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Abstract

Small-sample properties of a nonparametric estimator of conditional quantiles based on

optimal quantization, that was recently introduced (J. Statist. Plann. Inference, 156,

14–30, 2015), are investigated. More precisely, (i) the practical implementation of this

estimator is discussed (by proposing in particular a method to properly select the cor-

responding smoothing parameter, namely the number of quantizers) and (ii) its finite-

sample performances are compared to those of classical competitors. Monte Carlo studies

reveal that the quantization-based estimator competes well in all cases and sometimes

dominates its competitors, particularly when the regression function is quite complex. A

real data set is also treated. While the main focus is on the case of a univariate covariate,

simulations are also conducted in the bivariate case.

Keywords: Conditional quantiles, Optimal quantization, Nonparametric regression.

1. Introduction

Quantile regression is used to quantify the relationship between a univariate response

variable Y and a d-dimensional covariate X. Since the conditional mean only models the

average relationship between these, standard (mean) regression is way less informative

1For the interpretation of the references to color in some of the figures, the electronic version of the
paper should be consulted.
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than quantile regression, that provides a more complete picture of conditional distribu-

tions: quantile regression may indeed capture heteroscedasticity, conditional asymmetry,

etc. Conditional quantiles allow to construct reference hypersurfaces (curves if the co-

variate is univariate) and conditional prediction intervals, hence are widely used in many

different areas, including medicine, economics or lifetime analysis.

Quantile regression was first introduced by Koenker and Bassett (1978) in a linear

framework. Throughout this paper, we consider quantile regression in the more gen-

eral nonparametric regression setting. Many methods have been proposed to estimate

conditional quantiles in this context. In particular, nearest-neighbor estimators were in-

vestigated in Bhattacharya and Gangopadhyay (1990), and local linear and double-kernel

approaches were considered in Yu and Jones (1998). Koenker et al. (1994) and He et al.

(1998) developed spline-based methods, while Lee (2003), Horowitz and Lee (2005) or

Belloni et al. (2011) focused on global nonparametric series methods. Many other esti-

mators have also been investigated; we refer to, e.g., Chaudhuri (1991), Fan et al. (1994),

Hallin et al. (2009), Gannoun et al. (2002) or Yu et al. (2003), and to Koenker (2005)

for a review.

In this work, we consider the problem of estimating, in a nonparametric way, the

conditional quantiles of a scalar response variable Y with respect to a d-dimensional

covariate X. The theoretical properties of the method we will focus on were actually

derived in a more stringent setup under which

Y = m(X, ε), (1.1)

where ε is a random error term that is independent of X. It is further assumed that

both X and ε are absolutely continuous and that the function (x, z) 7→ m(x, z) is of

the form m1(x) + m2(x)z, where m1(·) : Rd → R and m2(·) : Rd → R+
0 are Lipschitz

functions. In practice, both this link function m and the distribution of ε are unspecified,

so that the conditional distribution of Y given X = x is unknown. Therefore it needs to

be estimated by using a random sample (X1, Y1), . . . , (Xn, Yn) from (1.1). All consistent

estimators of conditional quantiles in this context require some localization or penaliza-

tion technique; four of the most classical estimators, that are used as competitors to our

own approach in the sequel, are described in Section 4.1.

The method we will focus was introduced in Charlier, Paindaveine, and Saracco (2015)
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— hereafter, CPS15 — and performs localization through optimal quantization, a con-

cept that projects the covariates Xi, i = 1, . . . , n onto a finite grid of N quantizers. This

projection of the Xi’s proceeds according to their belongings to appropriate Voronoi cells

that are partitioning the covariate space Rd (see Pagès (1998) for more details on this

Voronoi partition). The CPS15 estimator can therefore be viewed as a nonparametric

partitioning regression estimator. Partitioning ideas were already used in the construc-

tion of least square estimators; see, e.g., Györfi et al. (2002) for a complete overview and

Kohler et al. (2006) or Cattaneo and Farrell (2013) for more recent results.

Now, the emphasis in CPS15 was almost exclusively on theoretical aspects; the main

results there (i) are quantifying how well quantization allows to approximate conditional

quantiles as N grows and (ii) are providing the convergence in probability of a sample

quantization-based conditional quantile to its population version (see (2.3) and (2.4)

below, respectively). Practical implementation, however, was barely touched in CPS15,

and finite-sample performances were not investigated. The goal of the present work is to

extensively cover these crucial aspects.

