltering. Indeed, fa
torial analysis

(for instan
e prin
ipal 
omponent analysis in the 
ontinuous 
ase) was �rst


ondu
ted for sele
ting (new) variables before applying any 
lustering method

on them. Here, ideas are related but with a wrapper point of view. Most

situations address 
ontinuous features.

2.3.1 Gaussian mixture of fa
tor analysers

In Gaussian model-based 
lustering, in
reasing the number of variables has

its main e�e
t on the number of parameters in
luded in the 
ovarian
e ma-

tri
es Σk, sin
e it is of quadrati
 order. Consequently, most methods aim at

introdu
ing parsimony �rst on Σk. History and details 
ould be found in Bou-

veyron and Brunet [2014℄. In parti
ular, Ghahramani and Hinton [1997℄ and

M
La
hlan [2003℄ design the following reparameterization of Σk:

Σk = BkB
′
k + ωkΛk

where Bk is a loadings d× q non-square real matrix (1 ≤ q ≤ q
max

, q
max

< d),
ωk is a positive real number and Λk is a d× d diagonal positive de�nite matrix

su
h that |Λk| = 1. For a well understanding of the underlined motivation,
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it is equivalent to assuming X1 ∈ R
d
to be generated by the following latent

variable Y1 ∈ R
q
lying in a smaller (latent) spa
e than R

d

X1|Y1, Z1k = 1 = BkY1 + µk + εk

whereY1 ⊥ εk (⊥ denoting independen
e), Y1 ∼ N(0, I) and εk ∼ N(0, ωkΛk).
In this layout, Y1 is 
alled the fa
tor, by straightforward analogy to fa
tor

analysis methods. Estimation is performed through an alternating expe
tation-


ondition maximization (AECM) algorithm (Meng and van Dyke [1997℄).

Complexity of su
h a model is equal to Dm = (K − 1) +Kd+Kq[d− (q −
1)/2]+Kd, where it 
an be seen that the quadrati
 part has vanished. In fa
t,

it 
orresponds to the most 
omplex model of a whole family, M
Ni
holas and

Murphy [2008℄ having de�ned 12 asso
iated parsimonious versions, in
luding

for instan
e inter-
lass equality between Bk, identity of Λk = I, et
. Finally,

models in 
ompetition (Sm)m∈M gather the 
ombinations non only of these

12 parsimonious versions but also of the 
ouples (q,K) of the latent dimension

and of the number of 
omponents. In pra
ti
e, q
max

is expe
ted to be quite

low for parsimonious reasons and thus the 
ardinal of M is not ex
essively

high. Traditional model sele
tion 
riteria (as BIC) 
an then be dire
tly applied

on this 
olle
tion. The r pa
kage pgmm

2

provides an implementation of this

method.

2.3.2 HD Gaussian mixture models

Bouveyron et al. [2007℄ propose another way for obtaining parsimony on the


ovarian
e matri
es Σk. It relays on the following spe
tral de
omposition

Σk = Dk∆kD
′
k

where Dk is the orthogonal matrix of the eigenve
tors of Σk and ∆k is a

diagonal matrix 
ontaining the related eigenvalues. They impose ∆k to follow

the parsimonious stru
ture

∆k =




ak1 0
.

.

.

0 akqk

0

0

bk 0
.

.

.

0 bk






 qk



 (d− qk)

with akj ≥ bk > 0, for j = 1, ..., qk and qk < d. Su
h an assumption 
an

be somewhat related to a kind of prin
ipal 
omponent analysis per Gaussian

group. It 
ould also be viewed as a kind of variable 
lustering sele
tion, the

2

http://
ran.r-proje
t.org/web/pa
kages/pgmm/index.html
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d− qk remaining variables of ∆k 
orresponding to a group of �noisy� features.

Figure 2.8 illustrates a three dimensional (d = 3) and two 
omponents situation

(K = 2) where both subspa
e dimensions q1 and q2 are equal (q1 = q2 = 2) but
di�er in orientation. Estimation 
an easily performed through an EM algorithm

for instan
e.

Figure 2.8: Illustration of the HD 
lustering mixture Gaussian model in a two


omponents situation (provided by Bouveyron et al. [2007℄).

Complexity of su
h a model is given Dm = (K − 1) + Kd +
∑K

k=1 qk[d −
(qk + 1)/2] +

∑K
k=1 qk + 2K. In addition, Bouveyron et al. [2007℄ propose

eight parsimonious versions by imposing for instan
e equality between sub-

spa
e dimensions (qk = q, for all k), et
. Finally, the whole model family

(Sm)m∈M in
ludes 
ouples ((q1, . . . , qK),K) of subspa
e dimension and num-

ber of 
omponents, 
ombined with the eight models. Sin
e qk may depend on

the 
omponent, 
ontrary to the Gaussian mixture of fa
tor analysers des
ribed

in the previous se
tion, the number of models be
omes 
ombinatorial. Then, it

may be di�
ult in the HD setting to browse all models for applying a BIC-like


riterion for instan
e. Consequently, Bouveyron et al. [2007℄ propose a kind of

rule of thumb 
riterion for sele
ting ea
h qk, looking for a break in the eigen-

value s
ree of the empiri
al 
ovarian
e matrix for ea
h group 
omponent, the

so-
alled s
ree test of Cattell [Cattell, 1966℄. The rmixmod pa
kage

3

(Lebret

et al. [2015℄) implements these models.

2.3.3 Fun
tional data

Fun
tional and dis
retized data

Stri
tly speaking, real fun
tional data (Ramsay and Silverman [2005℄, Ferraty

and Vieu [2006℄) 
orrespond to i = 1, . . . , n 
urves whi
h are realizations of

n random variables linked to n L2
-
ontinuous real-valued sto
hasti
 pro
esses

Yi = {Yi(t) ∈ R, t ∈ [0, T ]} taking values in a Hilbert spa
e H of fun
tions

de�ned on the (time) interval [0, T ]. Thus, it 
orresponds to an in�nite di-

mensional spa
e. Sin
e most fun
tional data are longitudinal, we adopt here

3

http://
ran.r-proje
t.org/web/pa
kages/Rmixmod/index.html
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the 
onvention of parameterizing models in terms of time. However, it applies

equally well with any other features as angle, length, et
. In addition, exten-

sions are possible for multivariate 
urves, it means that individual i is des
ribed
by several 
urves (see for instan
e James and Sugar [2003℄ or Ja
ques and Preda

[2014b℄).

In pra
ti
e, ea
hYi is unobserved for two, essentially te
hnologi
al, reasons.

Firstly, the n 
urves Yi are dis
retized ea
h in mi time-points {Yi(tis), 0 ≤ s ≤
mi, tis ∈ [0, T ]}. Se
ondly, an error on observation is usually present su
h

that only mi ordered time-points {Xi(tis), 0 ≤ s ≤ mi, tis ∈ [0, T ]} (i =
1, . . . , n) are available for ea
h 
urve. For instan
e, the following relationship

between dis
retized (unobserved) values Yi(tis) and noisy (observed) values

Xi(tis) 
ould be assumed:

Xi(tis) = Yi(tis) + εis, (2.4)

where εis has zero mean and is un
orrelated with ea
h other and Yi(tis). Other
assumptions are possible as we will see below.

We refer to Ja
ques and Preda [2014a℄ for a general review on 
lustering for

fun
tional data, in
luding the model-based one. Di�
ulty of performing unan-

imous 
lustering on generative distributions 
omes from the fa
t that, 
ontrary

to the �nite-dimensional setting, the notion of density probability is generally

not de�ned for fun
tional random variable (Delaigle and Hall [2010℄). Con-

sequently, related te
hniques require de�ning density probabilities in a �nite-

dimensional spa
e, leading to multiple and di�erent implementations.

In this 
hapter, we divide model-based 
lustering te
hniques into two di�er-

ent 
ategories: these ones where the generative model is expli
itly de�ned on

the observed values Xi = {X(tis), 0 ≤ s ≤ mi, tis ∈ [0, T ]}, i = 1, . . . , n, and
these ones for whi
h it is not the 
ase. Indeed, this split will have important


onsequen
es for some aspe
ts 
on
erning model sele
tion.

