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Figure 1. Our system is tailored to the fast prototyping of graphics pipelines in real time on
GPUs. Top: a displacement mapping applied to an input sphere, resulting in a 3D object. The
images in (A) and (B) are obtained by mixing two shading effects based on surface curvature,
with different parameters. Bottom: a color-transfer pipeline that applies the color palette of a
target image (A) to a source image (B), using global mean and variance properties. The image
in (C) is obtained by directly writing a GLSL transfer function from inside the UI.
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Abstract

Nodal architectures have received an ever-increasing endorsement in computer graphics in
recent years. However, creating a node-based system specifically tailored to GPU-centered
applications with real-time performance is not straightforward. In this paper, we discuss the
design choices we took in the making of Gratin, our open-source node-based system. This
information is useful to graphics experts interested in crafting their own node-based system
working on the GPU, either starting from scratch or taking inspiration from our source code.
We first detail the architecture of Gratin at the graph level, with data structures permitting real-
time updates even for large pipelines. We then present the design choices we made at the node
level, which provide for three levels of programmability and, hence, a gentle learning curve.
Finally, we show the benefits of our approach by presenting use cases in research prototyping
and teaching.

1. Introduction and Previous Work

Turning a graphics-related idea into working software is time-consuming and skill-
demanding. It means developing a program architecture that works on the GPU,
yielding pipelines that need to combine multiple passes. For non-experts, like artists
or students, the steep learning curve might be discouraging, while for graphics ex-
perts, the process is tedious at best.

Such complex graphics pipelines have been handled with great success using
node-based interfaces in the shading and animation workflows of 3D software such as
Maya, 3DSMax, or Modo. Nodal solutions even form the core of highly-acclaimed
programs such as Nuke for compositing and visual effects, Substance for texturing, or
vvvv for interactive multimedia installations. Their broad endorsement is explained
by their versatility, modularity, efficiency, intuitive visualization, and fast learning
curve. Even though they incorporate GPU-accelerated nodes, these systems are not
tied to specific graphics-card architectures.

Another way to learn or prototype graphics ideas is to use WebGL systems such as
Shadertoy or GLSL Sandbox which allow users to edit a fragment shader and observe
results with direct feedback in a separate viewer. More sophisticated applications also
include programmable vertex shaders (Shdr) and provide multiple OpenGL setting
choices, as in kickjs. These editors are limited to simple shaders though and do not
allow for editing of other graphics stages, like tessellation or geometry shaders, or
design complex, multi-pass pipelines. A notable exception is the ShaderTool software
that allows users to edit shaders in a node-based interface similar to vvvv and to create
multi-pass pipelines. This system mainly targets FX designers to easily prototype
video-game shaders. It is not free nor open source, which does not make it easily
adapted for teaching or research applications. Moreover, its does not handle complex
animations and, to our knowledge, no API is provided to implement specific nodes
such as multi-grid solvers or custom mipmaps.
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Because of these limitations, we decided to develop our own node-based system
tailored to the creation, manipulation, and animation of 2D/3D data in real time on
GPUs. Our software is called Gratin, and it targets not only FX designers, but also
computer graphics researchers and teachers: it offers three levels of programmability
which make it suitable for the needs of experts and non-experts alike. Gratin is written
in C++ and uses Qt for the interface, Eigen for linear algebra, OpenGL for renderings,
and, optionally, OpenExr for loading and saving high dynamic range images. It is
free and open source (licensed under MPL v2.0) and relies on OpenGL and GLSL to
ensure wide OS and GPU compatibility. Source code and installation packages are
available at http://gratin.gforge.inria.fr/.

The purpose of this paper is to describe the design decisions we took in the making
of Gratin. These decisions should be useful to graphics experts interested in crafting
their own node-based system working on the GPU, either starting from scratch or
taking inspiration from our source code. We begin with a quick presentation of the
user interface of Gratin in Section 2, which will help relate subsequent illustrations
to the structure of the software. One key aspect of a node-based system is the graph
architecture. In particular, it should provide fast updates, which is facilitated by the
use of topological lists as explained in Section 3. Another important quality of such a
system is ease of use. To this end, we propose three types of nodes (groups, generics,
and plugins), as detailed in Section 4, which provide customization abilities for users
with different skills. The practical usage of Gratin is demonstrated in Section 5, where
we show a few examples in research prototyping and teaching that serve as proof of
concept for our nodal design.

2. User Interface

As shown in Figure 2, the interface of our system is composed of five main panels.