The outline of the paper is as follows. For the sake of completeness, we describe

in Section 2 the concept of optimal quantization and the quantization-based estimators

from CPS15. Then we discuss in Section 3 the choice of the number N of quantizers,

that, in the nonparametric setup considered, plays the role of a smoothing parameter. In

Section 4, we compare our estimator with well-known nonparametric estimators of condi-

tional quantiles, namely (see Section 4.1) quantile regression splines, k nearest-neighbor

(kNN) estimators, and (kernel) local linear/constant estimators. The comparison is based

on visual inspection of estimated conditional quantile curves (Section 4.2) and on empir-

ical integrated squared errors (Section 4.3). We provide a real data example in Section 5

and investigate, in Section 6, the case where the number d of covariates is larger than

one. We conclude with a summary and some final comments in Section 7.

2. Conditional quantiles through optimal quantization

2.1. Quantization-based approximations of conditional quantiles

Let X be a random d-vector defined on a probability space (Ω,F , P ), such that the

L2-norm ‖X‖ = (E[|X|2])1/2 is finite (here, |·| denotes the Euclidean norm). For any fixed
3



positive integer N , quantization replaces X with the discrete vector X̃γN = ProjγN (X)

obtained by projecting X onto an N -grid γN of Rd (so that γN ∈ (Rd)N ). Optimal

quantization is achieved if the grid minimizes the quantization error ‖X − X̃γN ‖. In the

sequel, X̃N will denote the approximation obtained by projecting X onto an arbitrary

optimal N -grid (unlike existence, unicity does not always hold; see Pagès (1998)). Of

course, it is expected that this approximation becomes arbitrarily precise as N increases

to infinity, which is confirmed by the fact that

‖X − X̃N‖ = O(N−1/d) as N →∞; (2.1)

see, e.g., Graf and Luschgy (2000).

Denoting by IA the indicator function of the set A, consider the well-known check

function z 7→ ρα(z) = z(α−I[z<0]) = −(1−α)zI[z<0] +αzI[z≥0]; see Koenker and Bassett

(1978). In a regression context involving the scalar response Y and the (continuous)

covariate d-vector X, this function allows to characterize the conditional α-quantile qα(x)

of Y given X = x as qα(x) = arg mina∈R E
[
ρα(Y − a)|X = x

]
. In this context, CPS15

proposed approximating qα(x) by

q̃Nα (x) = arg min
a∈R

E
[
ρα(Y − a)|X̃N = x̃

]
, (2.2)

where x̃ denotes the projection of x onto the optimal N -grid γN defining X̃N ; here, N is a

fixed integer whose choice in practice will be discussed below. CPS15 proved that, under

mild regularity assumptions, there exists a constant C such that ‖q̃Nα (X) − qα(X)‖ ≤

C‖X̃N −X‖1/2 for N sufficiently large, which, in view of (2.1), implies that

‖q̃Nα (X)− qα(X)‖ = O(N−1/2d) as N →∞. (2.3)

Since pointwise results are also appealing in quantile regression, they further showed that

q̃Nα (x)→ qα(x) as N →∞, uniformly in x (in the support SX of X).

2.2. Quantization-based estimators of conditional quantiles

In real data applications, independent copies (X1, Y1), . . . , (Xn, Yn) of (X,Y ) are

available, and we have to define a sample version, q̂N,nα (x) say, of the quantization-based

population quantile q̃Nα (x). As described in CPS15, this can be achieved in the following

two steps :
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(S1) First, an optimal grid is obtained by making use of the CLVQ algorithm described

below, with n iterations (based on ξt = Xt, t = 1, . . . , n) and an initial N -grid X0

that results from sampling randomly among the Xi’s without replacement under

the constraint that an x-value cannot be picked more than once;

(S2) letting X̂N,n
i = Projγ̂N,n(Xi), i = 1, . . . , n, and x̂N,n = Projγ̂N,n(x), where γ̂N,n =

(x̂N,n1 , . . . , x̂N,nN ) is the optimal grid obtained in (S1), the proposed empirical con-

ditional quantile q̂N,nα (x) is the sample α-quantile of the Yi’s whose correspond-

ing X̂N,n
i is equal to x̂N,n. Throughout, we will use the sample quantile concept

that is associated with the default value 7 of the type argument in the R function

quantile.

It was shown in CPS15 that, for any fixed N and x,

q̂N,nα (x)
P→ q̃Nα (x), as n→∞. (2.4)

In other words, the empirical conditional quantile q̂N,nα (x) is weakly consistent for

the — as we have seen, arbitrarily good — approximation q̃Nα (x) of the true conditional

quantile qα(x). In principle, the convergence q̃Nα (x) − qα(x) → 0 as N → ∞ could be

combined with (2.4) to provide an asymptotic result stating that, if N = Nn goes to

infinity in an appropriate way, then q̂Nn,nα (x)− qα(x)
P→ 0 as n → ∞. Proving formally

such a result, however, is extremely difficult, since all convergence results for the CLVQ

algorithm below are as n → ∞ with N fixed. In any case, this is of academic interest

only; in practice, indeed, the sample size n is of course fixed and the user needs to choose

appropriately the size N of the quantization grid. We later on propose a method that

allows to choose this smoothing parameter N by achieving a bias-variance trade-off (see

the discussion of Figure 1 below).

