
HAL Id: hal-01255489
https://hal.archives-ouvertes.fr/hal-01255489

Submitted on 13 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Parallelising the Computation of Minimal Absent Words
Carl Barton, Alice Héliou, Laurent Mouchard, Solon P. Pissis

To cite this version:
Carl Barton, Alice Héliou, Laurent Mouchard, Solon P. Pissis. Parallelising the Computation of
Minimal Absent Words. PPAM 2015, Sep 2015, Cracovie, Poland. �10.1007/978-3-319-32152-3_23�.
�hal-01255489�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49435816?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01255489
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Parallelising the Computation of Minimal
Absent Words

Carl Barton1, Alice Heliou2,3, Laurent Mouchard4, and Solon P. Pissis5

1 The Blizard Institute, Barts and The London School of Medicine and Dentistry,
Queen Mary University of London, UK

c.barton@qmul.ac.uk
2 Inria Saclay-̂Ile de France, AMIB, Bâtiment Alan Turing, France

3 Laboratoire d’Informatique de l’École Polytechnique (LIX), CNRS UMR 7161,
France

alice.heliou@polytechnique.org
4 University of Rouen, LITIS EA 4108, TIBS, Rouen, France

laurent.mouchard@univ-rouen.fr
5 Department of Informatics, King’s College London, London, UK

solon.pissis@kcl.ac.uk

Abstract. An absent word of a word y of length n is a word that does
not occur in y. It is a minimal absent word if all its proper factors occur
in y. Minimal absent words have been computed in genomes of organ-
isms from all domains of life; their computation also provides a fast
alternative for measuring approximation in sequence comparison. There
exists an O(n)-time and O(n)-space algorithm for computing all minimal
absent words on a fixed-sized alphabet based on the construction of suf-
fix array (Barton et al., 2014). An implementation of this algorithm was
also provided by the authors and is currently the fastest available. In this
article, we present a new O(n)-time and O(n)-space algorithm for com-
puting all minimal absent words; it has the desirable property that, given
the indexing data structure at hand, the computation of minimal absent
words can be executed in parallel. Experimental results show that a mul-
tiprocessing implementation of this algorithm can accelerate the overall
computation by more than a factor of two compared to state-of-the-art
approaches. By excluding the indexing data structure construction time,
we show that the implementation achieves near-optimal speed-ups.

Keywords: algorithms on strings, absent words, suffix array

1 Introduction

Sequence comparison is an important step in many tasks in bioinformatics. It
is fundamental in many applications; from phylogenies reconstruction to the re-
construction of genomes. Traditional algorithms for measuring approximation
in sequence comparison are based on the notions of distance or of similarity
between sequences, which are generally computed through sequence alignment

II Carl Barton, Alice Heliou, Laurent Mouchard, and Solon P. Pissis

techniques. An issue with using alignment techniques is that they are compu-
tationally expensive, requiring quadratic time in the length of the sequences—a
truly sub-quadratic algorithm for this problem seems highly unlikely [1]. This
has led to increased research into alignment free techniques [10].

Whole-genome alignments prove computationally intensive and have little bi-
ological significance. Hence standard notions for sequence comparison are grad-
ually being complemented and in some cases replaced by alternative ones that
refer either implicitly or explicitly to the composition of sequences in terms of
their constituent patterns. One such notion is based on comparing the words
that are absent in each sequence. A word is an absent word of some sequence if
it does not occur in the sequence. Absent words represent a type of negative in-
formation: information about what does not occur in the sequence. For instance,
considering the words which occur in one sequence but do not in another can be
used to detect mutations or other biologically significant events [17].

Given a sequence of length n, the number of absent words of length at most
n is exponential in n. However, the number of certain classes of absent words
is only linear in n. A minimal absent word of a sequence is an absent word
whose proper factors all occur in the sequence. Notice that minimal and shortest
absent words [18] are not the same; minimal absent words are a superset of
shortest absent words [15]. An upper bound on the number of minimal absent
words is known to be O(σn) [6, 13], where σ is the size of the alphabet. This
suggests that it may be possible to compare sequences in time proportional to
their lengths, for a fixed-sized alphabet, instead of proportional to the product
of their lengths [10].

