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Abstract:
Recommender system provides relevant items to users from huge catalogue. Collaborative filter-
ing and content-based filtering are the most widely used techniques in personalized recommender
systems. Collaborative filtering uses only the user-ratings data to make predictions, while content-
based filtering relies on semantic information of items for recommendation. Hybrid recommenda-
tion system combines the two techniques. In this paper, we present another hybridization approach:
User Semantic Collaborative Filtering. The aim of our approach is to predict users preferences
for items based on their inferred preferences for semantic information of items. In this aim, we
design a new user semantic model to describe the user preferences by using Rocchio algorithm.
Due to the high dimension of item content, we apply a latent semantic analysis to reduce the
dimension of data. User semantic model is then used in a user-based collaborative filtering to
compute prediction ratings and to provide recommendations. Applying our approach to real data
set, the MoviesLens 1M data set, significant improvement can be noticed compared to usage only
approach, content based only approach.

1 INTRODUCTION

Thanks to computers and computer networks, our
society is undergoing rapid transformation in al-
most all aspects. We buy online, read news on-
line, listen music online, gather information by
search engines and live a significant part of our
social life on the Internet. However, the ongo-
ing rapid expansion of the Internet, requires to
help user to access to items that may interest
her or him. Recommender Systems (RS) pro-
vide relevant items to users from a large number
of choices. Several recommendations techniques
exist in the literature. Among these techniques,
there are those that provide personalized recom-
mendations by defining a profile for each user. In
this work, we are interested in personalized rec-
ommender systems where the user model is based
on an analysis of usage. This model is usually
described by a user-item ratings matrix, which is
extremely sparse (≥ 90% of missing data).

Collaborative Filtering (CF) and Content-

Based (CB) filtering are the most widely used
techniques in RS. In CF, user will be recom-
mended items that people with similar tastes and
preferences liked in the past (Schafer et al., 2007).
CB filtering assumes that each user operates in-
dependently and user will be recommended items
similar to the ones he preferred in the past (Paz-
zani and Billsus, 2007). The major difference
between CF and CB recommender systems is
that CF relies only on the user-item ratings data
to make predictions and recommendations, while
CB relies on item content (semantic information)
for recommendations. Hybrid approach (Burke,
2007) is another important technique, which com-
bine collaborative and content-based methods to
provide recommendations.

In this paper, we present a new approach:
User Semantic Collaborative Filtering (USCF),
that takes into account the semantic information
of items to enhance collaborative recommen-
dations. User Semantic Collaborative Filtering
(USCF) consists of two components as shown
in Figure1: the first builds a new user model, the
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Figure 1: User Semantic Collaborative Filtering (USCF) Architecture.

User Semantic Model, by inferring user preferences
for item content; the second computes predictions
and provides recommendations by using the User
Semantic Model in a user-based collaborative fil-
tering algorithm (Resnick et al., 1994) to calculate
the similarity between users. The originality of
this work is in the building of the User Semantic
Model. Indeed, assuming that items are repre-
sented by structured data in which each item is
described by a same set of attributes, we build a
User Semantic Attribute Model for each relevant
attribute. With this aim, we define two classes of
attributes: dependent and non dependent and we
propose a suited algorithm for each class. User
Semantic Model is then deducted from the horizontal
concatenation of all User Semantic Attribute Model.
In previous works (Ben Ticha et al., 2012; Ben Ticha
et al., 2011) we have presented solutions based on
machine learning algorithm to build a User Semantic
Attribute Model for non dependent attribute.

In this work, we present a new approach for
building a user semantic attribute model for depen-
dent attribute by using Rocchio algorithm (Rocchio,
1971). Due to the high number of attribute values,
and to reduce the expensiveness of user similarity
computing, we apply a Latent Semantic Analysis
(LSA) (Dumais, 2004) to reduce the size of the user
semantic attribute model. We compare our results
to the standards user-based CF, item-based CF and
Content Based algorithms. Our approach results in
an overall improvement in prediction accuracy.

The rest of this paper is organized as follows:
Section 2 summarizes the related work. Section 3
presents the Latent Semantic Analysis (LSA) algo-
rithm. The algorithm of building the User Semantic
Model is described in Section 4. Section 5 describes
our approach to build User Semantic Attribute Model
for non dependent attribute. Section 6 describes the
recommendation component of our system. Experi-
mental results are presented and discussed in Section
7. Finally, we conclude with a summary of our find-
ings and some directions for future work.