• The pipeline panel (a) where one can interactively add, connect, disconnect,
copy, or paste nodes. Node outputs are visualized in real time inside the inter-
face, as in the (discontinued) nodal shading system Mental Mill.

• All available nodes are stored in user-defined directories and automatically
loaded in the node tree (b) at initialization.

• The viewer (c) allows for the display of particular node outputs and for their
manipulation via keyboard or mouse events.

• Each node has its own user interface that can be displayed and manipulated via
a list of widgets (d).

• Any node parameter may be keyframed and interpolated via control curves in
the animation panel (e).
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Figure 2. Gratin Interface. (a) Graph visualization; (b) list of available nodes; (c) node
viewer; (d) node interfaces; (e) animation parameters and curves.

3. Architecture

Node types. When designing a node-based system, the first questions one may ask
are to what each node of the graph corresponds and what type of data travels along
edges of the graph. Some software such as vvvv allows for a huge range of node types
and data that may flow along connections: even float parameters are represented as
nodes. Other software such as Nuke more strongly restricts node types (e.g., image
filters) and the data (e.g., images), while parameters are exposed through an additional
panel in the interface. The main reason we opted for the latter design solution is that
it better fits the architecture of modern graphics cards. Each node encapsulates one
(or more) GLSL shader(s) that may have multiple inputs, outputs, and user-defined
parameters. Graph edges hold 2D textures in OpenGL RGBA 32F format. This basic
structure is directly adapted to multiple passes, which simply amount to connecting
nodes one after the other. The choice of texture format permits the use of various types
of data: from color images (including HDR) to height fields or normal maps. Data
stored on edges could be extended to other types of GPU buffers. Nevertheless, we’ve
found this design choice to be a good starting point as it allows users to work with
3D inputs through the use of g-buffers [Saito and Takahashi 1990] (textures holding
geometric data), as demonstrated in the remainder of the paper.

Performance. An important practical aspect of a node-based system is performance;
in particular, transfers between CPU and GPU should be minimized. In our case, this
is ensured by mapping all nodes directly to GPU shaders and making sure that data
held on edges stay on the graphics card. Moreover, the viewer and graph panels of
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the interface are entirely written in OpenGL, with simple GLSL fragment shaders,
to avoid unnecessary transfers from GPU to CPU. In practice, the output textures
of each node are automatically attached to a dedicated framebuffer object during an
initialization stage. This allows the use of custom shaders that directly render into the
corresponding multiple output targets.

Graph
-AdjacencyMatrix
-TopologicalLists

add(Node)
remove(Node)
connect(...)

unconnect(...)
applyGraph()

applyFrom(Node)
...

Node
-stringID
-version
init()
clean()
apply()

...

0..*

Graph structure. For the graph itself, we use a
directed acyclic multigraph that is internally rep-
resented with an adjacency matrix [Cormen et al.
2009]. Its main advantage is to grant access to in-
put and output nodes in constant time. However, this
matrix alone is not adapted to ensure that nodes be
processed in the right order when one needs to up-
date and propagate information along the graph (topological ordering is known as a
NC2-complex problem). Such updates may occur in two situations: (1) when making
use of animation curves to control node parameters through time, which possibly im-
pacts the entire graph; (2) when modifying the parameters or shader code of a single
node, which will impact only neighbor nodes in the graph. In both cases, we make use
of topological lists to ensure fast updates in the right order (see Figure 3). For anima-
tions, we maintain a topological list of the entire graph, computed using a depth-first
search algorithm. This permits updates in linear time, with a node being refreshed
only after all nodes able to reach it have been updated. Of course, only nodes for
which parameters have changed (or those affected by them) are updated to avoid use-
less processing. For node editing, we maintain a topological list per node so that only
reachable neighbor nodes are processed. As shown in the inset, all topological lists
are held in the graph class and updates are all managed by that class. In particular,
when adding or removing nodes and connections, the adjacency matrix and topolog-
ical lists must be recomputed. We take advantage of this small lag to initiate GPU
data in newly available nodes (memory allocation, shader initialization, framebuffer
object creation, etc).
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Figure 3. We maintain two types of topological lists: one at the graph level (in blue), used
for animation, and one per node (in grey) used when its parameters or shader code is edited.
Note that, in general, a topological list is not unique as different orderings may be valid.
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Extensibility. Nodal architectures present a decisive advantage in the long term: new
nodes may be added, bringing new features without having to upgrade the central
architecture. This makes node-based systems easily extensible and, to some extent,
customizable as different users may prefer to use different sets of nodes. In order
for this to work in practice, it requires that new nodes do not break previously cre-
ated pipelines; in other words, it must be backward compatible. To this end, we
store pipelines as XML files, where each node is identified by a string ID and a ver-
sioning number to prevent input/output issues. With this approach new plugins and
user-defined custom nodes can easily be added to the system and stored in differ-
ent directories as soon as they are specified to the system. If a node is upgraded in
a way that no backward compatibility can be ensured, its old version can be stored
somewhere else in the list of nodes so that previous pipelines will still be able to load
without any errors. The range of GPUs supported by a given node is implicitly re-
stricted by the GLSL version with which it is compatible. When running Gratin on
a computer configuration that does not support the correct version, we leave the pos-
sibility of modifying this version by hand in the settings window. This solution will
of course only work in cases where the node is actually compatible with the modified
GLSL version.