Recently, there has been a number of studies on the biological significance
of absent words in various species. The most comprehensive study on the sig-
nificance of absent words is probably [2]; in this, the authors suggest that the
deficit of certain subsets of absent words in vertebrates may be explained by the
hypermutability of the genome. It was later found in [9] that the compositional
biases observed in vertebrates in [2] are not uniform throughout different sets of
minimal absent words. Moreover, the analyses in [9] support the hypothesis that
minimal absent words are inherited through a common ancestor, in addition to
lineage-specific inheritance, only in vertebrates. In [8], the minimal absent words
in four human genomes were computed, and it was shown that, as expected,
intra-species variations in minimal absent words were lower than inter-species
variations. Very recently, in [17], it was shown that there exist three minimal
words in the Ebola virus genomes which are absent from human genome. The
authors suggest that the identification of such species-specific sequences may
prove to be useful for the development of both diagnosis and therapeutics.

From an algorithmic perspective, an O(n)-time and O(n)-space algorithm
for computing all minimal absent words on a fixed-sized alphabet based on the
construction of suffix automata was presented in [6]. An alternative O(n)-time
solution for finding minimal absent words of length at most `, such that ` = O(1),
based on the construction of tries of bounded-length factors was presented in [5].
A drawback of these approaches, in practical terms, is that the construction of

Parallelising the Computation of Minimal Absent Words III

suffix automata (or of tries) often have a large memory footprint. Hence, an
important problem was to be able to compute minimal absent words with more
memory-efficient data structures (cf. [4]).

The computation of minimal absent words based on the construction of suffix
arrays was considered in [15]; although this algorithm has a linear-time perfor-
mance in practice, the worst-case time complexity is O(n2). The first O(n)-time
and O(n)-space suffix-array-based algorithm was recently presented in [3] to
bridge this unpleasant gap. An implementation of this algorithm is currently,
and to the best of our knowledge, the fastest available for the computation of
minimal absent words. With the continuous efforts in whole-genome sequenc-
ing, the computation of minimal absent words remains the main bottleneck in
analysing a large set of large genomes [8, 9, 17]. Hence due to the large amounts
of data being produced, it is desirable to further engineer this computation.

Our Contribution. In this article, our contribution is threefold: (a) We present
a new O(n)-time and O(n)-space algorithm for computing all minimal absent
words on a fixed-sized alphabet; (b) We show that this algorithm has the desir-
able property that, given the relevant indexing data structure at hand, the com-
putation of minimal absent words can be executed in parallel; and (c) We make
available an implementation of this algorithm for shared-memory multiprocess-
ing programming. Experimental results, using real and synthetic data, show that
the overall computation is accelerated by more than a factor of two compared to
the state of the art. By excluding the indexing data structure construction time,
we show that the implementation achieves near-optimal speed-ups. This is im-
portant as engineering further the involved indexing data structure construction
is an ongoing research topic [16], which is beyond the scope of this article.

2 Definitions and Notation

To provide an overview of our result and algorithm, we begin with a few defini-
tions from [3]. Let y = y[0]y[1] . . y[n−1] be a word of length n = |y| over a finite
ordered alphabet Σ of size σ = |Σ| = O(1). We denote by y[i . . j] = y[i] . . y[j]
the factor of y that starts at position i and ends at position j and by ε the empty
word, word of length 0. We recall that a prefix of y is a factor that starts at posi-
tion 0 (y[0 . . j]) and a suffix is a factor that ends at position n− 1 (y[i . . n− 1]),
and that a factor of y is a proper factor if it is not the empty word or y itself.

Let x be a word of length 0 < m ≤ n. We say that there exists an occurrence
of x in y, or, more simply, that x occurs in y, when x is a factor of y. Every
occurrence of x can be characterised by a starting position in y. Thus we say that
x occurs at the starting position i in y when x = y[i . . i+m−1]. Opposingly, we
say that the word x is an absent word of y if it does not occur in y. The absent
word x, m ≥ 2, of y is minimal if and only if all its proper factors occur in y.

We denote by SA the suffix array of y, that is the array of length n of the
starting positions of all sorted suffixes of y, i.e. for all 1 ≤ r < n, we have
y[SA[r− 1] . . n− 1] < y[SA[r] . . n− 1] [12]. Let lcp(r, s) denote the length of the

IV Carl Barton, Alice Heliou, Laurent Mouchard, and Solon P. Pissis

longest common prefix of the words y[SA[r] . . n− 1] and y[SA[s] . . n− 1], for all
0 ≤ r, s < n, and 0 otherwise. We denote by LCP the longest common prefix
array of y defined by LCP[r] = lcp(r − 1, r), for all 1 ≤ r < n, and LCP[0] = 0.
SA [14] and LCP [7] of y can be computed in time and space O(n).