2 RELATED WORK

Recommender Systems (RS) (Goldberg et al., 1992)
have become an independent research area since
the appearance of the first papers on collaborative
filtering in the mid-1990s (Resnick et al., 1994;
Shardanand and Maes, 1995; Hill et al., 1995).
Collaborative Filtering (CF) (Ekstrand et al., 2011)
is the most widespread used technique in RS. The
fundamental assumption of CF is that if users X
and Y rate n items similarly and hence will rate or
act on other items similarly (Su and Khoshgoftaar,
2009). In CF, the user model is usually described by
a user-item rating matrix (users in lines and items in
columns). Each value in the matrix is either a rating
assigned by the user to the corresponding item, or a
missing value if no information is available about the
corresponding couple (user, item). Thus, CF systems
try to predict ratings of items for the active user
based only on the items previously rated by other
users. BREESE et al. (Breese et al., 1998) have
identified two classes of CF algorithms: Memory-
based and Model-based algorithms. Memory-based
algorithms use heuristic functions and the entire of
the user-item ratings matrix to generate predictions.
This allows them to be very reactive by integrating
immediately modifications of users profiles into the
system. User-based CF, introduced by Resnick
et al. (Resnick et al., 1994), and Item-based CF,
introduced by SARWAR et al. (Sarwar et al., 2001),
are the most prevalent memory-based algorithms.
They are both based on the k-Nearest-Neighbors
algorithm. The first computes similarities between
users and the second computes similarities between
items. However, even if these methods work well with
small-sized database, BREESE et al. (Breese et al.,
1998) think that their scalability is problematic for
big databases with great number of items and/or
users. The model-based algorithms (Miyahara and
Pazzani, 2000; Sarwar et al., 2002; Xue et al., 2005)
constitute an alternative to this problem. These
algorithms build descriptive models via a learning
process. Thus, predictions are inferred from these
models.

Content Based filtering (CB) (Lops et al., 2011) is



another important technique used in RS. Unlike CF
recommendation methods, CB recommender systems
rely on the content of items to provide personalized
recommendations to active user. CB assumes that
each user operates independently and recommends
items similar to the ones he or she preferred in the
past. Content-based systems focus on recommending
items containing textual information, such as doc-
uments, web page, news or item attributes. That
is why, Content-based filtering has its roots in in-
formation retrieval (Salton, 1989; Baeza-Yates and
Ribeiro-Neto, 1999) and information filtering (Belkin
and Croft, 1992) research. Furthermore, in content
based filtering, item profile is usually represented by a
Vector Space Model (VSM). Like collaborative filter-
ing, there are two classes of CB algorithms : Memory-
based and Model-based algorithms (Adomavicius and
Tuzhilin, 2005). In memory-based algorithms (Paz-
zani and Billsus, 1997), various candidate items are
compared with items previously rated by the active
user and the best matching item(s) are recommended.
The similarities between items are computed using
heuristic formula like cosine measure. In model base
techniques (Mooney and Roy, 2000; Pazzani and Bill-
sus, 2007), predictions are provided based on a model
learned from the underlying data using statistical
learning and machine learning techniques.

However, CF and CB filtering must face many
challenges (Adomavicius and Tuzhilin, 2005), like the
data sparsity problem due to missing data in user-
item matrix; the scalability problem for large datasets
with the increasing numbers of users and items; the
cold start problem when new user logs in, the sys-
tem ignores his or her preferences. Furthermore, each
technique introduced its own shortcomings. In CF
technique, if new item appears in the database, there
is no way to be recommended before it is rated, this
problem is known also as Cold-start problem. Neigh-
bor transitivity refers to a problem with sparse data,
in which users with similar tastes may not be identi-
fied as such if they have any items rated in common.
CB filtering suffers a problem of over-specialization
where a user is restricted to seeing items similar to
those already rated.

To overcome the disadvantages of both tech-
niques and benefit from their strengths, several rec-
ommender systems use a hybrid approach by combin-
ing CF and CB techniques. The Fab System (Bala-
banović and Shoham, 1997) counts among the first
hybrid RS. Many systems have been developed since
(Burke, 2007). Moreover, because of the huge number
of items and users, calculating the similarity between
users in CF algorithm becomes very expensive in time
computing. Dimension reduction of data is one of the
solution to alleviate the expensiveness of users simi-
larity computing (Sarwar et al., 2000). Mobasher et
al. (Mobasher et al., 2004) combine values of all at-
tributes and then apply a Latent Semantic Analysis
(LSA) to reduce dimension of data. Sen et al. (Sen
et al., 2009) are inferring user preferences for only one
attribute, the item’ tags, without reducing dimension.
Manzato (Manzato, 2012) computes a user semantic

model for only the movie genre attribute and applies
a Singular Value Decomposition (SVD) to reduce the
dimension of data.

