
Best-Offset Hardware Prefetching

Pierre Michaud

March 2016

BOP: yet another data prefetcher

•  Contribution: offset prefetcher with new mechanism for setting the
prefetch offset dynamically
- Improvement over Sandbox prefetcher (Pugsley et al., HPCA 2014)

•  Good performance on the SPEC CPU benchmarks

- tuned BOP won the 2015 Data Prefetching Championship

•  Simple hardware

2

Offset prefetching (L2 cache)

3

 prefetch
L2 access, line X prefetch line X+D

into L2 offset D

next-line prefetching  offset = 1

Offset prefetching with physical addresses

4

 prefetch prefetch line X+D
into L2 offset D

if X+D is in same
page as X

offset prefetching works better with large pages
(or with virtual addresses)

L2 access, line X

Offset prefetching is not new

•  Not mainstream either (at least in academia)
- Ki & Knowles, "Adaptive data prefetching using cache information", ICS

1997
- Pugsley et al., "Sandbox prefetching: safe run-time evaluation of

aggressive prefetchers", HPCA 2014
- other ?

•  Different from stream prefetching

- does not try to detect streams

•  Different from delta-correlation prefetching
- delta-correlation predicts which line will be accessed next
- offset prefetching predicts that a line will be accessed soon

5

Sequential stream

6

P DL1 $ L2 $
a, a+4, a+8,... X, X+1, X+2,...

byte
addresses

line
addresses

100% prefetch coverage with offset=1

7

line

time of
access

X+1 X+2 X+3 X+4 X+5 X

Late prefetches hurt performance

8

line

time of
access

X+1 X+2 X+3 X+4 X+5 X

Greater offset makes timely prefetches

9

line

time of
access

X+1 X+2 X+3 X+4 X+5 X

Scrambled stream hurts prefetch coverage

10

line

time of
access

X+1 X+2 X+3 X+4 X+5 X

Greater offset less sensitive to scrambling

11

line

time of
access

X+1 X+2 X+3 X+4 X+5 X

Periodic strides

12

P DL1 $ L2 $
a, a+96, a+192,
a+288, a+384...

X, X+1, X+3,
X+4,X+6...

byte
addresses

line
addresses

non-constant periodic line stride
(1,2,1,2,...)

Offset = sum of strides in a period

13

line

or multiple of that number (for timeliness)

time of
access

X+1 X+2 X+3 X+4 X+5 X X+6 X+7

Offset = sum of strides in a period

14

line

time of
access

X+1 X+2 X+3 X+4 X+5 X X+6 X+7

no need for
complicated

prefetcher here !

or multiple of that number (for timeliness)

Interleaved streams

15

P DL1 $ L2 $

a, a+96, a+192,
a+288, a+384...

X, X+1, X+3,
X+4,X+6...

b, b+128, b+256,
b+384, b+512...

Y, Y+2, Y+4,
Y+6,Y+8...

Interleaved streams

16

line

offset = multiple of 3

time of
access

X+1 X+2 X+3 X+4 X+5 X X+6 X+7 Y+1 Y+2 Y+3 Y+4 Y+5 Y Y+6 Y+7

Interleaved streams

17

line

time of
access

offset = multiple of 2

X+1 X+2 X+3 X+4 X+5 X X+6 X+7 Y+1 Y+2 Y+3 Y+4 Y+5 Y Y+6 Y+7

Interleaved streams

18

line

time of
access

prefetch both streams with offset = multiple of 6

X+1 X+2 X+3 X+4 X+5 X X+6 X+7 Y+1 Y+2 Y+3 Y+4 Y+5 Y Y+6 Y+7

19

What about a fixed offset ?