In this article, we consider the following problem.

MinimalAbsentWords
Input: a word y on Σ of length n
Output: all tuples < a, (i, j) >, such that word x, defined by x[0] = a, a ∈ Σ,
and x[1 . .m− 1] = y[i . . j], m ≥ 2, is a minimal absent word of y

3 Algorithm pMAW

In this section, we present algorithm pMAW, a new O(n)-time and O(n)-space
algorithm for computing all minimal absent words of a word of length n using
arrays SA and LCP. We first start by explaining some useful properties from [15]
we use in algorithm pMAW. Then we present our algorithm in detail, and, finally,
we show how it can be adapted for parallel computing.

3.1 Useful Properties

A minimal absent word x[0 . .m − 1] of a word y[0 . . n − 1] is an absent word
whose proper factors all occur in y; equivalently, both the longest proper suffix
and prefix of x occur in y.

Definition 1. A repeated pair in a word y is a tuple < i, j,w > such that word
w occurs in y at starting positions i and j. A repeated pair is right (resp. left)
maximal, if y[i + |w|] 6= y[j + |w|] (resp. y[i − 1] 6= y[j − 1]) A repeated pair is
maximal if it is left maximal and right maximal.

Lemma 2 ([15]). If awb is a minimal absent word of a word y, where a and
b are letters and w a word, then there exist two positions i and j such that
< i, j,w > is a maximal repeated pair in y.

By Lemma 2, we can exhaustively compute minimal absent words by examining
all the maximal repeated pairs. To compute maximal repeated pairs, we consider
all right maximal repeated pairs and check the letters that occur just before.

Definition 3. Given the LCP array of a word of length n, we say that interval
[i, j], 0 ≤ i < j ≤ n− 1, is an LCP-interval of LCP-depth d if

– LCP[i] < d, and j = n− 1 or LCP[j + 1] < d
– LCP[k] ≥ d, for all i < k ≤ j
– LCP[k] = d, for at least one k, i < k ≤ j.

Right maximal repeated pairs are given by the suffix array with the notion of
LCP-interval. Indeed if positions i and j are in an LCP-interval of depth d then
< i, j, y[SA[i] . .SA[i] + d − 1] > is a right maximal repeated pair. Analogously,
if < i, j, w > is a right maximal repeated pair then i and j are in the same
LCP-interval of depth |w|.

Parallelising the Computation of Minimal Absent Words V

3.2 Computation of Minimal Absent Words

For the rest of this section we denote minimal absent words by maws. We first
pre-compute SA, LCP, and a bit-vector v such that v[i] = 1 if and only if
LCP[i] is a local maximum. We use rank and select data structures and de-
note by MaxRank(k) the operation giving the number of 1’s in [0 : k) and
by MaxSelect(k) the operation giving the position of the kth 1. The following
function presents maws computation for a given interval [k1, k2) of SA and LCP.

Function ComputeMaws (k1, k2, y, SA, LCP, MaxRank, MaxSelect)

SetLetter←∅; LifoPos.push(0); LifoSet.push(SetLetter);

foreach t ∈ [MaxRank(k1) + 1 : MaxRank(k2)] do

i←MaxSelect(t); left←i− 1; right←i + 1;

pos←LifoPos.top(); lpos←LCP[pos]; SetLetter←∅;
while 1 do

while pos > 0 and LCP[i] < lpos do

we pop from LifoPos the positions with an LCP value equal
to lpos; we pop their set of letters from LifoSet; we have
visited the whole LCP-interval of depth lpos, so we infer
maws using these sets and SetLetter; we update left and
right ; pos←LifoPos.top(); lpos←LCP[pos];

if LCP[i] > max(LCP[left], LCP[right], lpos) then

we have visited the whole LCP-interval of depth LCP[i], so
we infer maws with SetLetter, y[SA[i]−1], and y[SA[left]−1];

SetLetter←SetLetter ∪ {y[SA[i]− 1]};
if LCP[left] = LCP[i] or LCP[right] = LCP[i] then