3 LATENT SEMANTIC
ANALYSIS (LSA)

Latent Semantic Analysis (LSA) (Dumais, 2004) is
a dimensionality reduction technique which is widely
used in information retrieval (Salton, 1989) and in-
formation filtering (Belkin and Croft, 1992) research.
Given a term-document frequency matrix Md,l (d
documents and l terms), in witch each document is
described by a Vector Space Model (VSM), LSA is
used to decompose it into two matrices of reduced
dimensions and a diagonal matrix of singular values.
Each dimension in the reduced space is a latent factor
representing groups of highly correlated index terms.

Singular Value Decomposition (SVD) is a well
known technique used in LSA to perform matrix de-
composition. SVD decomposes the term-document
frequency matrix M into three matrices D, Σ and T :

M = Dd,r ∗ Σr,r ∗ T t
r,l (1)

where D and T are two orthogonal matrices; r =
min(d, l) is the rank of matrix M . Σ is a diagonal
matrix, where its diagonal entries contain all singular
values of matrix M stored in decreasing order. D
and T matrices are the left and right singular vectors.
LSA uses a truncated SVD, keeping only the k largest
singular values and their associated vectors, so

M ≈M
′

= Dd,k ∗ Σk,k ∗ T t
k,l (2)

M
′

is the rank-k approximation of M . M
′

is what
LSA uses for its semantic space. The rows in Dd,k are
the document vectors in LSA space and the rows in
Tl,k are the term vectors in LSA space. Each doc-
ument in Dd,k is represented by a set of k latent
variables, instead of the original terms. Each term
in Tl,k is represented by a set of k latent variables
instead of the original document. This, results in a
much less sparse matrix. Furthermore, the generated
latent variables represent groups of highly correlated
terms in the original data, thus potentially reducing
the amount of noise associated with the semantic in-
formation.

4 USER SEMANTIC MODEL

In this paper, we are interested only to items de-
scribed by structured data. According to the defini-
tion of Pazzani et al. (Pazzani and Billsus, 2007), in
structured representation, item can be represented by
a small number of attributes, and there is a known set
of values that each attribute may have. For instance,
the attributes of a movie can be title, genre, actor
and director. In the following, we will use the term



feature to refer to an attribute value. For instance,
Documentary, Musical and Thriller are features of
movie genre attribute.

4.1 Dependent and Non
Dependent Attribute

In structured representation, each attribute has a set
of restricted features. However, the number of fea-
tures can be related or not to the number of items.
That is why we have defined two classes of attributes:

• Dependent attribute: attribute, which having
very variable number of features. This number is
closely related to the number of items. So, when
the number of items is increasing, the number of
features is increasing also. For example: directors
and actors of movies, keywords.

• Non dependent attribute: attribute, which
having a very few variable number of features,
and this number is not related to the number of
items. Thus, the increasing number of items has
no effect on the number of features. For example:
movie genre, movie origin and cuisine of restau-
rants.

In addition, all attributes do not have the same
degrees of importance to users. There are attributes
more relevant than others. For instance, the movie
genre can be more significant, in the evaluation crite-
ria of user, than the origin. Experiments that we have
conducted (see Section 7.4) confirmed this hypothe-
sis. In this paper, we assume that relevant attributes
will be provided by a human expert. Therefore, for
each relevant attribute A, we build a user semantic
attribute model that predicts the users preferences for
its features (or group of features). This model is de-
scribed by a matrix QA (users in lines and features (or
group of features) of A in columns). In our approach,
we design a suited algorithm for building the user se-
mantic attribute model for each class of attribute.

For non dependent attribute, due to the low num-
ber of features, we have used a clustering algorithm.
Section 4.2 briefly described the operating principle
of our solutions that have been addressed in previous
works (Ben Ticha et al., 2012; Ben Ticha et al., 2011).

For dependent attribute, we have explored tech-
niques issues from information retrieval (IR) research.
In (Ben Ticha et al., 2013) we have presented an ap-
proach based on user rating frequency. In this paper
we present an other approach based on Rocchio algo-
rithm (Rocchio, 1971).

