
HAL Id: hal-01255440
https://hal.inria.fr/hal-01255440

Submitted on 13 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FLUSEPA - a Navier-Stokes Solver for Unsteady
Problems with Bodies in Relative Motion : Toward a
Task-Based Parallel Version over a Runtime System

Jm Couteyen Carpaye, Jean Roman, P Brenner

To cite this version:
Jm Couteyen Carpaye, Jean Roman, P Brenner. FLUSEPA - a Navier-Stokes Solver for Unsteady
Problems with Bodies in Relative Motion : Toward a Task-Based Parallel Version over a Runtime
System. SIAM Conference on Computational Science and Engineering (SIAM CSE 2015), Mar 2015,
Salt Lake City, United States. 2015. �hal-01255440�

https://hal.inria.fr/hal-01255440
https://hal.archives-ouvertes.fr

FLUSEPA - a Navier-Stokes Solver for Unsteady Problems with Bodies in Relative Motion :

Toward a Task-Based Parallel Version over a Runtime System
JM. COUTEYEN CARPAYE(1 ,2), J . ROMAN(1) et P. BRENNER(2)

(1) Inria Bordeaux - Sud-Ouest
(2) AIRBUS DS, TSOEM536, Les Mureaux

About FLUSEPA

Cell-centered finite volume

Unsteady and reactive flows

Explicit temporal adaptive time integration

Bodies in relative motion

MPMD with special ized processes

MPI/OpenMP paral lel ization

Runtime System

Task scheduling

Heterogeneous multicore architectures

Unified view of ressources

C Library, not a new langage

Used for the new version of FLUSEPA

About StarPU

Current results and perspective

Task generation (aerodynamic solver)

StarPU : a runtime system

Parallelization and Limitations

Motions and Intersections

Aerodynamic Solver

6

Current results and perspectives

With temporal adaptive, cel ls have a
different computational cost. Small
cel ls take more iterations than bigger
ones to reach the same time.

Computation needs to be done in a
certain order to ensure consistency.

This leads to difficulties to paral lel ize
efficiently the aerodynamic solver.

In the picture, the different colors
represent different class of cells for a
take-off blast-wave computation.

The aerodynamic solver of FLUSEPA is
particularly suited for unsteady computations,
even if they do not imply bodies in relative
motion.

Take off blastwave computation.

The paral lel ization of the aerodynamic solver rel ies on domain
decompotisions and ghost cel ls.

Ghost cel ls (in gray) al low to communicate between
different domains. Values of the neighbor domains are
fi l led using communications.

Intersections can be computed asynchronously while aerodynamics is
sti l l computed.

A domain decomposition is used. The first
decomposition can be altered when
temporal classes evolves.

An extrapolation of the kinematic is computed in order to compute
intersections early.

Each bar represents a domain, green is
computation while red is time lost in
synchronization.
With the current paral lel ization, lot of
synchronization are implied.

- Take advantage of a task description of the problem to exploit
the actual dependencies of the aerodynamic solver.
- Co-schedule "Intersections" and "Aerodynamics" should lead to
better use of computational ressources and less data transfers.

Temporal adaptive synchronization issue

Intersection /aerodynamic load balancing issue

- The number of processes dedicated to intersections or
aerodynamics is defined at the beginning of the computation.
- The respective loads vary during the computation.

Interest ofusing a runtime

Multiple meshes around several bodies.

Load are gathered during aerodynamics computation then
a 6DoF formulation is used to compute the relative motion.

When necessary, a new intersection is computed.

Boosters and the main stage are meshed independtly.

Computation ofbooster stage separation from
distancing rocket ignition to their extinction.

Use of a domain decomposition inside each node in order to generate tasks.

For each sub-domain, cel ls and faces are
considered differently, and are represented
by “handles” in StarPU.
Using those handles and generation functions,
tasks and dependencies are generated.

Sub-domain 1 : Cells - Faces
Sub-domain 2 : Cells - Faces
Faces between sub-domain 1 and sub-domain 2

Two “Computation Elements”, the main

abstraction that al lows to generate the tasks.

With the generations functions, a DAG
is generated. In the DAG to the right,
the colors represents differents
subdomains.
Circles represent tasks that work
mainly on cells, while diamond are for
thoses which work on faces. Black
diamonds are for faces between
subdomains.

When waiting for a communication,
work may be available because of
the finer grain obtained by domain
decomposition.
I t is then possible to tune the
scheduling in order to minimize
computation time.

For the distributed version, communications are inserted just l ike tasks, and
the access are consistent with the application.

Extract of a DAG generated
by FLUSEPA

A Directed Acyclic Graph (DAG) is generated on the fly :
submitting a task is a non-blocking operation.
Task are then scheduled around the computational units.

C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier.
StarPU: A Unified Platform for Task Scheduling on Heterogeneous
Multicore Architectures. Concurrency and Computation: Practice and
Experience, Special Issue: Euro-Par 2009, 23:187-198, February 2011.

Rationale
- Implement the sequential task flow programming model
- Map computations on heterogeneous computing units

Programming Model
- Task
- Data
- Relationships
· Task ↔ Task
· Task ↔ Data

Runtime System
- Heterogeneous Task scheduling
- Application Programming Interface (Library)

Mapping the DAG on the
hardware :
- Allocating computing

resources
- Enforcing

dependency constraints
- Handling data

Data

Task

Ressource

DAG

1

3

2 4

531

1

1 2

2

4

4

4

5

6

Submitted and Uncompleted tasks

Ready tasks

CPU#1

CPU#2

CPU#3

CPU#4

Red is synchronization while other colors represents operation on
differents temporal levels.

With the new task system, unstead of waiting on OpenMP-DO barriers,
other ready tasks can be started.
Some low level operations can be started before the end of the
computation, while this was not possible with the OpenMP version.

Results in shared memory Perspectives for the Aerodynamic solver

-Distributed version
· Validate the results
· Incorporate a load balancing system

- Possible Improvment by the task description of the problem
· Pipel ine iterations of the solver. The method only implies a

global communication for setting the time step, but this is
manageable in a different way.

Perspectives for the whole application

- Rewrite Intersection with tasks.
- Co-scheduled Intersection and Aerodynamics

1

2

3

4

5

6