LifoPos.push(i); LifoSet.push(SetLetter);

we push onto LifoPos all the successive neighbours of
interval (left,right) with an LCP value equal to LCP[i]; for
each of them we push onto LifoSet the letter preceding
their corresponding suffix; we update left and right ;

if LCP[right] ≤ LCP[left] < LCP[i] then i←left; left←i− 1;

else if LCP[right] > LCP[i] then we push onto stacks the
positions skipped and their corresponding set of letters; break;

else i←right; right←i + 1;

If i is a local maximum in the LCP array, then [i− 1, i] is the LCP-interval of
LCP-depth LCP[i] that contains i. Consequently our idea is to start the compu-
tation at the first local maximum of the LCP array and to visit the surrounding
positions in decreasing order of their LCP value. In this process we keep in the
array SetLetter the set of letters that occur before the repeated factor. When we
reach a local minimum we store its position on the SA array in the stack LifoPos,
and the current array SetLetter in the stack LifoSet. We will analyse them once
we have visited their whole LCP-interval. In this way, we consider each maximal

VI Carl Barton, Alice Heliou, Laurent Mouchard, and Solon P. Pissis

LCP

j

8
y[SA[j]− 1]LCPj suffixes

w
w
w
w
w
w
w
w
w

A T T T. . .k-1 11 T
C A A G. . .k 8 A
C C A A. . .k+1 9 G
C G C T. . .k+2 9 A
C G T A. . .k+3 10 A
C G T T. . .k+4 11 A
C T A C. . .k+5 9 T
C T G C. . .k+6 10 A
G C G G. . .k+7 8 T

step i left right SetLetter Inferred maws and action on stacks
1 k+4 k+3 k+5 ∅
2 k+3 k+2 k+5 {A}
3 k+2 k+1 k+5 {A} we push k+2, k+1, and k+5

onto LifoPos; we push SetLetter,
k k+6 {G}, and {T} onto LifoSet

4 k+6 k+5 k+7 ∅ we infer 2 maws: AwCTA, TwCTG

5 k+5 k+4 k+7 {A} k+5 is already in LifoPos
6 k+7 k+4 k+8 {A,T} we pop k+5, k+1, and k+2 from

LifoPos and {T}, {G}, {A} from LifoSet
k {A,G,T} we infer 7 maws: GwCA, TwCA,

AwCC, TwCC, GwCG, TwCG, GwCT

Fig. 1: Illustration of the algorithm step by step for the interval [k, k + 7). The
example is taken from the Lactobacillus casei genome (Accession #: NC010999).
w = TCTGAGCG is a common prefix of the considered suffixes and k = 2, 554, 910.

repeated pair and infer from them the whole set of maws using Lemma 2. An ex-
ample of this function is illustrated in Fig. 1. Contrary to MAW [3], the previous
linear-time algorithm, in pMAW we do not consider our data structures globally;
we rather consider each LCP-interval independently. This important property
will allow us to use parallel computations, as shown in Section 3.3.

Overall Complexity. We use arrays SA and LCP, which can be computed
in time and space O(n) [14, 7]. There also exists a representation which uses
n + o(n) bits of storage space and supports rank and select on a bit-vector of
size n in constant time [11]. We also use two stacks, LifoPos and LifoSet, where
we push and pop O(n) elements, each containing at most σ integers. Thus the
whole algorithm requires time and space O(σn). We obtain the following result.

Theorem 4. Algorithm pMAW solves problem MinimalAbsentWords in time
and space O(n).

The advantages of pMAW over existing works are as follows. It is (provably)
linear-time in the worst case as opposed to the one in [15]. Contrary to the linear-
time algorithm in [3], we explicitly compute the LCP-intervals. For a given depth,
LCP-intervals have no overlap, therefore we can consider them independently.

3.3 Parallelisation Scheme

Lemma 5. Let y be a word of length n over an alphabet of size σ and let ` be
the length of the shortest minimal absent word of y. Then the following hold:

– For all k ∈ [0, `− 2], |{s ∈ [0,n− 1] : LCP[s] = k}| = (σ − 1)σk + 1;
– For all k ∈ [`− 1,n− 1], |{s ∈ [0,n− 1] : LCP[s] = k}| < (σ − 1)σk + 1.