4. Node Design

One of the most valued properties of nodal systems is their modularity: one may
combine nodes, customize their behaviors, or write entirely new nodes from scratch.
Each of these node-design strategies bears different names in existing nodal systems;
in Gratin, we call them group, generic, and plugin nodes, respectively. They represent
three levels of programmability essential to providing a gentle customization abilities
for all users.

Group

Figure 4. Grouping. Selected nodes represented with the dashed rectangle are bundled into
a single group node (bottom right) that produces exactly the same results.
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4.1. Group Nodes

Groups simply combine multiple nodes into a single one (see Figure 4), hence provid-
ing users with a means to design new functionalities without requiring any knowledge
of programming. A group node has its own interface that contains widgets of all in-
ternal nodes so that users may still modify their parameters. It not only improves the
legibility of a graph (especially when copy-pasting different instances of a group), but
also simplifies the exchange of custom features among users.

NodeGraph

Group

In practice, a group is an object that inherits the graph and
the node classes as shown in the inset image. When a group
is created, selected nodes (the subgraph) are automatically in-
serted into a new directed acyclic multigraph that can itself be
interpreted as a single node to be processed. This way, a group
can be displayed and manipulated like every other node, while
implicitly updating its whole graph (using the internal topological list) when a refresh
is needed. Input and output entries are extracted and stored in wrappers to ensure
fast connections. An advantage of having group nodes inheriting both from Node
and Graph classes is that they may be recursively created, meaning that groups may
contain other groups and so on. When saved, group nodes are exported as XML files.
They may then trivially be included in the list of nodes for instant reuse.

4.2. Generic Nodes

Generic nodes provide users with the ability to precisely customize processes to their
needs by writing GLSL shaders directly from inside the user interface. The creation
of a generic node begins with the filling of a dialog box where users specify im-
portant properties of a GLSL shader (see Figure 5). These include OpenGL speci-
fications (e.g., depth test, blending, texture filtering, and wrapping), shader choices
(vertex, tessellation, geometry and/or fragment shaders, GLSL version), number and

Figure 5. Generic settings. Multiple parameters, inputs and outputs might be chosen to
initialize OpenGL settings and shader headers.
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name of input and output textures, and an arbitrary number of controllable parame-
ters (uniform variables) sent to the GPU program. Once the dialog is validated by the
user, each shader parameter is assigned a widget depending on its type, and an empty
shader template is generated with the proper header. Users may then customize the
node behavior by writing GLSL code and observing results in real time.

Generic
-GLSettings
-GLSLEditor
-GLSLShaders

GridGeneric ObjGeneric ImgGeneric

Node

...

Even though we provide a family of generic
nodes that have their own specificities, they are all
based on the same design principle. As shown in the
inset, they inherit a parent Generic class that holds
settings users have made through the dialog box. This
parent class also handles the GLSL editor as well as
the initialization of GLSL shaders, which simplifies
the design of new types of generic nodes. As with
group nodes, customized generic nodes may be ex-
ported, exchanged and inserted in the list of nodes to be reused in other pipelines.

In the following, we present the different types of generic nodes currently avail-
able in Gratin, in each case explaining how shader headers are generated. As will
soon be apparent, each type of generic node offers a process commonly used in the
graphics community, hence encapsulating technical know-how of GPU programming.