The user semantic model for all relevant at-
tributes, described by the matrix Q, is the result of
the horizontal concatenation of all user semantic at-
tribute models QA as shown in algorithm 1.

4.2 User Semantic Model for Non
Dependent Attribute

Let us denote by S the set of items, U the set of users,
s a given item ∈ S, u a given user ∈ U and a rating

Algorithm 1 Building User Semantic Model

Input: L: List of relevant attributes, users rat-
ings, items content

Output: Q the User Semantic Matrix
1: for A in L {This loop is fully

parallelizable} do
2: build QA the User Semantic Attribute

Model of A
3: end for
4: for A in L do
5: Q ← horizontal concatenation of (Q and

QA)
6: end for

value r ∈ {1, 2, ..., 5} ≡ R. Us the set of users that
rating the item s, then we define the rating function
for item s by δs : u ∈ Us 7−→ δs(u) ∈ R. We denote
also by FA the set of features of attribute A, f a
given feature ∈ FA and Sf the set of items associated
to feature f . For instance if we consider the movie
genre attribute, Saction is the set of all action movies.

An item s is represented by its usage profile vector
sup = (δs(u) − δu)(u=1..|U|), where δu is the average
rating of all rated items by user u. The idea is to
partition all items described by their usage profile in
K clusters, each cluster is labeled by a feature f ∈ FA

(or a set of features).
The number K of clusters and the initial center of

each cluster is computed by the initialization step of
the clustering algorithm. In initial step, each cluster
Ck consists of items in

⋃
f labeling Ck

Sf and labeled

by the set of corresponding features; so its center is
the mean of its items described by their usage pro-
file vector sup. Moreover, an attribute can be mono
valued or multivalued depending on the number of
features that can be associated to a given item s. For
example, the attribute movie genre is multivalued be-
cause a movie can have several genres while movie
origin is a mono valued attribute because a movie
has only one origin. Thus, if an attribute is multi-
valued, s can belong to several clusters Ck, while for
mono valued attribute, an item should belong only to
one cluster. Therefore, for multivalued attribute, the
clustering algorithm should provide non disjointed
clusters (a fuzzy clustering), whereas, for mono val-
ued attribute, the clustering algorithm should provide
disjointed clusters.

After running the clustering algorithm, we obtain
K cluster centers; each center k is described by a vec-
tor ck = (qk,u)(u=1..|U|). The K centers is modeling
k latent variables issued from the features of the at-
tribute A. Thus, the user semantic attribute model is
described by the matrix QA = (qu,k)(u=1..|U|, k=1..K).

With non dependent attribute, the number of as-
sociated features is low, this is why the clustering is
suitable. Moreover, the user semantic attribute model
allows an important reduction of dimension and so re-
duce the expensiveness of user similarity computing.
In (Ben Ticha et al., 2011), we have used the Fuzzy



CMean Algorithm on the movie genre attribute, we
have obtained good performance because the user se-
mantic attribute model has no missing values and all
similarities between users were able to be computed.
In (Ben Ticha et al., 2012), we have used the KMean
clustering algorithm on the movie origin attribute.
Because of the missing values in the user item rating
matrix, we have proposed an algorithm for the initial-
ization step of the KMean clustering using a movie
origin ontology. We obtained good results compared
to user-based CF but not as good as results for the
genre attribute.

5 USER SEMANTIC MODEL
FOR DEPENDENTS
ATTRIBUTES

For a dependent attribute A, the set FA of its features
can be important and it augments with the increasing
of the set of items S. In this paper, we present our
solution to compute a user semantic attribute model
for dependent attribute.

In addition to the formalism used in Section 4.2,
we denote by FAs the set of features f ∈ FA asso-
ciated to item s and by Su the set of items s ∈ S
rated by user u. We define also, the rating function
of user u as δu : s ∈ Su 7→ δu(s) ∈ R; and the Item
Frequency Function of item s as freqs described in
formula 3.

∀s ∈ S, f ∈ FA, freqs(f) =

{
1 if f ∈ FAs .
0 otherwise.