Proof. Let k ∈ [0, n− 1], we denote by s0, . . . , sm−1, ordered increasingly, the m
elements of the set {s ∈ [0, n − 1] : LCP[s] = k}. For all i ∈ [0,m − 1], we have
y[SA[si−1] . .SA[si−1]+k−1] = y[SA[si] . .SA[si]+k−1] and y[SA[si−1]+k] <
y[SA[si] + k]. We consider the pair (si, si+1) with i ∈ [0,m − 2], there are two
cases:

Parallelising the Computation of Minimal Absent Words VII

Compute arrays:
SA and LCP

Compute:
- positions of local maxima of LCP values
- the length ` of the shortest minimal absent word

S
eq

u
en

tia
l

p
a
rt

For each 0 ≤ ki < ki+1 ≤ n− 1 such that LCP[ki] = `− 3, LCP[ki+1] = `− 3, and for all s in (ki, ki+1), LCP[s] 6= `− 3

Go through [k0, k1],
compute maws

. . . Go through [ki, ki+1],
compute maws

. . . Go through [km−1, km],
compute maws

P
a
ra

llel
p

a
rt

Write the output

Fig. 2: Overview of Algorithm pMAW

– lcp(si, si+1) = k, so y[SA[si] . .SA[si] +k−1] = y[SA[si+1] . .SA[si+1] +k−1]
and y[SA[si − 1] + k] < y[SA[si] + k] ≤ y[SA[si+1 − 1] + k] < y[SA[si+1] + k].
The alphabet is of size σ; this can happen at most σ−2 times consecutively.

– lcp(si, si+1) < k, so y[SA[si] . .SA[si]+k−1] < y[SA[si+1] . .SA[si+1]+k−1].
There are σk different words of length k; this can happen at most σk − 1
times.

In the first case, we have an additional sub-case, when SA[si − 1] + k = n. Then
y[SA[si − 1] + k] is not a letter of the alphabet Σ, so we have one more position
with an LCP value equal to k. Thus, there are at most (σ− 1)σk pairs (si, si+1),
so there are at most (σ − 1)σk + 1 positions with an LCP value equal to k.

The equality holds if and only if all the words of length k+ 1 appear in y, so
only if k < `′ − 1 where `′ is the length of the shortest absent word. A minimal
absent word is an absent word so ` ≥ `′. Let x be a shortest absent word, then all
its proper factors occur in y because they are smaller than x, so x is a minimal
absent word. Therefore ` = `′, the equality holds if and only if k ∈ [0, `− 2]. ut

By Lemma 5, the length ` of the shortest minimal absent word of some word
of length n satisfies: ` − 1 = min{k ≥ 0 : |{s ∈ [0, n − 1] : LCP[s] = k}| <
(σ−1)σk +1}. As the alphabet is of size σ, there are σk distinct words of length
k, but a word y of length n has exactly n + 1 − k factors of length k. Thus,
if σk > n + 1 − k there are absent words of size k in y. Consequently we have
` ≤ logσ(n + 1 − `) < logσ(n). Thus, we compute `, the length of the shortest
minimal absent word, in one pass over the LCP array by counting the number
of positions having an LCP value equal to d, for all d ∈ [0, blogσ(n)c].

According to Lemma 2 we can ignore positions having an LCP value lower
than ` − 2 when computing minimal absent words. Hence, we focus on LCP-
intervals of LCP-depth above or equal to ` − 2: they are sufficient to exhaus-
tively compute the set of minimal absent words. Consequently we compute

VIII Carl Barton, Alice Heliou, Laurent Mouchard, and Solon P. Pissis

(a) Elapsed-time comparison

 1

 10

 100

 1000

10,000,000 100,000,000 1,000,000,000

P
ro

c
e

s
s
in

g
 t

im
e

 [
lo

g
 s

]

Sequence Length [bp]

MAW
pMAW -t 1
pMAW -t 2
pMAW -t 4
pMAW -t 8

pMAW -t 16

(b) Relative speed-up of pMAW

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 4 8 16

S
p

e
e

d
-u

p
 [

-]

Number of cores [-]

Optimal speed-up
pMAW speed-up for n = 1Gb

pMAW speed-up for n = 100Mb
pMAW speed-up for n = 10Mb

Fig. 3: Elapsed-time comparison of pMAW and MAW and relative speed-up of
pMAW for computing minimal absent words using synthetic DNA sequences

the set of positions ki with i in [0, (σ − 1)σ`−3] such that LCP[ki] = ` − 3.
[0, k0), [k0, k1), . . . , [km−1, km), [km, n), with m = (σ − 1)σ`−3, is a partition of
[0, n− 1]. This partition is such that, every LCP-interval of LCP-depth above or
equal to `− 2 is entirely included in one of the sub-intervals [ki, ki+1).