The generic image node permits the user to analyze, manipulate, and visualize input
textures (e.g., colored images, g-buffers). As is commonly done for image processing
in OpenGL, a simple quad is drawn in the viewport so that input textures can be easily
accessed and mapped to create outputs containing specific effects. This node may be
used to create one-pass custom complex shaders (as in Shadertoy for instance), to mix
input images, to create various patterns, etc. Figure 6 provides an example where we
select the maximum color between two textures. Implementation-wise, user-specified
GLSL version, input and output texture names are automatically used to generate the
header of the shader. By default, the fragment shader simply makes a copy of the first

/ / part automatically generated with user-defined settings
#version 420 core
l a y o u t (location = 0) o u t vec4 maxColor ;
un i fo rm sampler2D img1 ;
un i fo rm sampler2D img2 ;

/ / part written / modified by the user
i n vec2 texcoord ;
vo id main ( ) {

vec4 c1 = t e x t u r e (img1 ,texcoord ) ;
vec4 c2 = t e x t u r e (img2 ,texcoord ) ;
maxColor = max (c1 ,c2 ) ;
}

Figure 6. Left: The header of the fragment shader is automatically generated depending on
user settings (inputs, outputs, parameters, etc). The main function might be directly modified
to obtain the desired effect. The maximum color is displayed here, as shown on the right.
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input texture. The example in Figure 6 thus simply consists in modifying a couple of
lines of code.

Such an approach is reminiscent of Expression nodes in Nuke, which allow the
application of complex formulae to colors of input images. The writing of GLSL code
is more general though, as it builds from an extensive list of operators and functions.
In our experience, we also use it to implement basic image-blending operators such
as additions or multiplication, instead of providing specific built-in nodes.

The generic object and grid nodes let users apply any effect to 3D meshes by cus-
tomizing vertex, tessellation, geometry, and fragment shaders. The main difference
between object- and grid-node types is that the former loads a mesh in OBJ format,
while the latter creates a planar grid. In the case of the grid node, tessellation is chosen
by the user in the dedicated interface; vertices are then typically displaced according
to input GLSL code. As with other generic nodes, any number of textures might be
provided as input (such as color or normal maps for instance). Outputs are typically
in the form of g-buffers or renderings for further 3D or 2D processing, respectively. A
trackball camera is associated to this node so that users may manipulate their object
in the viewer panel.

/ / part automatically generated with user-defined settings
#version 420 core
l a y o u t (location = 0) i n vec2 inVertex ;
l a y o u t (location = 1) i n vec2 inTexcoord ;
un i fo rm mat4 model ;
un i fo rm mat4 view ;
un i fo rm mat4 proj ;
un i fo rm f l o a t a ; / / user-defined parameter
un i fo rm f l o a t b ; / / user-defined parameter

/ / part written / modified by the user
o u t vec3 normalV ;

vec4 evalFunc ( i n f l o a t x , i n f l o a t y ) {
/ / return depth+normal
f l o a t f = a∗x∗x+b∗y∗y ;
f l o a t fx = 2.∗a∗x ;
f l o a t fy = 2.∗b∗y ;
r e t u r n vec4 (f , n o r m a l i z e ( vec3(−fx,−fy , 1 . ) ) ) ;

}

vo id main ( ) {
mat4 mdv = view∗model ;
mat4 mvp = proj∗mdv ;
vec4 f = evalFunc (inVertex .x ,inVertex .y ) ;
vec3 v = vec3 (inVertex .xy ,f .x ) ;
normalV = (mdv∗vec4 (f .yzw , 0 ) ) .xyz ;
g l P o s i t i o n = mvp∗vec4 (v , 1 ) ;

}

a= 0
b=-2

a=-2
b=-2

a=-1
b= 2

Figure 7. A vertex shader designed to visualize a quadratic function (left). As seen in the
code, default attributes (vertices, texture coordinates) as well as camera matrices are automat-
ically sent to the GPU. Two variables (a and b) were also defined by the user and controllable
in real-time using integrated sliders inside the interface of the node. The renderings (right)
are obtained via a simple fragment shader. Values for a and b are shown for each of them.
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An example of a generic grid node is given in Figure 7. It visualizes a quadratic
function; the grid node is, of course, also useful to create terrains or other types of
heightfields. In practice, the mesh (either loaded OBJ or grid) is sent to the GPU
using vertex array objects. In both cases, mesh positions, normals, tangents, and
texture coordinates are directly sent as vertex attributes. Consequently, the header of
the vertex shader is adapted to grant access to these attributes, as seen in the left part
of the figure. We also show an example of a generic object node as a proof of concept
of our system in Figure 12.

The generic splat node permits the manipulation of point sprites. We found this
node useful to control particles, visualizations, or even image warpings. Indeed, the
particularity here is to be able to modify splat sizes and locations (possibly using
overlapping and blending) to obtain specific effects. The interface allows the control
of the number of rendered sprites, and their behavior is controlled through GLSL
code. In practice, it works by sending a set of point sprites to the GPU, with one
splat-per-pixel by default. Figure 8 shows an example where two input renderings are
compared using joint histograms. It involves a geometry shader that is invoked three
times (which triples the number of splats) and compares each input color channel
to reposition displayed points. Shader headers for the generic splat node contain the
position of the splat (as an attribute in the vertex shader), as well as uniform variables.
The remainder of the shader can be freely modified by users.