Clustering with no expli
it distribution on Xi

Usually, the �rst step before a 
lustering method is to re
onstru
t the initial

fun
tional form of data. It 
an then be viewed as a prepro
essing step (��lter-

ing� method). It often relies on the assumption that the unobserved 
urve Yi


an be expressed in a basis of d fun
tions {φj}j=1,...,d, for instan
e B-splines

or wavelets, in the following form:

Yi(t) =

d∑

j=1

γijφj(t).

Using then the regression (2.4) hypothesis, traditional least squared 
oe�
ients

estimates are obtained by

γ̂i = (Φ′
iΦi)

−1
Φ

′
iXi
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where Φi = (φj(tis)) is a mi× d matrix gathering the value of ea
h basis fun
-

tion for ea
h time dis
retization knot. Finally, standard model-based 
lustering

te
hniques (typi
ally multivariate Gaussian mixtures, eventually HD variants

previously des
ribed in Se
tions 2.3.1 and 2.3.2) 
an be dire
tly applied on

the estimated 
oe�
ients γ̂i. The partition on individuals Xi is obtained as a

simple by-produ
t, being the same as this one of individuals γ̂i.

Instead of partitioning the basis 
oe�
ients γ̂i, a model-based 
lustering

te
hnique 
an be alternatively applied to some prin
ipal 
omponent s
ores

resulting from fun
tional prin
ipal 
omponent analysis (FPCA) of the pre-

vious re
onstru
ted 
urves. In pra
ti
e, the 
omputational pro
ess for im-

plementing FPCA 
onsists of performing a standard (
entered) PCA to the

matrix Γ̃WΓ̃
′
T, where Γ = (γ̂ij) is the n× d matrix of estimated 
oe�
ients,

T = 1
nI is the n × n matrix of weights for 
urves, Γ̃ is the n × d matrix of


entered 
oe�
ients of Γ and W is the d × d matrix of the inner produ
ts

wjj′ =
∫ T

0 φj(t)φj′ (t)dt (1 ≤ j, j′ ≤ d) (it a
ts like a metri
). Thus, the jth
prin
ipal 
omponent s
ore Cj is the jth eigenve
tor asso
iated to the largest

jth eigenvalue:

Γ̃WΓ̃
′
TCj = αjCj .

As usual with PCA, FPCA performs a kind of variable ordering. Finally,


lustering is performed on a trun
ating prin
ipal 
omponent s
ores C1, . . . ,Cq,

with q ≤ d.

From a model sele
tion point of view, both previous methods allow to use

some information 
riteria like BIC for sele
ting the number K of 
omponents.

However, it is not really possible to use them for sele
ting other parts of the

model whi
h are the fun
tional basis {φj}j=1,...,d and, spe
i�
ally to FPCA,

the trun
ation of order q.

Clustering with expli
it distribution on Xi

Ideally, for bene�
ing from the whole mathemati
al statisti
s 
orpus, model-

based 
lustering te
hniques would require a distribution on allXi = (Xi(tis), 0 ≤
s ≤ mi, tis ∈ [0, T ]), i = 1, . . . , n. First of all, it is important to noti
e that per-

forming the 
lustering task dire
tly with observed values Xi's as if they would


orrespond to 
lassi
al multivariate values is not desirable, even if it 
ould meet

this goal. The �rst reason is that ea
h Xi does not ne
essarily rely in the same

spa
e dimension (here mi for ea
h), even if in pra
ti
e it 
ould be often the


ase. The se
ond and the most important reason is that working with su
h raw

data wastes order information on them.

Contrary to the raw data 
ase, several te
hniques propose distributions on

Xi whi
h take all the fun
tional data spe
i�
ity into a

ount. Ja
ques and

Preda [2013℄ perform FPCA by group, leading to prin
ipal 
omponents per

group noted Cijk. In addition, they assume a Gaussian distribution of the Cijk,

leading to 
onditional independen
e of them sin
e being already un
orrelated.
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It leads to the following Gaussian mixture model, relying on a trun
ation of

order 1 ≤ qk ≤ d for ea
h 
omponent:

f(xi; θ) ≈
K∑

k=1

πk

qk∏

j=1

φ(Cijk ; 0, αjk)

where φ(·; 0, αjk) is the univariate Gaussian density of mean zero (s
ores Cijk

are 
entered) and varian
e αkj (
orresponding also to eigenvalues). Then, pa-

rameter estimation is provided through an EM-like algorithm for maximizing

the (pseudo) log-likelihood, where both steps are the following:

E-step Compute 
onditional probabilities tik ∝ πk

∏qk
j=1 φ(Cijk ; 0, αkj) as usual.

M-step First, prin
ipal s
ores are updated. Noti
e that weights Tk depend

now on tik's, Γk too. Se
ond, perform the qk trun
ation order sele
tion

by dete
ting a kind of elbow in the eigenvalues by the s
ree test of Cat-

tell (Cattell [1966℄). Finally, parameters πk are 
omputed as usual and

parameters αk are already given from previous 
onditional FPCA.

This pro
ess is implemented in the r fun
lust

4

pa
kage. As an illustration,

this pa
kage is applied to kneading 
urves, whi
h are des
ribed in Se
tion 2.1,

in Figure 2.9. From a model sele
tion point of view, there are some important

remarks. Stri
kly speaking, it is just a pseudo likelihood method sin
e data

Cijk are 
hanging at ea
h iteration step of EM. Consequently, using sele
tion


riteria like BIC 
ould be hazardous for 
hoosing K, qk or the fun
tional basis.

However, in pra
ti
e, BIC works well for 
hoosing K. However, it is not used

for sele
ting qk, as previous said, for limiting 
omputing time. No attempt for


hoosing the basis is performed.

(a) (b)

Figure 2.9: n = 115 kneading 
urves observed at d = 241 equispa
ed instants

of time in the interval [0; 480℄: (a) raw 
urves, (b) three groups partioning


urves with the fun
lust pa
kage.

Alternatively, James and Sugar [2003℄ 
onsider randomness dire
tly on the

basis 
oe�
ients γi. They assume that γi arises from a homos
edasti
 Gaussian

4

http://
ran.r-proje
t.org/web/pa
kages/Fun
lustering/index.html
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multivariate model whi
h, 
oupling with (2.4), provides the following regres-

sion model, 
onditionally on the ith 
urve belonging to the kth 
luster (so


onditional to Zik = 1) :

Xi = Φi(µk + ǫi) + εi,

where ǫi ∼ N(0,Σ) and εi ∼ N(0, σ2
I). Also, some parsimonious assumptions

are made on 
enters µk. Then, an EM algorithm allows to estimate all param-

eters. Contrary to the model of Ja
ques and Preda [2013℄ des
ribed just above,

we are now fa
ed to an unambiguous generative approa
h allowing straightfor-

ward model sele
tion with any 
lassi
al 
riterion for 
hoosing every quantity

of interest (the number K of 
lusters, the basis {φj} and the parsimony of

all means µk), even if the authors prefer to use a so-
alled �distortion fun
-

tion� 
riterion for sele
ting K faster sin
e avoiding EM 
omputations for all K
values.

In the same spirit as James and Sugar [2003℄, Samé et al. [2011℄ give an-

other regression model providing a full generative, �exible and parsimonious

distribution on the Xi's. They assume that the 
urves arise from a mixture

of regressions on a basis of polynomial fun
tions (the order to be given by

model sele
tion), with possible 
hanges in regime at ea
h instant of time. The

mixing proportions are de�ned by logisti
 fun
tions for allowing segmentation

in time. An EM pro
edure is performed for estimation and several parsimo-

nious versions are des
ribed. This full generative distribution allows again full

model sele
tion (number of 
lusters, polynomial order of the basis fun
tion and

number of regime 
hanges) in any standard way. However, as in many pre-

vious settings, the number of 
ompeting models 
an in
rease drasti
ally. For

instan
e, the basi
 fun
tions 
an 
hange by regime, multiplying 
ombinations.

2.3.4 Intermediate 
on
lusion

Many parsimonious modelling solutions exist for dealing with HD data, 
on-


erning as well independent and fun
tional data, even if some gaps remain to

be �lled like 
ategori
al fun
tional data or also mixed (
ontinuous and 
ate-

gori
al typi
ally) multivariate fun
tional data. Most of existing models rely

on a generative distribution on the data spa
e, allowing dire
t use of standard

sele
tion 
riteria. However, the 
ru
ial question is fo
used on the multipli
ity

of models to be 
ompared. It is the reason why some authors favor some more

empiri
al, but fast, rules for model sele
tion.