(3)

The Frequency Item Matrix F =
(freqs(f))s∈S and f∈FA is provided by comput-
ing freqs(f) for all items and all features. Table 1
provides an example of Frequency Item matrix for
S = {i1, i2, i3} and FA = {f1, f2, f3, f5}.

f1 f2 f3 f4
i1 0 1 0 1
i2 0 0 1 1
i3 1 1 0 1

Table 1: Example of Item Frequency Matrix

The building of user semantic attribute model
consists of three steps:

1. Computing the TF-IDF measure on the Fre-
quency Item Matrix F .

2. Reducing the dimension of feature space by ap-
plying a LAS.

3. Computing the user semantic attribute model on
items in LSA space by using the Rocchio algo-
rithm.

5.1 Computing the TF-IDF
measure on the Frequency
Item Matrix F

One of the best-known measures for specifying key-
word weights in Information Retrieval is the TF-
IDF (Term Frequency/Inverse Document Frequency)
(Salton, 1989). It is a numerical statistic, which re-
flects how important a word is to a document in a
corpus. In our case, we replace document by item
and term by feature and compute TF-IDF on the Fre-
quency Item Matrix F .

TF (f, s) =
freqs(f)

maxjfreqs(j)
(4)

where the maximum is computed over the freqs(j) of
all features in FAs of item s.

The measure of Inverse Document Frequency
(IDF) is usually defined as:

IDF (f) = log
|S|
|Sf |

(5)

where |Sf | is the number of items assigned to feature
f (ie freqs(f) 6= 0). Thus, the TF-IDF of feature f
for item s is defined as:

TFIDF (s, f) = TF (f, s)× IDF (f) (6)

In the flowing, we will denote by FTFIDF the TF-
IDF frequency matrix provided by computing TF-
IDF measure on the item frequency matrix F , so
FTFIDF = TFIDF (s, f)s∈S and f∈FA .

5.2 Reducing Dimension of the
TF-IDF Frequency matrix

For dependent attribute, the number of feature is cor-
related to the number of items. So it can be very
elevated and even higher than the number of items.
Thus, the semantic user attribute model can have di-
mension greater than the user rating matrix thereby
aggravating the scalability problem. Therefore, in or-
der to reduce the dimension of features space, we ap-
ply a LSA with rank k (see section 3) to the FTFIDF

matrix. The rank k is well below the number of fea-
tures of attribute A (k << |FA|). As shown in section
3, LSA uses a truncated SVD (see formula 2) keeping
only the k largest singular values and their associated
vectors. So, the rank-k approximation matrix of the
FTFIDF matrix is provided by formula 7.

FTFIDF ≈ I|S|,k ∗ Σk,k ∗ V t
k,|FA| (7)

The rows in Ik are the item vectors in LSA space
and the rows in V are the feature vectors in LSA
space. Thus, each item is represented in the LSA
space by a set of k latent variables instead of the
features of FA. This, results in a much less sparse
matrix and a reduced dimension of feature space.



5.3 Computing the User Semantic
Attribute Model

Rocchio algorithm (Rocchio, 1971) is a relevance feed-
back procedure, which is used in information re-
trieval. It designed to produce improved query for-
mulations following an initial retrieval operation. In
a vector processing environment, both the stored in-
formation document D and the requests for informa-
tion B can be represented as t-dimensional vectors
D = (d1, d2, ..., dt) and B = (b1, b2, ..., bt). In each
case, di and bi represent the weight of term i in D
and B respectively. A typical query-document sim-
ilarity measure can then be computed as the inner
product between corresponding vectors.

Rocchio showed in (Rocchio, 1971), that in a re-
trieval environment that uses inner product computa-
tions to assess the similarity between query and doc-
ument vectors, the best query leading to the retrieval
of many relevant items from a collection of documents
is:

Bopt =
1

|R|
∑
R

Di

|Di|
− 1

|NR|
∑
NR

Di

|Di|
(8)

Where Di represent document vectors, and |Di| is
the corresponding Euclidean vector length; R is the
set of relevant documents and NR is the set of non
relevant documents.

We have applied the Rocchio formula (8) for com-
puting the user semantic attribute profile of user u.
We replace documents by items in S described in
LSA space. Thus, the user semantic attribute model
QA(u) for user u and attribute A is given by formula
9.

QA(u) =
1

|Ru|
∑
R

si
|si|
− 1

|NRu|
∑
NR

si
|si|

(9)

Where Ru is the set of relevant items of u. It
is composed of all items in Su having rating greater
than the rating average of u (δu(s) ≥ δu). NRu is
the set of non relevant items of u. It is composed of
all items in Su \Ru ((δu(s) < δu).