Therefore we can consider each one of these sub-intervals independently, and
thus parallelise the computation of minimal absent words. In each sub-interval
we go through the SA and LCP arrays starting at the first (from left to right)
local maximum and going down until we reach a local minimum, as described in
Section 3.2. For an overview of the algorithm pMAW inspect Fig. 2.

4 Experimental Results

We implemented algorithm pMAW as a programme to compute all minimal ab-
sent words of a given sequence. The programme was implemented in the C pro-
gramming language, using Open Multi-Processing (OpenMP) API for shared-
memory multiprocessing programming, and developed under GNU/Linux oper-
ating system. It takes as input arguments a file in (Multi)FASTA format and
the minimal and maximal length of minimal absent words to be outputted; and
then produces a file with all minimal absent words of length within this range
as output. There are additional input parameters; for example, the number t
of available processing elements. The implementation is distributed under the
GNU General Public License (GPL), and it is available at http://github.com/
solonas13/maw, which is set up for maintaining the source code and the man-
page documentation. The experiments were conducted on a Desktop PC using 1
to 16 cores of 2 Intel Xeon E5-2670V2 Ten-Core CPUs at 2.50GHz and 256GB
of main memory under 64-bit GNU/Linux.

To evaluate the efficiency of our implementation, we compared it against the
corresponding performance of MAW [3], which is currently the fastest available
implementation for computing minimal absent words. We generated three ran-

Parallelising the Computation of Minimal Absent Words IX

(a) Elapsed-time comparison

 1

 10

 100

 1000

 10000

 100000

Mus musculus
(2,647,521,431bp)

Homo sapiens
(2,937,639,113bp)

P
ro

c
e

s
s
in

g
 t

im
e

 [
lo

g
 s

]

Sequence [-]

MAW
pMAW -t 1
pMAW -t 2
pMAW -t 4
pMAW -t 8

pMAW -t 16

(b) Relative speed-up of pMAW

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 4 8 16

S
p

e
e

d
-u

p
 [

-]

Number of cores [-]

Optimal speed-up
pMAW speed-up for Homo sapiens genome
pMAW speed-up for Mus musculus genome

Fig. 4: Elapsed-time comparison of pMAW and MAW and relative speed-up of
pMAW for computing minimal absent words using real DNA sequences

dom sequences of length 10Mbp, 100Mbp, and 1Gbp, respectively, by using a
uniform frequency distribution of letters of the DNA alphabet. We computed
all minimal absent words of length at most 20 for each sequence. We considered
both the 5′ → 3′ and the 3′ → 5′ DNA strands. Fig. 3a depicts elapsed-time
comparisons of pMAW and MAW, including the sequential part of the algorithm.
pMAW becomes the fastest in all cases when t ≥ 2 accelerating the computation
by more than a factor of two when t = 16. Notice that the y-axis is on loga-
rithmic scale. The measured relative speed-up of pMAW is illustrated in Fig. 3b.
The relative speed-up was calculated as the ratio of the runtime of pMAW on
1 core to the runtime of pMAW on t cores, excluding the sequential part of the
algorithm. The results highlight the excellent scalability of pMAW when the let-
ters have a uniform frequency distribution in the sequence. In this case, pMAW
achieves near-optimal speed-ups, confirming our theoretical findings.

To further evaluate the efficiency of our implementation, we compared it
against the corresponding performance of MAW using real data. We consid-
ered the genomes of Homo sapiens and Mus musculus, obtained from the NCBI
database (ftp://ftp.ncbi.nih.gov/genomes/). We computed all minimal ab-
sent words of length at most 20 of the complete sequence of the Homo sapiens
(2, 937, 639, 113bp) and Mus musculus (2, 647, 521, 431bp) genomes—ignoring
unknown bases. We considered both the 5′ → 3′ and the 3′ → 5′ DNA strands.
Fig. 4a depicts elapsed-time comparisons of pMAW and MAW, including the
sequential part of the algorithm. pMAW becomes the fastest in all cases when
t ≥ 2 accelerating the computation by more than a factor of two when t = 16.
Notice that the y-axis is on logarithmic scale. The measured relative speed-up of
pMAW is illustrated in Fig. 4b. The relative speed-up was calculated as the ratio
of the runtime of pMAW on 1 core to the runtime of pMAW on t cores, excluding
the sequential part of the algorithm. The results highlight the good scalability
of pMAW with real data. The computation is accelerated by a factor of 10 when
t = 16. The maximum allocated memory was 137GB for both programmes.