We guess that future resear
hes should address new advan
es for fast sele
-

tion of multiple models in a short allo
ated time. In the next se
tion, devoted

to 
anoni
al model setting, we will see early several attempts for this purpose,

for instan
e by designing a parti
ular strategy in the model spa
e, avoiding all

model evaluation.
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2.4 Canoni
al models

We address now models for HD data whi
h position parsimony assumptions

dire
tly on the initial (or 
anoni
al) variable spa
e. Advantage of su
h ap-

proa
hes, beside non-
anoni
al ones, is a great model readibility for the pra
-

titioner. Indeed, this one is usually more a

ustomed to his variable set than

to a somewhat more arti�
ial set, as the fa
torial features 
ould be sometimes.

In this 
ontext, this 
hapter ta
kles important notions: variable sele
tion,

variable 
lustering, model sele
tion validity and also strategies for dealing with

model multipli
ity.

2.4.1 Parsimonious mixture models

Classi
al mixture models have already been presented in Chapter ??, Se
-

tion ??. It gathers in parti
ular the Gaussian mixture model for the 
ontinuous


ase and the latent multinomial mixture model for the 
ategori
al 
ase, in
lud-

ing also many parsimonious variants. Dealing with HD data impose to 
onsider

essentially some of the most parsimonious ones thus there is a need to provide

more details in this se
tion. Then, extension to the mixed 
ase (merging 
on-

tinuous and 
ategori
al features) is presented as a straightforward extension.

All these models are implemented in the r pa
kage rmixmod

5

. Finally, we will

present a new attempt for variable sele
tion in the 
ontinuous, 
ategori
al and

mixed situations.

Spheri
al and diagonal Gaussian mixtures for 
ontinuous variables

We 
onsider data sets x = (x1, . . . ,xn), with xi ∈ R
d
. The most parsimonious

Gaussian mixture models de�ned by Celeux and Govaert [1995℄ belong to the

so-
alled spheri
al and diagonal families. An example of diagonal model is given

in Figure 2.10. Using notations already provided in Se
tion ?? of Chapter ??,

their most 
omplex versions respe
tively 
orrespond to 
onstraints Σk = λkI

and Σk = λkBk on the 
ovarian
e matrix Σk of the kth 
omponent, where

λk = |Σk|1/d and Bk diagonal with |Bk| = 1. In
luding some parsimonious

versions, whi
h allow some parts to vary or not between 
omponents, a total

of two spheri
al and four diagonal models are available. All models, and their

respe
tive number of parameters, are displayed in Table 2.1. Model sele
tion


an be easily performed by traditional 
riteria, like BIC.

Latent 
lass model for 
ategori
al variables

We 
onsider now data sets x = (x1, . . . ,xn), ea
h xi 
ontaining d 
ategori-


al variables, the jth having mj response levels. The 
oding xi = (xjh
i ; j =

5

http://
ran.r-proje
t.org/web/pa
kages/Rmixmod/index.html
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Figure 2.10: Isodensity of a two-
omponents diagonal Gaussian mixture in

the three-dimensional spa
e.

Family Model Number of parameters

diagonal

[λB] dim(π) +Kd+ d
[λkB] dim(π) +Kd+ d+K − 1
[λBk℄ dim(π) + 2Kd−K + 1
[λkBk] dim(π) + 2Kd

spheri
al

[λI] dim(π) +Kd+ 1
[λkI] dim(π) +Kd+K

Table 2.1: Some 
hara
teristi
s of the two spheri
al and the four diagonal

models. We have dim(π) = K − 1 in the 
ase of free proportions and

dim(π) = 0 in the 
ase of equal proportions.

1, . . . , d;h = 1, . . . ,mj) indi
ates that x
jh
i = 1 if i has response level h for vari-

able j and xjh
i = 0 otherwise. The standard model for 
lustering observations

des
ribed through 
ategori
al variables is the so-
alled latent 
lass model (see

for instan
e Goodman [1974℄). Data are assumed to arise independently from

a mixture of K multivariate multinomial distributions with pdf

f(xi; θ) =

K∑

k=1

πk

d∏

j=1

mj∏

h=1

(αjh
k )x

jh
i , (2.5)

where θ = (π,α) denotes the ve
tor parameter of the latent 
lass model to be

estimated, with α = (α1, . . . ,αK) and αk = (αjh
k ; j = 1, . . . , d;h = 1, . . . ,mj),

αjh
k denoting the probability that variable j has level h if obje
t i is in 
luster

k. Thus, the latent 
lass model assumes that the variables are 
onditionally

independent knowing the latent groups.
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Lebret et al. [2015℄ propose four parsimonious versions, with thus a to-

tal of �ve models. They 
orrespond to an extension of the parameteriza-

tion of Bernoulli distributions used by Celeux and Govaert [1991℄ for 
lus-

tering and also by Ait
hinson and Aitken [1976℄ for kernel dis
riminant anal-

ysis. The basi
 idea is to impose the ve
tor α
j
k = (αj1

k , . . . , α
jmj

k ) to take the

form (βj
k, . . . , β

j
k, γ

j
k, β

j
k, . . . , β

j
k) with γj

k > βj
k. Sin
e

∑mj

h=1 α
jh
k = 1, we have

(mj − 1)βj
k+γj

k = 1 and, 
onsequently, βj
k = (1−γj

k)/(mj − 1). The 
onstraint

γj
k > βj

k be
omes �nally γj
k > 1/mj. Then, the ve
tor α

j
k 
an be broken up

into the two following parameters:

• a
j
k = (aj1k , . . . , a

jmj

k ) where ajhk = 1 if h 
orresponds to the rank of γj
k (in

the following, this rank will be noted h(k, j)), 0 otherwise;

• εjk = 1− γj
k whi
h 
orresponds to the probability that the data xi arising

from the kth 
omponent are su
h that x
jh(k,j)
i 6= 1.

In other words, the multinomial distribution asso
iated to the jth variable

of the kth 
omponent is reparameterized by a 
enter a
j
k and the dispersion

εjk around this 
enter. Thus, it allows us to give an interpretation similar to

the 
enter and the varian
e matrix used for 
ontinuous data in the Gaussian

mixture 
ontext. Finally, the relationship between the initial parameterization

and the new one is given by:

αjh
k =

{
1− εjk if h = h(k, j)

εjk/(mj − 1) otherwise.

(2.6)

In the following, this model will be denoted by [εjk]. In this 
ontext, three other

models 
an be easily dedu
ed. We note [εk] the model where εjk is independent

of the variable j, [εj] the model where εjk is independent of the 
omponent k

and, �nally, [ε] the model where εjk is independent of both the variable j and

the 
omponent k. In order to maintain some unity in the notation, we will

denote also [εjhk ] the most general model initially introdu
ed. The number of

free parameters asso
iated to ea
h model is given in Table 2.2. Again, model

sele
tion 
an be easily performed by traditional 
riteria, like BIC.

Mixed data models

It is frequent in pra
ti
e to mix 
ontinuous and 
ategori
al data. Thus the

ith individual is 
omposed by two parts, xi = (xcont
i ,xcat

i ), x
cont
i and x

cat
i

designing the 
ontinuous and the 
ategori
al ones respe
tively. In that 
ase, it

is easy to 
ombine (diagonal) parsimonious Gaussian mixture and latent 
lass

model by 
onditional independen
e [Moustaki and Papageorgiou, 2005℄:

f(x;αk) = f(xcont;αcont
k )× f(xcat;αcat

k )
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Model Number of parameters

[ε] dim(π) + 1
[εj ] dim(π) + d
[εk] dim(π) +K

[εjk] dim(π) +Kd

[εjhk ] dim(π) +K
∑d

j=1(mj − 1)

Table 2.2: Number of free parameters of the �ve multinomial models. We

have dim(π) = K − 1 in the 
ase of free proportions and dim(π) = 0 in the


ase of equal proportions.

with αk = (αcont
k ,αcat

k ) (see also Se
tion ?? in Chapter ??). Then, the previous
six Gaussian mixture models and the �ve multinomial mixture models 
an be


ombined, de�ning straightforwardly 30 new mixed models. Classi
al 
riteria


an be used for sele
ting them, with also the number of 
lusters K.