6 RECOMMENDATION

To provide recommendations for the active user ua,
we use the user-based CF algorithm (Resnick et al.,
1994). User-Based CF predicts the rating value of
active user ua on non rated item s ∈ S based on his
or her nearest neighbors. The principle of the user-
based CF consists of the following steps:

Similarity : compute the similarities between ua

and all others users. The similarity between two users
u and v is equal to the cosine of the angle between ~u
and ~v (see equation 10). The set of the nearest neigh-
bors of ua is equal to the B users with the highest
similarity values. In the standard user-based CF algo-
rithm, the users-items rating matrix (δu(s)(u∈U, s∈S))

is used to compute users’ similarities. In our algo-
rithm, the user semantic matrix Q is used instead
for computing the similarities between users. As we
have already mentioned, the matrix Q is the horizon-
tal concatenation of user semantic attribute model
QA for each relevant attribute A.

sim(u, v) = cos(~u,~v) =
~u • ~v
‖~u‖ ‖~v‖ (10)

Prediction : compute the prediction value
p(ua, s) = of rating of user ua on non rated item s.
Prediction value is equal to a weighted aggregate of
the b nearest neighbor ratings of user ua (see equation
11).

p(ua, s) = δua +

∑
v∈V sim(ua, v)(δv(s)− δv)∑

v∈V |sim(ua, v)| (11)

where V is the set of the B nearest neighbors
(most similar users) to ua that have rated item s.
B can range anywhere from 1 to the number of all
users.

Recommendation: recommend to the active
user ua a list L(u) of the Top-N relevant items. Rele-
vant items are those having predicted ratings greater
than or equal a given threshold.

Although we apply a user-based CF for recommen-
dation, our approach is also a model-based method
because it is based on a new user model to provide rat-
ings of active user on non rated items. Our approach
resolves the scalability problem for several reasons.
First, the building process of user semantic model is
fully parallelizable (because the computing of user se-
mantic attribute model is done in independent way
for each other) and can be done off line. Second, this
model allows a dimension reduction since the number
of columns in the user semantic model is much lower
than those of user item rating matrix, so, the comput-
ing of similarities between users is less expensive than
in the standard user-based CF. In addition, our ap-
proach allows inferring similarity between two users
even when they have any co-rated items because the
users-semantic matrix has less missing values than
user item ratings matrix. Thus, our approach pro-
vides solution to the neighbor transitivity problem
emanates from the sparse nature of the underlying
data sets. In this problem, users with similar pref-
erences may not be identified as such if they haven’t
any items rated in common.

7 PERFORMANCE STUDY

In this section, we study the performance of our algo-
rithm, User Semantic Collaborative Filtering (USCF
in plots), against the standards CF algorithms: User-
Based CF (UBCF in the plot) (Resnick et al., 1994),
and Item-Based CF (IBCF in the plot) (Sarwar et al.,
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Figure 2: Impact of LSA on prediction accuracy of Rocchio algorithm.

2002); standard CB algorithm (CB in the plot) (Lops
et al., 2011).

It should be noted that the building of User Se-
mantic Attribute Model for the non dependent at-
tributes genre and origin have been addressed re-
spectively in previous works (Ben Ticha et al., 2011;
Ben Ticha et al., 2012). Therefore, we will not detail
the experiments conducted for these attributes in this
paper.

7.1 Data set

We have experimented our approach on real data from
the MovieLens1M data set (data set, 2014) of the
MovieLens recommender system (MovieLens, 2014).
The MovieLens1M provides the usage data set and
contains 1,000,209 explicit ratings of approximately
3,900 movies made by 6,040 users. The ratings are
user-provided star ratings, from 1 to 5 stars. For
the semantic information of items, we use the Het-
Rec 2011 data set (HetRec2011, 2011) that links the
movies of MovieLens data set with their correspond-
ing web pages at Internet Movie Database (IMDb)
and Rotten Tomatoes movie review systems. We use
movie genre and movie origin as non dependent at-
tributes, movie director, movie actor and movie key-
word as dependent attributes.

We have filtered the data by maintaining only
users with at least 20 ratings and available features
for all movies. After the filtering process, we obtain
a data set with 6020 users, 3552 movies, 19 genres,
43 origins, 1825 directors, 4237 actors and 12367 key-
words . The usage data set has been sorted by the
timestamps, in ascending order, and has been divided
into a training set (including the first 80% of all rat-
ings) and a test set (the last 20% of all ratings). Thus,
ratings of each user in test set have been assigned af-
ter those of training set.