X Carl Barton, Alice Heliou, Laurent Mouchard, and Solon P. Pissis

5 Final Remarks

The importance of our contribution here is underlined by the fact that any par-
allel algorithms for the construction of the involved indexing data structure can
be used directly to replace the sequential part of the algorithm proposed here
(see Fig. 2). This would result in a fully parallel algorithm for the computation
of minimal absent words. Our immediate target is to investigate the perfor-
mance of such an algorithm by using the parallel algorithms presented in [16]
for constructing the suffix array and the longest common prefix array.

References

1. Abboud, A., Williams, V.V., Weimann, O.: Consequences of faster alignment of
sequences. In: 41st ICALP, Part I. pp. 39–51. LNCS, Springer (2014)

2. Acquisti, C., Poste, G., Curtiss, D., Kumar, S.: Nullomers: Really a matter of
natural selection? PLoS ONE 2(10) (2007)

3. Barton, C., Heliou, A., Mouchard, L., Pissis, S.P.: Linear-time computation of
minimal absent words using suffix array. BMC Bioinformatics 15, 388 (2014)

4. Belazzougui, D., Cunial, F., Kärkkäinen, J., Mäkinen, V.: Versatile succinct rep-
resentations of the bidirectional Burrows-Wheeler transform. In: 21st ESA. pp.
133–144. LNCS, Springer (2013)

5. Chairungsee, S., Crochemore, M.: Using minimal absent words to build phylogeny.
Theoretical Computer Science 450(0), 109–116 (2012)

6. Crochemore, M., Mignosi, F., Restivo, A.: Automata and forbidden words. Infor-
mation Processing Letters 67, 111–117 (1998)

7. Fischer, J.: Inducing the LCP-Array. In: Dehne, F., Iacono, J., Sack, J.R. (eds.)
12th WADS. LNCS, vol. 6844, pp. 374–385. Springer (2011)

8. Garcia, S.P., Pinho, A.J.: Minimal Absent Words in Four Human Genome Assem-
blies. PLoS ONE 6(12) (2011)

9. Garcia, S.P., Pinho, O.J., Rodrigues, J.M.O.S., Bastos, C.A.C., G, P.J.S.: Minimal
absent words in prokaryotic and eukaryotic genomes. PLoS ONE 6 (2011)

10. Haubold, B., Pierstorff, N., Möller, F., Wiehe, T.: Genome comparison without
alignment using shortest unique substrings. BMC Bioinformatics 6, 123 (2005)

11. Jacobson, G.: Space-efficient static trees and graphs. In: 30th SFCS. pp. 549–554.
SFCS ’89, IEEE Computer Society (1989)

12. Manber, U., Myers, E.W.: Suffix arrays: A new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993)

13. Mignosi, F., Restivo, A., Sciortino, M.: Words and forbidden factors. Theoretical
Computer Science 273(1-2), 99–117 (2002)

14. Nong, G., Zhang, S., Chan, W.H.: Linear suffix array construction by almost pure
induced-sorting. In: DCC 2009. pp. 193–202. IEEE Computer Society (2009)

15. Pinho, A.J., Ferreira, P.J.S.G., Garcia, S.P.: On finding minimal absent words.
BMC Bioinformatics 11 (2009)

16. Shun, J.: Fast parallel computation of longest common prefixes. In: SC 2014. pp.
387–398. IEEE Computer Society (2014)

17. Silva, R.M., Pratas, D., Castro, L., Pinho, A.J., Ferreira, P.J.S.G.: Three minimal
sequences found in ebola virus genomes and absent from human DNA. Bioinfor-
matics (2015)

18. Wu, Z.D., Jiang, T., Su, W.J.: Efficient computation of shortest absent words in a
genomic sequence. Information Processing Letters 110(14-15), 596 – 601 (2010)