Although previously des
ribed models, in the 
ontinuous, 
ategori
al or

mixed data situations, are the most parsimonious ones in their respe
tive fam-

ilies, they are not really designed for realisti
 HD situations involving several

thousands of variables for instan
e. Indeed, their parameter number remains

too high in su
h 
ases.

Variable sele
tion has always been a natural answer for HD 
lustering as

already dis
ussed in the beginning of this 
hapter. Typi
ally, �ltering methods

relying on a preliminary fa
torial analysis step then 
ut the number of fa
torial

variables to be retained. However, in model-based 
lustering involving a full

wrapping approa
h, the di�
ulty is to integrate properly this sele
tion step

in the model itself. Thus, we dis
uss now more suitable methods for the HD

situation.

2.4.2 Variable sele
tion through regularization

In this se
tion, we fo
us on the variable sele
tion problem in the Gaussian

mixture 
lustering 
ontext.

ℓ1-penalization pro
edures

Inspired by the su

ess of the Lasso regression, Pan and Shen [2007℄ propose to

take advantage of the sparsity property of ℓ1-penalization of the likelihood to

perform automati
 variable sele
tion for high-dimensional model-based 
luster-

ing. Their pro
edure, 
alled PS-Lasso in the sequel, 
onsists of using a Lasso

method to sele
t relevant 
lustering variables and estimate mixture parameters

in the same exer
ise. The 
ovarian
e matri
es are assumed to be identi
al and

diagonal (Σk = V = diag(σ2
1 , . . . , σ

2
d)) and an ℓ1 penalty is 
onsidered on mean
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parameters. For any K ∈ N
∗
, the following fun
tion has to be maximized:

θK 7→
n∑

i=1

ln

[
K∑

k=1

πkφ (x̄i;µk,V)

]
− λ

K∑

k=1

‖µk‖1 , (2.7)

where θK = (π,µ1, . . . ,µK ,V), ‖µk‖1 =
d∑

j=1

∣∣µkj

∣∣
, x̄i = (xij − x̄j)1≤j≤p with

x̄j = 1
n

∑n
i=1 xij , λ is a non-negative regularization parameter and φ(·;µ,Σ)

denotes the multivariate Gaussian density of 
enter µ and 
ovarian
e matrix

Σ. An EM-algorithm is proposed to solve this parameter estimation problem.

Next, a modi�ed BIC 
riterion is used to sele
t K and λ:

BIC(K,λ) = −2 ln

[
n∏

i=1

K∑

k=1

πkφ(xi;µk,V)

]
+ ln(n)D(K,λ)

where D(K,λ) = (K − 1)+Kd+ d− q, q denoting the number of the maximum

penalized likelihood estimate mean 
omponents that are equal to 0.

This approa
h was su

essively extended in Zhou et al. [2009℄ (Gaussian

mixtures with diagonal 
ovarian
e matri
es) and �nally in Zhou et al. [2009℄.

In this last paper, a regularized Gaussian mixture model with un
onstrained


ovarian
e matri
es is proposed. They employ a ℓ1 penalty on mean parameters

and on 
ovarian
e matri
es as follows:

θK 7→
n∑

i=1

ln

[
K∑

k=1

πkφ (x̄i;µk,Σk)

]
− λ

K∑

k=1

‖µk‖1 − ρ

K∑

k=1

∥∥Σ−1
k

∥∥
1
, (2.8)

where

‖µk‖1 =

d∑

j=1

∣∣µkj

∣∣,
∥∥Σ−1

k

∥∥
1
=

d∑

j,j′=1
j 6=j′

∣∣(Σ−1
k )jj′

∣∣ ,

and where λ and ρ are two non-negative regularization parameters. This pa-

rameter estimation problem is solved using an EM algorithm where the so-
alled

glasso algorithm (Friedman et al. [2007℄) is used to estimate sparse pre
ision

matri
es Σ
−1
k .

Lasso-MLE pro
edure

In Meynet [2012℄ and Meynet and Maugis-Rabusseau [2012℄, they highlight

that the ℓ1-penalization indu
es shrinkage of the 
oe�
ients and thus biased

estimators with high estimation risk. Moreover, the use of a BIC-type 
ri-

terion for the model sele
tion 
an be unsuitable for high-dimensional data.

Consequently, they propose to only use an ℓ1-penalized likelihood approa
h to

determine potential sets of relevant variables. This allows to e�
iently 
on-

stru
t a data-driven model sub
olle
tion with reasonable 
omplexity, even for
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high-dimensional situations. The evaluation of the MLE rather than the ℓ1-
penalized estimator for ea
h model is 
onsidered to avoid estimation problems

due to ℓ1-penalization shrinkage. More pre
isely, the data x = (x1, . . . ,xn)
are assumed to have a null expe
tation (in pra
ti
e, empiri
al 
entering of the

data is performed to ensure this assumption) and their unknown density f is

estimated by a �nite spheri
al Gaussian mixture. The 
lusters are 
hara
ter-

ized by the mean parameters (µk)1≤k≤K and a variable j is 
alled irrelevant

for the 
lustering if µkj = 0 for all k = 1, . . . ,K; otherwise it is 
alled relevant.

The relevant variable subset (resp. irrelevant variable subset) is denoted by Jr

(resp. Jc
r = {1, . . . , d} \ Jr). Consequently, the variable sele
tion problem is

re
ast into a model sele
tion problem, where the model 
olle
tion is (S(K,Jr))
with

S(K,Jr) =





xi ∈ R
d 7→ f(xi; θ) =

[
K∑

k=1

πk φ(x
Jr

i ;µk, σ
2
I)

]
φ(x

J
c
r

i ;0, σ2
I)

θ =
(
π1, . . . , πK ,µ1, . . . ,µK , σ2

)
∈ ΠK ×

(
R

|Jr|
)K × R

∗
+





,

x
Jr

i denoting the restri
tion of xi on Jr, |Jr| 
orresponding to the 
ardinal

of Jr and ΠK denoting the simplex related to parameters (π1, . . . , πK). The

dimension of a model S(K,Jr) 
orresponds to the total number of free parameters

estimated in the model: D(K,Jr) = K(1 + |Jr|).
The so-
alled Lasso-MLE pro
edure proposed in Meynet andMaugis-Rabusseau

[2012℄ is de
omposed into three main steps. In the �rst step, as Pan and Shen

[2007℄, an ℓ1-approa
h is 
onsidered: For ea
h (K,λ) ∈ N
∗ × Gλ (Gλ is a given

grid on λ), the Lasso estimator θ̂L
(K,λ) is 
omputed by maximizing (2.7) and

the asso
iated relevant variable subset is

J(K,λ) = {j ∈ {1, . . . , d} : ∃ k ∈ {1, . . . ,K} su
h that µ̂kj 6= 0}.

Thus a random model sub
olle
tion {S(K,Jr) : (K,Jr) ∈ ML} is obtained,

where

ML = {(K,Jr) : K ∈ N
∗,Jr ∈

⋃

λ∈Gλ

J(K,λ)}.

The se
ond step 
onsists of 
omputing the MLE θ̂(K,Jr) using the standard

EM algorithm for ea
h model (K,Jr) ∈ ML
. The third step is devoted to

model sele
tion. As in Maugis and Mi
hel [2012℄, a non asymptoti
 penalized


riterion is proposed to solve the model sele
tion problem. By extending the

general model sele
tion theorem of Massart [2007℄ (Theorem 7.11) (see also

Se
tion ?? in Chapter??) (demander ref à Pas
al dans le book), Meynet [2012℄

proves that the penalty is

pen(K,Jr) = κ1

D(K,Jr)

n

[
1 + κ2 ln

(
d

D(K,Jr)

)]
, (2.9)

where κ1 and κ2 are two unknown 
onstants. As expe
ted, the penalty is

proportional to the model dimension. The logarithmi
 term quanti�es the
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model 
olle
tion 
omplexity by taking into a

ount the possible large number

of models with identi
al dimension. Nevertheless this logarithm term be
omes

unne
essary if the number of models with the same dimension is small enough.