/ / part automatically generated with user-defined settings
#version 420 core
un i fo rm sampler2D img1 ;
un i fo rm sampler2D img2 ;

/ / part written / modified by the user
l a y o u t (points , invocations = 3) i n ;
l a y o u t (points , max_vertices = 3) o u t ;

o u t vec4 color ;

vo id main ( ) {
vec2 coord = gl_in [ 0 ] . g l P o s i t i o n .xy∗ . 5 + . 5 ;
vec3 color1 = t e x t u r e (img1 ,coord ) .xyz∗2.−1.;
vec3 color2 = t e x t u r e (img2 ,coord ) .xyz∗2.−1.;
i n t id = gl_InvocationID ;
color = vec4 ( vec3 ( 0 . ) , . 2 ) ;
color [id ] = 1 . ;
g l P o s i t i o n = vec4 (color1 [id ] ,color2 [id ] , 0 . , 1 . ) ;
Emi tVer t ex ( ) ;
E n d P r i m i t i v e ( ) ;

}
img1

img2

Figure 8. The geometry shader (left) generates splats to compare two renderings with joint
histograms (right). Splats are repositioned so that their x- and y-coordinates correspond,
respectively, to pixel intensities of the first and second input images. The fragment shader
simply displays the output color in this example.
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/ / part automatically generated with user-defined settings
#version 420 core
l a y o u t (location = 0) o u t vec4 minColor ;
l a y o u t (location = 1) o u t vec4 maxColor ;
un i fo rm sampler2D img ; / / input image
un i fo rm sampler2D prevLevel0 ; / / previous (minColor) level
un i fo rm sampler2D prevLevel1 ; / / previous (maxColor) level
un i fo rm i n t nbLevels ;
un i fo rm i n t numLevel ;
un i fo rm boo l isFinest ;
un i fo rm boo l isCoarsest ;

/ / part written / modified by the user
i n vec2 texcoord ;

vo id loadVals ( i n sampler2D tex , o u t vec4 c [ 4 ] ) {
vec2 ps = . 5∗ ( 1 . / vec2 ( t e x t u r e S i z e (tex , 0 ) ) ) ;
c [ 0 ] = t e x t u r e (prevLevel0 ,texcoord−ps ) ;
c [ 1 ] = t e x t u r e (prevLevel0 ,texcoord+ps ) ;
c [ 2 ] = t e x t u r e (prevLevel0 ,texcoord+vec2 (ps .x,−ps .y ) ) ;
c [ 3 ] = t e x t u r e (prevLevel0 ,texcoord+vec2(−ps .x ,ps .y ) ) ;
}

vo id main ( ) {
i f (isFinest ) {
minColor = maxColor = t e x t u r e (img ,texcoord ) ;
} e l s e {

vec4 a [ 4 ] ;
vec4 b [ 4 ] ;
loadVals (prevLevel0 ,a ) ;
loadVals (prevLevel1 ,b ) ;
minColor = min ( min ( min (a [ 0 ] ,a [ 1 ] ) ,a [ 2 ] ) ,a [ 3 ] ) ;
maxColor = max ( max ( max (b [ 0 ] ,b [ 1 ] ) ,b [ 2 ] ) ,b [ 3 ] ) ;
}
}

Figure 9. Fragment shader of a generic pyramid node (left) used to compute two output
pyramids containing the min and max colors of an input image. A set of predefined uniform
variables are automatically sent to the shader to provide information about the pyramid (the
total number of levels, the current level, etc). prevLevel0 and prevLevel1 represent previously
computed levels for the min and max output pyramids. The visualization (right) was done in
a simple generic image node by accessing the different levels of the two pyramids.

The generic pyramid node creates one or more mipmaped textures where one can
control how each level is computed. It might be used for the creation of usual
mipmaps, but also for multiscale analysis (Gaussian or Laplacian pyramids) or to
compute global information such as the mean and variance of an input image (see
Figure 9).

