Best-Offset Hardware Prefetching

Pierre Michaud

March 2016

BOP: yet another data prefetcher

 Contribution: offset prefetcher with new mechanism for setting the
prefetch offset dynamically

- Improvement over Sandbox prefetcher (Pugsley et al., HPCA 2014)

» Good performance on the SPEC CPU benchmarks
—tuned BOP won the 2015 Data Prefetching Championship

» Simple hardware

Offset prefetching (L2 cache)

L2 access, line X ——> prefetch > prefetch line X+D

offset D into L2

next-line prefetching = offset = 1

Offset prefetching with physical addresses

if X+D is in same

refetch 2EES G X
L2 access, line X ——> P > prefetch line X+D
offset D into L2

offset prefetching works better with large pages
(or with virtual addresses)

Offset prefetching is not new

* Not mainstream either (at least in academia)

- Ki & Knowles, "Adaptive data prefetching using cache information”, ICS
1997

- Pugsley et al., "Sandbox prefetching: safe run-time evaluation of
aggressive prefetchers", HPCA 2014

—other ?

* Different from stream prefetching
—does not try to detect streams

« Different from delta-correlation prefetching
- delta-correlation predicts which line will be accessed next
- offset prefetching predicts that a line will be accessed soon

Sequential stream

byte
addresses

—>

®

a, at4, at+8,...

DL1$

line
addresses

>

X, X+1, X+2,.

L2 $

100% prefetch coverage with offset=1

X X+1 X+2 X+3 X+4 X+5

™~

kN

> |line

v
time of

dCCesSS

Late prefetches hurt performance

X X+1 X+2 X+3 X+4 X+5 _
> |ine

v
time of

dCCesSS

Greater offset makes timely prefetches

X X+1 X+2 X+3 X+4 X+5

.\
N
R

> |line

W

v
time of

dCCesSS

Scrambled stream hurts prefetch coverage

X X+1 X+2 X+3 X+4 X+5

L\A > |line

p?

| N

p? \

v
time of

dCCesSS

Greater offset less sensitive to scrambling

X X+1 X+2 X+3 X+4 X+5 _
L\\ > |line
>
-
o
*—_

v

v
time of

dCCesSS

Periodic strides

®

byte line
addresses addresses
—>{DL1 $
a, at96, a+192, X, X+1, X+3,
a+288, a+384... X+4 X+6...

!

>

L2 $

non-constant periodic line stride

(1,2,1,2,...)

12

Offset = sum of strides in a period

or multiple of that number (for timeliness)

X X+1 X+2 X+3 X+4 X+5 X+6 X+7

|
\;,‘
.\E\Q

> |ine

v
time of

dCCesSS

Offset = sum of strides in a period

or multiple of that number (for timeliness)

X X+1 X+2 X+3 X+4 X+5 X+6 X+7

|
\;,‘

7

v
time of

dCCesSS

> |ine

no need for
complicated
prefetcher here !

14

Interleaved streams

a, at96, a+192, X, X+1, X+3,
a+288, a+384... X+4 X+6...

@ >{DL1$ | 123
b, b+128, b+256, Y, Y+2,Y+4,

b+384, b+512... Y+6,Y+8...

Interleaved streams

offset = multiple of 3

X X+1 X+2 X+3 X+4 X+5 X+6 X+7

Y Y+1 Y+2 Y+3 Y+4 Y45 Y+6 Y+7

16

L

.\i\

>
\;S

v
time of

dCCesSS

> |ine

Interleaved streams

X X+1 X+2 X+3 X+4 X+5 X+6 X+7

offset = multiple of 2

Y Y+1 Y+2 Y+3 Y+4 Y45 Y+6 Y+7

17

I

v
time of

dCCesSS

M

> |ine

Interleaved streams

prefetch both streams with offset = multiple of 6

X X+1 X+2 X+3 X+4 X+5 X+6 X+7

Y Y+1 Y+2 Y+3 Y+4 Y45 Y+6 Y+7

18

I

v
time of

dCCesSS

—

—

> |ine

What about a fixed offset ?