For instan
e, for �nite Gaussian mixture models in a low-dimensional setting,

a penalty proportional to the dimension is su�
ient to sele
t a model 
lose

to the ora
le (Maugis and Mi
hel [2011℄). But in the high-dimensional 
on-

text, the number of models having the same dimension is expe
ted to grow.

Nonetheless, thanks to the random presele
tion of relevant variables subsets, a


omplete variable sele
tion is not performed here. Thus, if the random model

sub
olle
tion is mu
h poorer than the whole model 
olle
tion and 
ontains few

models with the same dimension, a penalty proportional to the dimension

pen(K,Jr) =
D(K,Jr)

n
(2.10)

might be su�
ient to sele
t a model with proper dimension. Next, the penalty

depending on unknown multipli
ative 
onstants is 
alibrated using the so-
alled

slope heuristi
s [Birgé and Massart, 2007; Baudry et al., 2012℄.

Comparing PS-Lasso and Lasso-MLE

To 
ompare the Lasso-MLE and PS-Lasso pro
edures, the following simulated

example is proposed in Meynet and Maugis-Rabusseau [2012℄. The data set


onsists of n = 200 observations des
ribed by d = 1 000 variables. The data are
simulated a

ording to a mixture of two Gaussian distributions π1 φ(·;0d, I) +
(1 − π1)φ(·;µ2, I) where µ2 = (1.5, . . . , 1.5,0950) and π1 = 0.85. The relevant
variables are the �rst �fty variables (J⋆

r = {1, . . . , 50}). 20 simulations of the

data set are performed. For ea
h simulation, models with K ∈ {1, 2, 3} 
lusters
are 
onsidered. The results are summarized in Table 2.3. Table 2.3 shows that

Pro
edure Estimator TR FR

K̂
ARI

1 2 3

PS-Lasso

ora
le 50.3 (0.2) 214.6 (79.0) 0 16 4 0.90 (0.03)
BIC 49.7 (0.8) 14.3 (3.4) 0 18 2 0.86 (0.02)

Lasso-MLE

ora
le 50.0 (0.0) 0.2 (0.2) 0 20 0 0.95 (0.02)
AIC 50.0 (0.0) 17.1 (4.2) 0 14 6 0.90 (0.04)
BIC 49.8 (0.4) 4.4 (2.2) 0 20 0 0.92 (0.02)
DDSE 50.0 (0.0) 2.4 (1.7) 0 20 0 0.94 (0.02)

Table 2.3: Averaged number of true relevant (TR) and false relevant (FR)

variables (± standard deviation); number of times a 
lustering with K̂ = 1, 2
and 3 
omponents is sele
ted; Averaged ARI (± standard deviation) over the

20 simulations. DDSE stands for data-driven slope estimation.

the PS-Lasso ora
le model, and to a lesser extend the model sele
ted by BIC,


ontain many false relevant variables and may overestimate the number of
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mixture 
omponents. This 
on�rms that the PS-Lasso pro
edure is not suited

to re
over the true model and the true relevant variables. Moreover, BIC data


lustering is disappointing. In 
ontrast, the Lasso-MLE ora
le model always


oin
ides with the true model and leads to a very good data 
lustering. The

data-driven slope estimation (2.10) a
hieves better performan
e than BIC and

AIC.

2.4.3 Variable role modelling

SRUW modelling

In this se
tion, we fo
us on variable sele
tion pro
edures in model-based 
lus-

tering whi
h are based on variable role modelling without variable transforma-

tion. After a series of papers (Law et al. [2004℄; Tadesse et al. [2005℄; Raftery

and Dean [2006℄; Maugis et al. [2009a℄), Maugis et al. [2009
℄ propose a general

model for sele
ting variables for 
lustering with Gaussian mixtures. This model,


alled SRUW, distinguishes between relevant variables (S) and irrelevant vari-

ables (Sc) for 
lustering. In addition, the irrelevant variables are divided into

two 
ategories. A part of the irrelevant variables (U) may be dependent on a

subset R of the relevant variables and another part (W ) are independent of

other variables. Thus the data density is assumed to be de
omposed into three

parts as follows:

f(xi|m; θ) =
K∑

k=1

πkφ(x
S

i ;µk,Σk)× φ(xU

i ; a+ x
R

i b,Ω)× φ(xW

i ;γ,Γ)

where x
S
i designates the restri
tion of xi in the set of variables S (similarly

for U , R and W ), θ =
(
(πk,µk,Σk)

K
k=1, a,b,Ω,γ,Γ

)
is the full parameter

ve
tor (with straightforward dimensions for ea
h of its 
omponents) and m =
(K,mΣ,mΩ,mΓ,S,R,U ,W ) is the full model index with mΣ, mΩ and mΓ

denoting the form of the relevant 
ovarian
e matri
es (Σk)
K
k=1, the form of

the regression varian
e matrix Ω and the form of the 
ovarian
e matrix Γ of

the independent variables W respe
tively. It 
an be any stru
ture de�ned by

Celeux and Govaert [1995℄ for mΣ, a spheri
al, diagonal or general stru
ture

for mΩ and a spheri
al or diagonal stru
ture for mΓ.

The SRUW model generalizes several previous model sele
tion methods.

The pro
edure of Law et al. [2004℄, where irrelevant variables are assumed to be

independent of all the relevant variables, 
orresponds to W = Sc
, R = ∅, U =

∅. The variable sele
tion pro
edure of Raftery and Dean [2006℄, available in the

r pa
kage 
lustvarsel

6

, assumes that the irrelevant variables are regressed

on the whole relevant variable set (W = ∅, U = Sc
and R = S). The

generalization of Maugis et al. [2009a℄ enri
hes this model by allowing the

irrelevant variables to be explained by only a subset of the relevant variables

6

https://
ran.r-proje
t.org/web/pa
kages/
lustvarsel/index.html
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R ⊂ S (W = ∅,U = Sc); this method is implemented in the selvar
lust

software

7

.

The SRUW method re
asts the variable sele
tion problem for model-based


lustering as a model sele
tion problem. It is solved maximizing the following

BIC-type 
riterion:


ritm = BIC


lust

(K,mΣ)(x
S) + BIC

reg

mΩ
(xU | xR) + BIC

indep

mΓ
(xW ), (2.11)

where BIC


lust

(·,·,S) represents the BIC 
riterion of the Gaussian mixture model

with the variables S, BICreg

(·,U ,R) represents the BIC 
riterion of the regression

model of the variables U on the variables R and BIC

indep

(·,W ) represents the BIC


riterion of the Gaussian model with the variables W .

Sin
e the SRUW model 
olle
tion is large, two embedded ba
kward or for-

ward stepwise algorithms for variable sele
tion, one for the 
lustering and one

for the linear regression, are 
onsidered to solve this model sele
tion prob-

lem. A ba
kward algorithm allows one to start with all variables in order to

take variable intera
tions into a

ount. A forward pro
edure, starting with an

empty 
lustering variable set or a small variable subset, 
ould be preferred for

numeri
al reasons if there are numerous variables. The method is implemented

in the selvar
lustindep software.

8

The two embedded stepwise variable se-

le
tion algorithms are used to identify the SRUW sets. It leads to 
ompare two

models at ea
h step in order to determine whi
h variable should be ex
luded or

in
luded in the set S, R, U or W . But in a high-dimensional setting, even the

variable sele
tion method with the two forward stepwise algorithms be
omes

painfully slow and alternative methods are desirable.

SelvarMix pro
edure

In order to avoid the highly CPU-time 
onsuming of stepwise algorithms of

selvar
lustindep, an alternative variable sele
tion pro
edure in two steps

is proposed by Sedki et al. [2014℄. This variable sele
tion pro
edure is imple-

mented in the r pa
kage selvarmix

9

.

In the �rst step, the variables are ranked through the Lasso-like pro
edure

of Zhou et al. [2009℄ (see Se
tion 2.4.2). For any K ∈ N
⋆
and two non-negative

regularization parameters λ and ρ on two grids of values Gλ and Gρ, the 
ri-

terion de�ned in Equation (2.8) is maximized. The estimated mixture param-

eters θ̂K(λ, ρ) = ((π̂k(λ, ρ)), (µ̂k(λ, ρ)), (Σ̂k(λ, ρ)))
K
k=1 are 
omputed with the

EM algorithm of Zhou et al. [2009℄. It is worth noting that this Lasso-like


riterion does not take into a

ount the typology of the variables indu
ed by

the SRUW model. Stri
tly speaking, it only distinguishes two possible roles for

the variables: a variable is de
lared related or independent of the 
lustering.