On the implementation side, we automatically generate a header that contains
variables, such as the number of levels and flags,in order to know whether the top or
bottom of the pyramid has been reached. In addition, the previously computed level of
each input texture is automatically added to the GPU program as a uniform sampler.
Users, thus, only have to describe per-level operations in a specific order (top-down
or bottom-up) in the GLSL code. The resulting pyramids are stored as mipmaps,
which allows us to leverage existing texture-access operators from OpenGL. Further
connected nodes may thus easily access any texture level via GLSL built-in functions,
such as textureLod().
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/ / part automatically generated with user-defined settings
#version 420 core
l a y o u t (location = 0) o u t vec4 filtered ;
un i fo rm sampler2D img ; / / input image
un i fo rm sampler2D pingpong0 ; / / previous filtered image
un i fo rm i n t numpass ; / / current pass

/ / part written / modified by the user
i n vec2 texcoord ;

vo id loadVals ( i n sampler2D tex , o u t vec3 vals [ 5 ] ) {
/ / neighborhood
vec2 ps = 1 . / vec2 ( t e x t u r e S i z e (tex , 0 ) ) ;
vals [ 0 ] = t e x t u r e (tex ,texcoord ) .xyz ;
vals [ 1 ] = t e x t u r e (tex ,texcoord+vec2(−ps .x , 0 . ) ) .xyz ;
vals [ 2 ] = t e x t u r e (tex ,texcoord+vec2 (ps .x , 0 . ) ) .xyz ;
vals [ 3 ] = t e x t u r e (tex ,texcoord+vec2 (0. ,−ps .y ) ) .xyz ;
vals [ 4 ] = t e x t u r e (tex ,texcoord+vec2 ( 0 . ,ps .y ) ) .xyz ;
}

f l o a t dist ( i n vec3 c1 , i n vec3 c2 ) {
/ / distance control
f l o a t r = 0 . 0 1 ;
f l o a t o = 0 . 0 2 ;
f l o a t d1 = (c1 .x+c1 .y+c1 .z ) / 3 . ;
f l o a t d2 = (c2 .x+c2 .y+c2 .z ) / 3 . ;
r e t u r n 1.− s m o o t h s t e p (o−r / 2 . , o+r / 2 . , abs (d1−d2 ) ) ;

}

vec4 applyFiltering ( i n sampler2D tex ) {
/ / anisotropic filtering
vec3 Vf [ 5 ] ;
vec3 Vd [ 5 ] ;
loadVals (tex ,Vf ) ;
loadVals (img ,Vd ) ;

vec3 R = Vf [ 0 ] +
. 1∗ (dist (Vd [ 1 ] ,Vd [ 0 ] ) ∗(Vf[1]−Vf [ 0 ] ) +
dist (Vd [ 2 ] ,Vd [ 0 ] ) ∗(Vf[2]−Vf [ 0 ] ) +
dist (Vd [ 3 ] ,Vd [ 0 ] ) ∗(Vf[3]−Vf [ 0 ] ) +
dist (Vd [ 4 ] ,Vd [ 0 ] ) ∗(Vf[4]−Vf [ 0 ] ) ) ;

r e t u r n vec4 (R , 1 . ) ;
}

vo id main ( ) {
i f (numpass==0) { / / first pass: copy input
filtered = t e x t u r e (img ,texcoord ) ;
} e l s e { / / otherwise: successively apply filtering

filtered = applyFiltering (pingpong0 ) ;
}
}

0

100

500

1000

Figure 10. This fragment shader is iteratively applied to a texture to perform an anisotropic
filtering as shown on the right. The previous texture, filtered with this same shader, is available
as a uniform sampler (pingpong0) as well as the number of the pass. In this example, the first
pass simply copies the input image, which is then filtered by a user-defined number of passes.

The generic ping-pong node provides another useful feature commonly used in GPU
programming to implement iterative processes. The same process is applied at each
internal pass and repeated the number of times specified by the user. Such a type
of node may be used to iteratively accumulate or propagate some information in the
output textures. An example is shown in Figure 10 where multiple passes are applied
in a ping-pong node to obtain a controllable anisotropic filter.
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In practice, it uses a pair of textures for internal multiple passes, with one texture
being read and the other written on even passes, and the opposite on odd passes.
However, this is not apparent to the user: we automatically generate a header that
gives access to the resulting texture of the previous internal pass, as well as the current
pass number. Note that such a ping-pong architecture could not be created manually
by connecting simpler nodes, since our graph is acyclic.

4.3. Plugin Nodes

Plugins represent the most advanced way to design new nodes. They must be com-
piled beforehand and cannot be modified in real time as with generic nodes. They
are thus more adapted to the implementation of features that demand specific internal
node architectures. For instance, Poisson diffusion requires a multigrid architecture,
and fast Fourier transforms require multiple iterations and specific butterfly tables that
cannot be easily obtained through the use of generic nodes.