benchmark milc

20

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 2
 2.1
 2.2
 2.3
 2.4
 2.5

1 20 40 60 80 100 120 140 160 180 200 220 240

sp
ee

du
p

vs
. n

o
L2

 p
re

fe
tc

h

�xed o�set

assuming large pages

benchmark GemsFDTD

21

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

1 20 40 60 80 100 120 140 160 180 200 220 240

sp
ee

du
p

vs
. n

o
L2

 p
re

fe
tc

h

�xed o�set

assuming large pages

benchmark lbm

22

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

1 20 40 60 80 100 120 140 160 180 200 220 240

sp
ee

du
p

vs
. n

o
L2

 p
re

fe
tc

h

�xed o�set

assuming large pages

benchmark libquantum

23

assuming large pages

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

1 20 40 60 80 100 120 140 160 180 200 220 240

sp
ee

du
p

vs
. n

o
L2

 p
re

fe
tc

h

�xed o�set

Learnings

•  The best offset depends on the application
- full-fledged offset prefetchers select the offset dynamically

•  The best offset may be > 100
- when not limited by 4KB page boundaries

•  Prefetch timeliness is essential for performance
- high prefetch coverage is not sufficient

24

Dynamic offset selection

•  Define a list of possible offsets
- e.g., all numbers between -10 and +30
- e.g., numbers between 1 and 255 with no prime factor greater than 5

•  Define a mechanism for evaluating offsets

•  Want simple hardware

25

Sandbox Prefetcher (SBP)

•  Pugsley et al., HPCA 2014

•  Introduces Sandbox method
- evaluate offset by recording fake-prefetch addresses in Sandbox
- on L2 cache access, check Sandbox  if hit, increment score for offset

•  Multi-degree prefetcher  multiple prefetches per cache access
- all the offsets with high enough coverage are potential candidates
- smaller offsets first

•  Prefetch timeliness not considered, only coverage

26

Best-Offset Prefetcher (BOP)

•  Try to identify the single best offset

•  Degree-one prefetch
-  one cache access  one prefetch request

•  New method for evaluating offsets

•  Take into account both coverage and timeliness

27

New method for evaluating offsets

•  When a prefetch completes, store in a recent requests (RR) table the base
address of the prefetch
- prefetched line is X+D, base address is X

•  To evaluate offset d, upon access to X, check if X-d is in RR table
- if hit in RR table, increment score for offset d

•  Evaluate all the offsets in the list, one by one

•  When learning phase finished, pick offset with highest score, update
prefetch offset D
- then new learning phase starts

28

eval & pick best

Best-Offset Prefetcher (BOP)

29

RR table

L2 $

+

-

prefetched line Y

-

prefetch line X+D

 d

 X-d
 hit/miss

access line X

D

 Y-D

eval & pick best

Turn prefetch off if best offset score is too low

30

RR table

L2 $

+

-

-
 d

 X-d
 hit/miss

access line X

D

 Y-D

parameter
BADSCORE

eval & pick best

Offset evaluation continues while prefetch is off

31

RR table

L2 $

+

-

fetched line Y

-
 d

 X-d
 hit/miss

access line X

D=0

 Y

parameter
BADSCORE

Hardware

•  One score per offset in the list
- in the paper, 52 offsets, 5-bit scores  260 bits

•  RR table
- several possible implementations
- in the paper, direct-mapped, 256 entries, 12-bit tags  3072 bits

•  3 adders
- e.g., 64B line, 2MB page  15-bit adders

•  Misc. logic
- iterate on the list, increment scores, find highest score,...

32

BOP's main weakness

•  Tradeoff between prefetch coverage and timeliness
- small offsets give higher prefetch coverage
- large offsets hide memory latency better

•  BOP selects the offset yielding the most timely prefetches
- most of the time, this is OK
- but sometimes a smaller offset gives better performance

33

benchmark libquantum

34

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

1 20 40 60 80 100 120 140 160 180 200 220 240

sp
ee

du
p

vs
. n

o
L2

 p
re

fe
tc

h

�xed o�set

BOP

Conclusion

•  Prefetch timeliness is essential for performance

•  BOP is very effective on the SPEC CPU benchmarks
- though not always optimal

•  Simple hardware

•  BOP is degree-one prefetcher  one prefetch per L2 access

- multi-degree prefetching not the right solution for timeliness issues

•  Maybe we don't need multi-degree prefetching at all
- if we obtain 100% prefetch coverage with degree-2 prefetching, it

means that we are doubling the memory traffic

35

36

thanks for your attention