19

y 4

42

speedup vs. no L2 prefetch

informatics g”mathematics

A —

benchmark milc

20

40 60

80

fixed offset

assuming large pages

100 120 140 160 180 200 220 240

20

speedup vs. no L2 prefetch

1.5 %
1.4
1.3 |
1.2 |
1.1 ¢

benchmark GemsFDTD

19
L8
L6

assuming large pages

40 60 80 100 120 140 160 180 200 220 240

fixed offset

21

y 4

42

speedup vs. no L2 prefetch

informatics g”mathematics

zlaa—

benchmark Ibm

assuming large pages

1.7

1.4 H||
1.3 |
1.2 |

1.1 ¢

20 40 60 80 100 120 140 160 180 200 220 240
fixed offset

22

y 4

: informatics g”mathematics

benchmark libquantum

assuming large pages

1.9 ;
e .

R AT R S R ;

2

o 16

Q o

oN 3

-~ 1.5

(®) :

c |

n 1.4 +

> :

o ‘

>

go)

Q

]

o

(V)]

20 40 60 80 100 120 140 160 180 200 220 240
fixed offset

Learnings

» The best offset depends on the application
—full-fledged offset prefetchers select the offset dynamically

* The best offset may be > 100
-when not limited by 4KB page boundaries

* Prefetch timeliness is essential for performance
- high prefetch coverage is not sufficient

24

Dynamic offset selection

» Define a list of possible offsets
-e.g., all numbers between -10 and +30
-e.g., numbers between 1 and 255 with no prime factor greater than 5

» Define a mechanism for evaluating offsets

* Want simple hardware

25

s | 26

Sandbox Prefetcher (SBP)

* Pugsley et al.,, HPCA 2014

* Introduces Sandbox method
—evaluate offset by recording fake-prefetch addresses in Sandbox
—on L2 cache access, check Sandbox = if hit, increment score for offset

» Multi-degree prefetcher = multiple prefetches per cache access
- all the offsets with high enough coverage are potential candidates

—smaller offsets first

* Prefetch timeliness not considered, only coverage

Best-Offset Prefetcher (BOP)

 Try to identify the single best offset

» Degree-one prefetch
- one cache access = one prefetch request

* New method for evaluating offsets

» Take into account both coverage and timeliness

27

7 | 28

New method for evaluating offsets

» When a prefetch completes, store in a recent requests (RR) table the base
address of the prefetch

- prefetched line is X+D, base address is X

» To evaluate offset d, upon access to X, check if X-d is in RR table
—if hit in RR table, increment score for offset d

» Evaluate all the offsets in the list, one by one

 When learning phase finished, pick offset with highest score, update
prefetch offset D

—-then new learning phase starts

access line X

Best-Offset Prefetcher (BOP)

O

D

>
prefetch line X+D

eval & pick best

d

X-d

A

><Z> hit/miss

~ Y-D
RR table [€ =

T prefetched line Y

L2 <

29

D

parameter

BADSCORE eval & pick best

A

d

><Z> hit/miss
X-d

- Y-D

RR table [€ =

access line X T

> 12 $ €

parameter
BADSCORE

access line X

D=0

eval & pick best

d

X-d

A

><Z> hit/miss

- Y
RR table [€ =

T fetched line Y

L2 <

31

V 4

: informatics g”mathematics

Hardware

» One score per offset in the list
—in the paper, 52 offsets, 5-bit scores =» 260 bits

* RR table
- several possible implementations
—in the paper, direct-mapped, 256 entries, 12-bit tags = 3072 bits

« 3 adders
-e.g., 64B line, 2MB page =» 15-bit adders

» Misc. logic
—iterate on the list, increment scores, find highest score,...

32

BOP's main weakness

» Tradeoff between prefetch coverage and timeliness
- small offsets give higher prefetch coverage
—large offsets hide memory latency better

* BOP selects the offset yielding the most timely prefetches
- most of the time, this is OK
- but sometimes a smaller offset gives better performance

33

y 4

: informatics g”mathematics
benchmark libquantum

1.9

speedup vs. no L2 prefetch

80 100 120 140 160 180 200 220 240
fixed offset

34

Conclusion

» Prefetch timeliness is essential for performance

» BOP is very effective on the SPEC CPU benchmarks
—-though not always optimal

» Simple hardware

* BOP is degree-one prefetcher =» one prefetch per L2 access
- multi-degree prefetching not the right solution for timeliness issues

« Maybe we don't need multi-degree prefetching at all

—if we obtain 100% prefetch coverage with degree-2 prefetching, it
means that we are doubling the memory traffic

35

thanks for your attention

36