7.2 Evaluation Metrics

Several metrics have been used to evaluate the pre-
diction accuracy of recommendation algorithms (Her-
locker et al., 2004; Shani and Gunawardana, 2011).
There are mainly two classes of metrics. The first
measure the ratings prediction accuracy and are used
to evaluate the accuracy of algorithms predicting the
rating values. The second measure the accuracy of
recommendation and are used to evaluate algorithms
that provide a Top-N list of relevant items. In this
paper, we have used the widely accepted metrics for
each class. Thus, for measuring the accuracy of rating
prediction we have used the Root Mean Squared Er-
ror (RMSE)(see equation 12). RMSE computes the



Figure 3: Impact of user semantic attribute algorithm on prediction accuracy.

square root of the average of the absolute difference
between the predictions and true ratings in the test
data set. RMSE disproportionally penalizes large er-
rors. Lower the RMSE is, better is the prediction
accuracy.

RMSE =

√∑
u,s(p(u, s)− δu(s))2

d
(12)

Where d is the total number of ratings over all users,
p(u, s) is the predicted rating for user u on item s,
and δu(s) is the actual rating for user u on item s in
test data set.

For Top-N recommendation list, we have used the
Precision metric. We have computed a Precision for
each test user u in the test set by using formula 13.
Then, the Precision for all users is equal to the aver-
age.

Precision(u) =
|L(u) ∩Rtest(u)|

|L(u)| (13)

where L(u) is the list of N items recommended
to user u. Rtest(u) is the set of relevant items for u
in the test data set. In all our experiments, an item
is relevant if its rating is greater than or equal to 4.
The Precision measure describes the proportion of the
recommendations were actually suitable for the user.
Higher the Precision is, better is the recommendation
accuracy.

7.3 Impact of LSA on Prediction
Accuracy of Rocchio algorithm

In Figure 2, the RMSE has been plotted with
respect to the LSA rank. It compares the Rocchio
approach with and without applying LSA (dimension
reduction) on director attribute (Figure 2(a)),
actor attribute (Figure 2(b)), combined attribute
director actor (Figure 2(c)) and Keyword attribute
(Figure 2(d)). For attributes director and actor,
the plots (Figures 2(a) and 2(b)) have the same
look, the RMSE of Rocchio with LSA decreases
until it reaches the RMSE value of Rocchio without
LSA. So, LSA dimension reduction has no effect
on improving the accuracy of Rocchio approach on

director and actor attributes. The poor performance
of these two attributes may be explained by the fact
that their features are not highly correlated. Indeed,
for the director attribute, for instance, the RMSE
without reduction (1825 features) is equal to 0.9142
while the best value with LSA is equal to 1.017. For
actor attribute, the best accuracy (RMSE=0.9153)
of Rocchio with LSA is reached for LSA rank=1100,
it is equal to the performance of Rocchio without
LSA, with a dimension reduction about 75%.

However, for combined attributes director actor
(Figure 2(a)) and Keyword (Figure 2(d)) the LSA
dimension reduction improves the accuracy of Roc-
chio approach. Because of features in keyword at-
tribute are more correlated than in actor or direc-
tor attribute, using LSA can potentially reduces the
amount of noise associated with the semantic infor-
mation. For keyword attribute, the best accuracy
(RMSE= 0.909) is reached for LSA rank=3552 a
reduction of about 71%. For rank equal to 1000,
RMSE= 0.9145, so a dimension reduction about 91%
for a loss of accuracy about 0.60% against the best
accuracy of Keyword attribute.

Although the LSA doesnt́ improve the accuracy,
dimension reduction is significant. Thus, it allows to
reduce the cost of users similarity computing, spe-
cially when the number of features is very high, as is
the case of combined attributes director actor.

7.4 Impact of Attribute Class on
Prediction Accuracy

Figure 3 compares algorithms for building user se-
mantic attribute model in term of RMSE. Fuzzy C
Mean algorithm (FuzzyCM in plot) is a fuzzy clus-
tering used for non dependent and multivalued at-
tribute (here genre) and KMean algorithm (KMean
in plot) is used on non dependent and mono valued
attribute (here origin). Moreover, Rocchio algorithm
(Rocchio in plot) is applied here for all attributes de-
pendent and non dependent. For origin and director
attributes, Rocchio without LSA provides best results
than with dimension reduction. For actor attribute,



(a) Higher the Precision is, better is the recom-
mendation

(b) Lower the RMSE is, better is the prediction

Figure 4: Evaluation of USCF against CB in terms of Precision (a) against standards CF in terms of RMSE (b).