NodeHandle Node NodeWidget

UserNode
init()
clean()
apply()

UserWidget
-KeyframedParams

UserHandle
-name
-path

-description
...

createInstance(...)

To ease the development of plugin
nodes, we aimed for a light-weight C++
API augmented with helper classes and
functions (see inset). A plugin consist
of at least a pair of classes, inheriting of
NodeHandle and Node classes. An addi-
tional class inheriting from NodeWidget
may be defined to deal with parameters.

The role of the node handle is to make the association between the user interface
and the node (Figure 11(left)). It contains basic information such as the node name,
description, help, and input/output names. The node Id and version are also specified
in this class in order to ensure that the node be unique and reusable in any pipeline.
Most importantly, this class is responsible for creating instances of the node itself.
Indeed, the main program contains the list of all available handles (exposed to users
in the node tree): each handle creates the instance of the corresponding node and adds
it to the current pipeline when requested by the user.

The role of the node is to actually process the data (Figure 11(right)). It contains
operators such as init(), clean(), or apply() that can be overloaded to process shaders
using input data and parameters. We also provide helper classes to simplify GPU
initialization and transfers inside the node. Framebuffer objects can automatically be
created and associated with the output textures when the node is ready to be applied.
Tools are made available to load, compile, and link shaders from a set of files, and
built-in functions might be used to create buffers and draw any mesh given a shader
program. Predefined parameters are provided to quickly add and modify parameters
to the optional node widget panel. Taken together, this set of classes, functions, and
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c l a s s MyHandle : . . . , p u b l i c NodeHandle {
/ / ... QT plugin information ...
p u b l i c :

/ / node version and ID
u n s i g n e d i n t version ( ) c o n s t
{ r e t u r n 1;}

c o n s t QString stringId ( ) c o n s t
{ r e t u r n ”myNodeID” ;}

/ / basic node information
c o n s t QString name ( ) c o n s t
{ r e t u r n ”myNode” ;}

c o n s t QString path ( ) c o n s t
{ r e t u r n ” p l u g i n s / ” ;}

c o n s t QString desc ( ) c o n s t
{ r e t u r n ”my node d e s c r i p t i o n ” ;}

/ / inputs and outputs (1 input, 2 outputs)
c o n s t QStringList inputNames ( ) c o n s t {

r e t u r n QStringList ( ) << ” inTex ” ; }
c o n s t QStringList outputNames ( ) c o n s t {

r e t u r n QStringList ( ) << ” outTex1 ”
<< ” outTex2 ” ;}

/ / create an instance of MyNode
Node ∗createInstance (Graph ∗g ) {

r e t u r n new MyNode (g , new NodeHandle ( t h i s ) ) ;
}
/ / ...

} ;

c l a s s MyNode : p u b l i c Node {
p u b l i c :
MyNode (Graph ∗g ,NodeHandle ∗h ) : Node (g ,h ) ,

_p ( ” s h a d e r / f i l e s ” ) {
_p .addUniform ( ”myTex” ) ;
}

vo id init ( ) {/∗ c a l l e d when c o n n e c t e d ∗ /}
vo id clean ( ) {/∗ c a l l e d when d i s c o n n e c t e d ∗ /}

vo id apply ( ) { /∗ r u n t i m e ∗ /
/ / set viewport to texture size
setViewport (outputTex ( 0 )−>w ( ) ,

outputTex ( 0 )−>h ( ) ) ;

/ / enable GPU settings
_p .enable ( ) ;
_p .setUniformTexture ( ”myTex” ,inputTex ( ) ) ;

/ / multiple render targets
drawOutputs (buffersOfOutputTex ( 0 ) ,

nbOutputs ( ) ) ;

/ / disbale GPU settings
_p .disable ( ) ;
}

p r i v a t e :
GPUProgram _p ;
} ;

Figure 11. Left: The node handle contains node information such as ids, name, description,
input and output names, etc. The createInstance function will be called whenever users add
this node to the graph. Right: The node itself overloads basics functions such as init, clean, or
apply. In this example, the node sends the input texture to the shader program and automati-
cally applies a multiple render target to draw into the two output textures. Note that for better
clarity, some function and class names have been slightly modified here.

tools make it possible to write a simple plugin using only a few lines of code, as
demonstrated in Figure 11.