7

selvar
lust is available at http://www.math.univ-toulouse.fr/~maugis/

8

selvar
lustindep is available at http://www.math.univ-toulouse.fr/~maugis/

9

https://
ran.r-proje
t.org/web/pa
kages/SelvarMix/index.html
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Varying the regularization parameters (λ, ρ) in Gλ × Gρ, a s
ore is de�ned for

ea
h variable j ∈ {1, . . . , d} and for �xed K:

OK(j) =
∑

(λ,ρ)∈Gλ×Gρ

(
1− 1µ̂1j(λ,ρ)=...=µ̂Kj(λ,ρ)=0

)
.

The larger OK(j), the more related for the 
lustering the variable j is expe
ted
to be. The variables are thus ranked by their de
reasing values on OK(j), this
variable ranking being noted IK = (j1, . . . , jd).

Conditional to a model (K,mΣ,mΩ,mΓ) 
omposed by the number of groups

and all the stru
tures of 
ovarian
e matri
es, the relevant 
lustering variable

set S is �rst determined. The variable set is s
anned a

ording to the IK order.

One variable is added to S if

BIC

di�(jv) = BIC


lust

(K,mΣ)

(
x
S ,xjv

)

−BIC
lust

(K,mΣ)

(
x
S
)
− BIC

reg

mΩ

(
x
jv | xR[jv ]

)

is positive, R[jv ] being the variables of S required to linearly explain x
jv
. The

s
anning of IK is stopped as soon as c su

essive variables have a non positive

BIC

di�

value, c being a �xed positive integer. Next the independent variable set
W is determined as follows: S
anning the variable set a

ording to the reverse

order of IK , a variable jv is added to W if the subset R[jv ] of S (derived from

the ba
kward stepwise algorithm) is empty. The algorithm stops as soon as c
su

essive variables are not de
lared independent. The redundant variables are

thus de
lared to be U = {1, . . . , d}\{S∪W } and the subsetR of S required to

linearly explain x
U

is derived from the ba
kward stepwise algorithm. Finally,

the model (K,mΣ,mΩ,mΓ) maximizing the 
riterion (2.11) is sele
ted.

Variable sele
tion without multiple parameter estimation

Altough some strategies design su
h redu
ed deterministi
 paths for limiting

the number of model evaluations, this number remains too high for fast model

sele
tion. Indeed, ea
h model 
omparison requires to estimate model parame-

ters whi
h are needed for any model sele
tion 
riterion like BIC. Marba
 and

Sedki [2015℄ propose an original strategy avoiding parameter estimation for all

models whi
h 
ompete, thus limiting the 
omputing time. Then a parameter

estimation is just performed for the retained model at the end of their pro
ess.

Their strategy is applied in the diagonal Gaussian mixture but 
ould be easily

extended to the multinomial or the mixed situations also.

In their 
ontext, a variable is said to be irrelevant for the 
lustering task if its

one-dimensional marginal distributions are equal between 
omponents. In the

Gaussian diagonal situation for instan
e, and noting Σk = diag(σ2
k1, . . . , σ

2
kd),

a variable j is thus irrelevant if

µ1j = . . . = µKj and σ2
1j = . . . = σ2

Kj .
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By introdu
ing a variable wj su
h that wj = 0 if variable j is irrelevant for

the 
lustering and wj = 1 otherwise, sele
ting w = (w1, . . . , wd) is thus stri
tly
equivalent to sele
ting a given probabilisti
 model. Then any model sele
tion


riterion, like BIC, 
ould be used for sele
ting the pair m = (K,w).

Their strategy relies on a variant of the ICL 
riterion of Bierna
ki et al.

[2000℄. The ICL 
riterion (see Se
tion ?? in Chapter ??) is de�ned by ICLm =
ln f(x, ẑm|m), where ẑm is the MAP of the MLE of θ with the model Sm.

The proposed variant is the so-
alled MICL 
riterion (Maximum Integrated

Complete-data Likelihood) de�ned by

MICLm = ln f(x, z∗m|m) with z
∗
m = argmax

z∈Z
ln f(x, z|m).

Then, the model Sm∗
maximizing MICLm is retained:

m
∗ = arg max

m∈M
MICLm.

Marba
 and Sedki [2015℄ prove that MICL, like ICL, is 
onsistent for 
hoosing

w when the number K of 
omponents is known. Nevertheless, like ICL (see

again Se
tion ?? in Chapter ??), MICL is 
onsistent for 
hoosing K only when


lusters do not too mu
h overlap. In addition, 
losed-form expression of MICL

is available when there exists 
onjuguate priors, what is the 
ase for Gaussian

and multinomial mixtures. For instan
e, see Equation (??) of Chapter ?? for

the exa
t expression of ICL in the multinomial 
ase.

The question of maximizing MICL on w is obviously the 
ru
ial di�
ulty.

Marba
 and Sedki [2015℄ implement the following simple alternate pro
edure,

for a �xed K value (thus this algorithm has to be run for di�erent 
andidate

values of K). Starting from a value w
(0)

(thus Sm(0) ) uniformly sampled in

the 
orresponding spa
e and then a value z
(0)

being dedu
ed from the MAP

rule of the asso
iated MLE, an iteration of the algorithm is 
omposed by the

following two steps (q ≤ 0):

Partition step Fix z
(q+1)

su
h that

ln f(x, z(q+1)|m(q)) ≥ ln f(x, z(q)|m(q)).

Model step Fix m
(q+1) = argmaxm∈M ln f(x, z(q+1)|m) su
h that m

(q+1) =
(K,w(q+1)) with (j = 1, . . . , d)

w
(q+1)
j = arg max

wj∈{0,1}
ln f(xj

1, . . . , x
j
n|K,wj , z

(q+1)).

This pro
edure 
an be trapped in lo
al maxima and thus several run are re-

quired. In addition, it 
an be time 
onsuming when the sample size in
reases,

due to the so-
alled �model step�. However, it is a very promising �rst attempt

for dealing with model multipli
ity in variable sele
tion, without systemati
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parameter estimation whi
h 
orresponds in fa
t, for most 
urrent approa
hes,

to a huge time 
onsuming waste. The algorithm of these authors is available

as an r pa
kage 
alled varsell
m

10

.

2.4.4 Co-
lustering

De�nition and histori
al utility

Simultaneous 
lustering of rows and 
olumns, usually designated by bi-
lustering,


o-
lustering or blo
k 
lustering, is an important te
hnique in two way data

analysis. They 
onsider the two sets simultaneously and organize the data

into homogeneous blo
ks. Two partition representations are thus now needed.

First, as usual, a partition of n individuals (lines of the data matrix x) into K

lusters still noti
ed z = (z11, . . . , znK) with zik = 1 if i belongs to 
luster k
and zik = 0 otherwise (we note as well zi = k if zik = 1). Se
ond, and symmet-

ri
ally, a partition of d variables (
olumns of the data matrix x) into L 
lusters

is denoted by w = (w11, . . . , wdL) with wjl = 1 if j belongs to 
luster l and
wjl = 0 otherwise (we note as well wj = l if wjl = 1). Both spa
e partitions

are respe
tively denoted by Z and W . Figure 2.11 gives an illustration of this

purpose.

In re
ent years, 
o-
lustering have found numerous appli
ations in the �elds

ranging from data mining, information retrieval, biology, 
omputer vision and

so forth. Dhillon [2001℄ publishes an arti
le on text data mining by simulta-

neously 
lustering the do
uments and 
ontent (words) using bipartite spe
tral

graph partitioning. This is a quite useful te
hnique for instan
e to manage huge


orpus of unlabeled do
uments. Xu et al. [2010℄ present another 
o-
lustering

appli
ation (again using bipartite spe
tral graph) to understand subset aggre-

gates of web users by simultaneously 
lustering the users (sessions) and the page

view information. Giannakidou et al. [2008℄ employ a similarity metri
 based


o-
lustering te
hnique for so
ial tagging system. In �eld of bio-informati
s,


o-
lustering is mainly used to �nd stru
tures in gene expression data. This

is useful for instan
e to �nd sets of genes whi
h 
orrespond to a parti
ular

kind of disease. Some of the pioneer material in this 
ontext 
an be found in

Kluger et al. [2003℄. Re
ently many model-based 
o-
lustering algorithms have

also been developed to target 
omputer vision appli
ations. For instan
e, Qiu

[2004℄ demonstrates the utility of 
o-
lustering in image grouping by simul-

taneously 
lustering images with their low-level visual features. Guan et al.