LSA with rank equal to 1100 is performed, for genre
attribute a factorization (LSA with rank equal to 18)
is applied, for keyword attribute LSA with rank equal
to 3400 is applied. Rocchio+LSA in plot means the
Rocchio approach is performed with LSA. When an-
alyzing this figure we note that, if we performed the
Rocchio algorithm to non dependent attribute the
performance compares unfavorably against the de-
pendent attribute. Indeed, the best performance is
achieved by FuzzyCM algorithm on genre attribute
and the difference with Rocchio approach, even with
factorization, is important (0.9066 for FuzzyCM and
0.9314 for Rocchio with LSA (rank=18)). This al-
lows us to deduce that, using a suited algorithm for
each attribute class provides best performance than
applying the same algorithm for all attributes. Sec-
ond, the origin attribute has the worst performance
compared to the other three attributes and this for all
algorithms. This is confirm our hypothesis that all at-
tributes don’t have the same relevance to users. The
attribute origin can be less significant in the choice
of users than the genre, actor or director, which is
intuitively understandable.

7.5 Comparative results of USCF
against CF and CB
recommender system

Figure4 depicts the recommendation accuracy of
USCF in contrast to those produced by pure CB
(CB in plots) recommender system (Figure4(a)) us-
ing Precision metric to measure the recommenda-
tion accuracy; and standard Item-Based CF (IBCF)
and User-Based CF (UBCF) (Figure4(b)). USCF-
<Attributes> in plot means the list of relevant at-
tributes involved in building the user semantic model
Q. For each relevant attribute, the suited algorithm
is applied. So, Fuzzy CMean for genre, KMean
for origin, Rocchio with LSA (rank=1200) for com-
bined attribute director actor and Rocchio with LSA
(rank=3400) for Keyword attribute. Pure CB al-
gorithm exploits only item-content for recommenda-

tions. Thus, we have built an item-item similarity
matrix based on Cosinus. Item is described by a
Vector Space Model (VSM) composed by features
of selected attributes as shown in Figure4(a). In
Figure4(a), recommendations are computed for 60
nearest neighbors. We note that our algorithm USCF
results in an overall improvement in accuracy against
CB for all combinations of attributes. In Figure4(b),
RMSE has been plotted with respect to the number of
neighbors (similar users) for computing rating predic-
tion (see section 6). In all cases, the RMSE converges
between 50 and 60 neighbors, however, USCF results
in an overall improvement in accuracy. In addition,
the best performance is achieved by the combination
genre-director actor. This improvement can be ex-
plained by many reasons. First, taking into account
the semantic profile of items in a CF recommendation
process. Second, for non dependent attribute, User
Semantic Attribute Model is built according to a col-
laborative principle; ratings of all users are used to
compute the semantic profile of each user. Third, the
choice of the attribute can have significant influence
on improving the accuracy. Lastly, Users Semantic
Model has few missing values, so, it allows inferring
similarity between two given users even when they
have any items rated in common.

8 CONCLUSION AND FUTURE
WORK

The approach presented in this paper is a component
of a global work, which the aim, is to semantically
enhance collaborative Filtering recommendation and
to resolve the scalability problem by reducing the
dimension. For this purpose, we have designed a
new hybridization technique, which predicts users’
preferences for items based on their inferred prefer-
ences for semantic information. We have defined two
classes of attributes: dependent and non dependent
attribute, and presented a suited algorithm for each
class for building user semantic attribute model.



The aim of this paper is to present our approach for
building user semantic attribute model for dependent
attribute. We have defined an algorithm based on
Rocchio algorithm and have applied Latent Semantic
Analysis (LSA) for dimension reduction. Our ap-
proach provides solutions to the scalability problem,
and alleviates the data sparsity problem by reducing
the dimensionality of data. The experimental results
show that USCF algorithm improves the prediction
accuracy compared to usage only approach (UBCF
and IBCF) and Content based only approach. In ad-
dition, we have shown that applying Rocchio formula
on non dependent attribute, decreases significantly
the prediction accuracy compared to results obtained
with machine learning algorithms. Furthermore,
we have experimentally shown that all attributes
don’t have the same importance to users. Fi-
nally, experiments have shown that the combination
of relevant attributes enhances the recommendations.

An interesting area of future work is to use ma-
chine learning techniques to infer relevant attributes.
We will also study the extension of the user seman-
tic model to non structured data in witch items are
described by free text. Lastly, study how our ap-
proach can provide solution to the cold start problem
in which new user has few ratings. Indeed, CF can-
not provide recommendation because similarities with
others users cannot be computed.
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