5. Discussion and Future Work

The design of an efficient node-based system working on the GPU requires a careful
architecture organization. The solution chosen for our system ensures fast pipeline
updates through the use of topological lists. However, the total performance of a
pipeline depends on the complexity of each node. While most nodes work at real-
time frame-rates, some computations are more time demanding, as is typically the
case with the ping-pong node for instance. In such situations, our strategy has been to
include an ”apply” button, so that users may control when to update the node output.

The learning curve is another important concern when designing a node-based
system. Our approach has been to provide three levels of programmability through
three types of nodes (groups, generics, and plugins). We believe that these design
choices will allow users from different backgrounds to quickly create new graphics
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applications. Of course, each level of programmability provides the ability to create
increasingly complex effects: what can be achieved with a plugin is hardly done with
a group.

In the following, we provide example uses of Gratin for research prototyping and
teaching in graphics. These are proofs that a GPU-tailored node-based system such
as our own can accommodate a diversity of applications.

Prototyping. One of the direct benefits of our generic node design is to quickly pro-
vide a way to test and combine existing GPU code with simple copy-paste. This is il-
lustrated in Figure 12: the top row shows the Phong tessellation technique [Boubekeur
and Alexa 2008] applied to an input icosphere and rendered in wireframe using Baer-
entzen et al.’s technique [Bærentzen et al. 2006]. The bottom row shows the flame
shader of Shadertoy, integrated in a generic image node, where the time was included
as a keyframed animated parameter. Both examples were created in a few minutes,
the time to set up the proper widgets for the copy-paste code.

A nodal system also permits to quickly test promising graphics ideas and experi-
ment with various alternatives that mix 2D and 3D data. For instance, an early version
of Gratin has been used for the implementation of the surface flows technique [Vergne
et al. 2012] 1, making use of dedicated plugin nodes. This is not limited to computer
graphics research, as Gratin has been employed to create stimuli for perceptual exper-
iments [Fleming et al. 2013; Dovencioglu et al. 2015]. We have also been contacted
by researchers in graphics-demanding fields such as cartography, molecular biology,
and archeology who are interested in controlling the image-creation process and com-
paring different results.

Figure 12. Top: Phong tessellation implemented via evaluation and control shaders. The
tessellation level is controlled in real ime with a user-defined slider. The rendering is designed
in geometry and fragment shaders. These images result from a single generic object node.
Bottom: Flame shader copied from Shadertoy and pasted in a generic image node.

1See http://vimeo.com/44439181.
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Figure 13. Top: tessellation done in a generic grid node for rendering a terrain with an
increasing number of triangles on curved regions. Bottom - from left to right: ray-casting
(generic image node), ray-tracing (generic image node) and path-tracing (ping-pong node).

Teaching. We believe our design choices are well adapted to education purposes,
since Gratin allows students to learn GPU programming by focusing on GLSL with-
out having to worry about the OpenGL architecture. In our experience, students typ-
ically start by grouping existing nodes, then customizing generic nodes, and even-
tually writing their own plugins if necessary. Figure 13 illustrates examples of as-
signments given to students in an advanced image synthesis course. In the top row,
students were asked to displace and adaptively tessellate a grid depending on given
input depth, normal and curvature maps. The bottom row shows examples where
students had to implement ray-casting on implicit surfaces using ray-marching (left)
and ray-tracing with fractal Perlin noises (center) using generic image nodes. The
last example (right) is a path-tracer entirely written in the fragment shader of a single
ping-pong node. Last but not least, the nodal structure itself with its real-time visual-
ization and interactive controls is a great support for teaching as well as dissemination
of research.

5.1. Future Work

Although the conception of Gratin makes it adapted to various application contexts,
there are still limitations on which we plan to work in the future. Most importantly,
current pipelines exclusively exchange 2D textures. Even if other types of data can be
manipulated internally in specialized nodes (3D meshes, 3D textures, etc.), it might be
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useful to transfer them between nodes in order to design, chain, and combine shaders
working on different kinds of GPU buffers. Another limitation concerns parameters
that are dedicated to each shader and cannot be currently linked between nodes. For
instance, the parameters of a camera cannot be currently shared to simultaneously
control two scenes. Our viewer is also quite basic in the current version, and we
would like to extend it to ease prototyping. To this end, we could add a tone mapper
and channel selector, pixel information when hovering the mouse on a node output, as
well as frame-rates for both the entire pipeline and viewed node outputs. Finally, we
plan to provide new generic node designs, such as one based on depth peeling, which
could be useful for transparency effects. Other techniques requiring novel generic
node designs include shadow mapping or motion/lens blur, for instance. Implement-
ing these additional features will open our nodal-based system to even more diverse
applications.
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