[2005℄ extend this work and present opportunity to develop a novel 
ontent

based image retrieval system. Similarly, Rasiwasia and Vas
on
elos [2009℄ use


o-
lustering to model s
enes.

10

https://
ran.r-proje
t.org/web/pa
kages/VarSelLCM/index.html
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Figure 2.11: Co-
lustering prin
iple illustrated on a binary data set: On the

left, the initial data set (n = 500 and d = 100); On the right, the reorganized

data set with a simultaneous partitioning of rows and 
olumns (K = 6 and

L = 4).
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Probabilisti
 formulation and use in HD 
lustering

We refer to the book of Govaert and Nadif [2013℄ for providing more details

on 
o-
lustering te
hniques, probabilisti
 or not. Here, we fo
us on model-

based 
o-
lustering as being often a generalization of non-probabilisti
 methods

and allowing 
oherent formulation from estimation to model sele
tion. In the

following set, sum or produ
t on i, j, k and l stands for ranges {1, . . . , n},
{1, . . . , d}, {1, . . . ,K} and {1, . . . , L} respe
tively.

Blo
k model-based 
lustering 
an be seen as an extension of the traditional

mixture model-based 
lustering (see Chapter ??). The basi
 idea is to extend

the latent 
lass prin
iple of lo
al (or 
onditional) independen
e. Ea
h data

point xj
i is assumed to be independent on
e zi and wj are �xed:

f(x|z,w; θ) =
∏

i,j

f(xj
i ;αziwj

).

We have noted θ = (π,ρ,α), where α = (αkl) , π = (πk) and ρ = (ρk) are
the ve
tors of probabilities πk and ρl that a row and a 
olumn belong to the

kth row 
omponent and to the lth 
olumn 
omponent respe
tively. Assuming

also independen
e between all zi and wj , the latent blo
k mixture model has

�nal pdf

f(x; θ) =
∑

(z,w)∈Z×W

∏

i,j

πziρwj
f(xj

i ;αziwj
). (2.12)

The pdf f(·;αziwj
) depends on the kind of data xj

i :

• In the binary 
ase (xjh
i ∈ {0, 1}2, with ∑2

h=1 x
jh
i = 1), f(·;αkl) 
orre-

sponds to the Bernoulli distribution B(αkl) of parameterαkl = p(Xj
i = 1)

(see Govaert and Nadif [2008℄).

• In the 
ategori
al 
ase with m levels (xjh
i ∈ {0, 1}m, with ∑m

h=1 x
jh
i = 1),

f(·;αkl) 
orresponds to the multinomial distributionM(αkl) of parameter

αkl = (α1
kl, . . . , α

m
kl) with αh

kl = p(Xj
i = h) for h = 1, . . . ,m (see Keribin

et al. [2015℄).

• In the 
ontingen
y table 
ase (xj
i ∈ N), f(·;αkl) 
orresponds to the Pois-

son distribution P(µkνlγkl) of parameter αkl = (µk, νl, γkl). The Poisson
parameter is here split into µk and νl the e�e
ts of the row k and the


olumn l respe
tively and γkl the e�e
t of the blo
k kl (see Govaert and
Nadif [2010℄). Unfortunately, this parameterization is not identi�able. It

is therefore not possible to estimate simultaneously µk, νl and γkl without
imposing further 
onstraints. Constraints

∑
k πkγkl =

∑
l ρlγkl = 1 and∑

k µk = 1,
∑

l νl = 1 are a possibility.

• In the 
ontinous 
ase (xj
i ∈ R), f(·;αkl) 
orresponds to the Gaussian dis-

tribution N(µkl, σ
2
kl) of parameter αkl = (µkl, σ

2
kl), denoting respe
tively

the mean and the varian
e (see Govaert and Nadif [2013℄).
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Su
h models 
an be very parsimonious

11

even in the HD setting provided

that L is quite low, as it is shown in Table 2.4. The number of parameters of

this table has to be 
ompared to this one of Tables 2.1 and 2.2. Consequently,

these blo
k 
lustering models 
ould be good 
andidates for performing HD


lustering even if they are not exa
tly designed for this aim initially. In su
h

a 
ase, 
lustering of 
olumns 
an just be seen as an instrumental strategy for

obtaining HD parsimonious models. Indeed, the HD 
lustering purpose only


on
erns n and not d in our 
ase. However, 
olumn 
lustering has advantage

to provide an easy readability of the model to the pra
titioner.

Model Number of parameters

Binary dim(π) + dim(ρ) +KL
Categori
al dim(π) + dim(ρ) +KL(m− 1)
Contingen
y dim(π) + dim(ρ) +KL
Continuous dim(π) + dim(ρ) + 2KL

Table 2.4: Number of parameters of the blo
k 
lustering models. We have

dim(π) = K − 1 in the 
ase of free proportions in lines and dim(π) = 0 in the


ase of equal proportions. Symmetri
ally, we have dim(ρ) = L− 1 in the 
ase

of free proportions in 
olumns and dim(ρ) = 0 in the 
ase of equal

proportions.

Parameter estimation

EM-based algorithms are the standard approa
h to estimate model parameters

by maximizing the observed log-likelihood. Here, the 
omplete data is repre-

sented as a ve
tor (x, z,w) where unobservable ve
tors z and w are the labels.

The 
omplete log-likelihood 
an then be written

ℓ(θ;x, z,w) =
∑

k

(
∑

i

zik) log πk+
∑

l

(
∑

j

wjl) log ρl+
∑

i,j,k,l

zikwjl log f(x
j
i ;αkl).

Then, from Se
tion ?? of Chapter ??, the expe
ted 
omplete log-likelihood

Q(θ, θ(q)) involved at the qth iteration of the EM algorithm is expressed by

Q(θ, θ(q)) =
∑

i,k

p(Zi = k|x; θ(q)) ln πk +
∑

j,l

p(Wi = l|x; θ(q)) ln ρl

+
∑

i,j,k,l

p(Zi = k,Wj = l|x; θ(q)) ln f(xj
i ;αkl). (2.13)

Unfortunately, di�
ulties arise owing to the dependen
e stru
ture in the

model, and more pre
isely in the 
ombinatorial di�
ulty for evaluating the

terms p(Zi = k,Wj = l|x; θ(q)). Several solutions exist for skirting this di�-


ulty (see Govaert and Nadif [2013℄ for more details), in
luding:

11

Some more parsimonious versions are also de�ned (see referen
es).
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• The so-
alled variational approa
h whi
h 
onstraints the problemati
 joint

probability to satisfy the relation

f(z,w|x; θ) ≈ f(z|x; θ)f(w|x; θ).

• To repla
e the E-step by a S-step, so using a SEM algorithm instead of

EM (see details on SEM in Se
tion ?? of Chapter ??). In the S-step,

random 
ouples (z,w) (
onditionnally to x) are drawn sequentially by

the following two-step Gibbs algorithm (see more details in Keribin et al.

[2015℄)

Z|x,w; θ and W |x, z; θ.

Several estimation algorithms are implemented in the r pa
kage blo
k
lus-

ter

12

.

For �nishing this estimation des
ription, it is important to note two impor-

tant features. Firstly, many lo
al maxima of the likelihood may exist in the

blo
k 
lustering model, more than in the standard mixture 
ontext, probably

owing to the latent data multipli
ity. In pra
ti
e, many runs should then be

laun
hed to avoid traps in lo
al maxima. Se
ondly, 
omputing the (observed)

log-likelihood value ℓ(θ;x) itself is di�
ult for the same 
ombinatorial reasons

that previously. Su
h an unavailability 
an have important 
onsequen
es on

model sele
tion also.

Model sele
tion

Models in 
ompetition are indexed by the number of 
lusters in line and 
olumn,

thus S = (K,L). It is 
ru
ial to noti
e that model sele
tion in blo
k 
lustering

has to be performed with 
aution sin
e some traditional 
riteria 
annot be

used straightforwardly. In parti
ular, it is hazardous to use asymptoti
 
riteria

like BIC sin
e asymptoti
 is now double with both quantities n and d. In

addition, using non asymptoti
 evaluation of the integrated likelihood f(x) has
to be given up be
ause of the 
ombinatorial di�
ulty involved by the latent

variables z and w.

Avoiding both asymptoti
 problems and 
ombinatorial di�
ulties is possible

by using exa
t expression of the ICL 
riterion (Bierna
ki et al. [2000℄, Bierna
ki

et al. [2011℄). In the blo
k 
lustering 
ontext, ICL is written

ICLm = ln f(x, ẑm, ŵm) = ln f(x|ẑm, ŵm) + ln f(ẑm) + ln f(ŵm),

ẑm and ŵm being the MAP estimate of z and w respe
tively obtained from the

MLE θ̂m. Lomet et al. [2012℄ provide the 
orresponding 
losed-form expression

of ICL for the Gaussian situation and Keribin et al. [2015℄ similarly for the

Bernoulli/multinomial 
ase. We refer the reader to these referen
es for detailed

dis
ussion about the Bayesian hyperparameter 
hoi
e.

12

http://
ran.r-proje
t.org/web/pa
kages/blo
k
luster/index.html
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In addition, in this multinomial setting with m levels, Keribin et al. [2015℄

use their non-asymptoti
 expression to derive the new following asymptoti


one, 
alled ICLbi
:

ICLbi
m = ℓ(θ̂m;x, ẑm, ŵm)−K − 1

2
ln(n)− L− 1

2
ln(d)−KL(m− 1)

2
ln(nd).

It is interesting to noti
e that, in 
omparison to the ICLbi
 formula in the

simple mixture 
ontext (see Equation (??) in Chapter ??), now both the row

number n and the 
olumn number d are involved in the penalty. Using then the
straightforward link ICLm = ln f(ẑm, ŵm|x; θ̂m) +BICm between ICLbi
 and

ICL, they propose the following blo
k 
lustering spe
i�
 asymptoti
 version of

BIC

BICm = ℓ(θ̂m;x)− K − 1

2
ln(n)− L− 1

2
ln(d)− KL(m− 1)

2
ln(nd).

Again, it is interesting to observe the way that both n and d are present in the

penalty. Neverthess, the BIC 
al
ulus remains unattainable sin
e it relies on

the unvailable value of the log-likelihood ℓ(θ̂m;x).

Finally, Keribin et al. [2015℄ make the 
onje
ture, 
orroborated with experi-

ments, that BIC and ICL are asymptoti
ally equivalent and thus have the same

asymptoti
 behaviour. As a 
onsequen
e, the ICL 
riterion is expe
ted to be


onsistent for sele
ting both K and L in blo
k 
lustering, for any true parame-

ter setting. It is totally di�erent from row 
lustering where 
onsisten
y is only

true for su�
iently separated 
lusters (see Baudry [2012℄ and also Se
tion ??

in Chapter ??). Su
h a remark is 
ru
ial be
ause it is linked to the blessing of

HD 
lustering we have dis
ussed in length earlier in Se
tion 2.2.2.

Return on the blessing in HD 
lustering

We illustrate now, in the binary blo
k 
lustering setting, that HD situations

are a whole blessing for row 
lustering. Denoting by p(Xj1
i = 1|Zi = k) = τk =∑L

l=1 αklρl, then the marginal distribution of Xj
i on j is the following mixture

of binomial distributions B(·, ·)



∑

j

Xj1
i



 |Zi = k ∼ B(d, τk).

In that 
ase, Brault [2014℄ provides the following 
ontrol of partition error z of

this mixture, z
∗
denoting the true row partition:

p(ẑ 6= z
∗) ≤ 2n exp

{
−1

8
d

[
min
k 6=k′

|τk − τk′ |
]}

+K(1−min
k

πk)
n.

It implies the important fa
t that row 
lustering is 
onsistent in high-dimension

provided some asymptoti
 
onstraints between n and d, for instan
e that

ln(n) = o(d).
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Figure 2.12: Illustration of the low row 
luster overlap in the binary HD

setting: The initial data matrix is at the top; Histogram of the sum of


olumns is displayed at the se
ond line (�rst 
olumn); The third line

underlines that three row 
lusters are 
learly present (�rst 
olumn); The

reorganized matrix (in row and 
olumns) is available at the last line of the

�gure. Symmetri
al 
omments 
ould be made on 
olumn 
luster overlap

(se
ond 
olumn on the �gure). This �gure has been provided by Brault [2014℄.

Figure 2.12 illustrates this low row 
luster overlap in a HD setting. Note that

the same 
omment 
ould be made on 
olumn 
luster overlap when n in
reases,

even if it is not the �rst topi
 of this 
haper fo
used on row HD 
lustering.

In the same spirit, Mariadassou and Matias [2013℄ show the following more

general result in the binary 
ase, on the 
onsisten
y of the 
ouple (ẑ, ŵ):

θ̂
n,d→∞−→ θ∗ ⇒ p(ẑ = z

∗, ŵ = w
∗|x; θ̂) n,d→∞−→ 1,

where θ∗
and w

∗
respe
tively design the true θ and w.

Contingen
y table illustration: do
ument 
lustering

We retrieve the text mining example introdu
ed in Se
tion 2.3.2. Sin
e it


on
erns a 
ontingen
y table (
ross 
ounting do
uments and words) we apply
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Medline Cran�eld

Medline 1033 ·
Cran�eld · 1398

Figure 2.13: Confusion table by applying blo
k 
lustering for text

partitioning.

a Poisson blo
k 
lustering model. The �true� blo
k partitioning involves K =
2 do
ument 
lusters (row) and L = 2 word 
lusters (
olumn). Table 2.13

displays the 
onfusion table for do
uments by using 2×2 blo
ks. We show that

we exa
tly retrieve the underlying do
ument stru
ture, what is expe
ted by

the blessing e�e
t of HD 
lustering, the data set being here with d = 9275.
Figure 2.14 gives a view of the data set before and after reorganization by

blo
k-
lustering. We also distinguish 
lear partitioning in rows and 
olumns.

(a) (b)

Figure 2.14: Text mining example: (a) the initial data set; (b) the

reorganized data set with (K,L) = (2, 2).

2.4.5 Intermediate 
on
lusion

Designing parsimonious models in the 
anoni
al spa
e for HD data has the

expe
ted advantage of being more meaningful for the pra
titioner than non-


anoni
al ones. In this 
ontext, several spe
i�
 
ontributions exist, that 
ould

be split into variable sele
tion-like and variable 
lustering-like approa
hes. Be-

yond their apparent di�eren
e, they share the 
ommon property to re
ast a

parti
ular, but simple, role for the variables in a generative and very parsi-

monious way when the dimension of the feature spa
e in
reases. However,

although only generative approa
hes are involved, it is not always straightfor-

ward to use 
lassi
al model sele
tion 
riteria. Indeed, some questions about

either their asymptoti
 validity, their expli
it 
al
ulus (the likelihood is not

always 
al
ulable) or their use in 
ase of a huge number of 
ompeting models

is posed. Nevertheless, re
ent advan
es in this a
tive �eld of resear
h suggest

possibility to progressively over
ome these s
ienti�
 lo
ks. Beyond these model
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sele
tion questionings, the important task 
onsisting of designing spe
i�
 gen-

erative models for HD mixed features should be also undertaken sin
e it is


urrently poorly developed albeit more and more present in nowadays data

sets.

2.5 Future methodologi
al 
hallenges

Two strong trends are highly expe
ted to hold in a near future, that should

be addressed by spe
i�
 resear
hes. Firstly, data sets will be des
ribed by a


onstantly in
reasing number of features, these features being possibly them-

selves of very di�erent kinds. For instan
e, (high-dimensional) multivariate


ategori
al fun
tional data 
ould be mixed with (high-dimensional) multivari-

ate 
ounting data, et
. Se
ondly, the number of model 
andidates for dealing

with these kinds of data sets will 
onstantly in
rease, leading to a unmanage-

able number of models estimation in pra
ti
e. Su
h a situation will address

the question to design some spe
i�
 strategies in model sele
tion, for avoiding

ine�e
tive and unne
essary estimation of a too large number of models.
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