The so-called Competitive Learning Vector Quantization (CLVQ) algorithm, that pro-

vides an optimal grid in (S1) above, is a stochastic gradient algorithm that proceeds as fol-

lows. Let (ξt)t∈N0
, with N0 = {1, 2, . . .}, be a sequence of mutually independent random

d-vectors that are all distributed as the vector X subject to quantization, and let (δt)t∈N0

be a deterministic sequence in (0, 1) such that
∑∞
t=1 δt = +∞ and

∑∞
t=1 δ

2
t < +∞.

Starting from an initial N -grid X0 = x0, with pairwise distinct components, the CLVQ
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algorithm recursively defines the grid Xt, t ≥ 1, as

Xt = Xt−1 − δt
2
∇xd2

N (Xt−1, ξt), (2.5)

where ∇xd2
N (x, ξ) stands for the gradient with respect to the x-argument of the so-called

local quantization error d2
N (x, ξ) = min1≤i≤N |xi − ξ|2, with x = (x1, . . . , xN ) ∈ (Rd)N

and ξ ∈ Rd. For any ξ, the ith component of this gradient is

(
∇xd2

N (x, ξ)
)
i

= 2 (xi − ξ) I[xi=Projx(ξ)], i = 1, . . . , N.

The grids Xt−1 and Xt thus only differ by one point, namely the one corresponding

to the non-zero component of the gradient above; see, e.g., Pagès (1998) or Pagès and

Printems (2003) for details.

In the sequel, we will write throughout that the grids provided by the CLVQ algorithm

are optimal. Strictly speaking, though, the grid γ̂N,n resulting from this algorithm, for

any fixed n, does not minimize the quantization error, hence is not optimal. Yet it is

shown in Pagès (1998) that, under mild assumptions, γ̂N,n converges to an optimal grid

as the number of iterations (here, the sample size n) tends to infinity (with N fixed).

Clearly, only moderate-to-large values of n are expected to provide good approximations

of genuine optimal N -grids.

We end this section by quickly evaluating the performances of the CLVQ algorithm,

both for d = 1 and d = 2. To do so, we generated, for the various combinations of n

and N considered in Table 1, 50 mutually independent random samples of size n from the

uniform distribution over [−2, 2]d and performed in each case the CLVQ algorithm with

the corresponding value of N . For each (n,N), this leads to 50 CPU times to completion

and 50 sample quantization errors

e =

√√√√ 1

n

n∑
i=1

(
Xi − Projγ̂N,n(Xi)

)2
. (2.6)

Table 1 reports the corresponding averaged CPU times, along with the averages and

standard deviations of the various collections of 50 quantization errors. Since the number

of iterations of the algorithm is equal to n, it is no surprise that the error decreases with n

while the computation time increases with n.
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d = 1 and N = 15 d = 2 and N = 30

n = 100 n = 1, 000 n = 10, 000 n = 200 n = 5, 000 n = 20, 000

CPU 0.012 0.116 1.145 0.556 0.883 3.468

AVE[e] 0.132 0.0993 0.0843 0.364 0.322 0.315

SD[e] 0.0196 0.0115 0.00657 0.0315 0.0130 0.00835

Table 1: Averaged computation times (CPU, in seconds) dedicated to the CLVQ algorithm with grid

size N , along with the averages (AVE[e]) and standard deviations (SD[e]) of the sample quantization

errors in (2.6), obtained from 50 independent samples of size n; see Section 2.2 for details.

2.3. Bootstrapped quantization-based estimators of conditional quantiles

As explained in CPS15, it is more appropriate in practice to use a bootstrap version

of the estimator q̂N,nα (x), particularly so for small to moderate values of n. Obtaining

bootstrapped quantization-based estimators can be achieved in the following two steps :

(S̄1) We first generate B(∈ N0) samples of size n from the original sample with replace-

ment. Performing (S1) on each of them leads to B optimal grids;

(S̄2) each grid obtained in (S̄1) then yields, through (S2), an estimator q̂(b)
α (x) = q̂

(b),N,n
α (x),

b = 1, . . . , B, obtained from the projection of the original sample {(Xi, Yi), i =

1, . . . , n} on the corresponding grid.

The resulting bootstrap estimator q̄N,nα,B (x) is

q̄N,nα,B (x) =
1

B

B∑
b=1

q̂(b)
α (x). (2.7)

In the sequel, the notation B = 1 means that no bootstrap is performed.

Figure 1 provides an illustration of the original estimator q̂N,nα (x) and its bootstrap

version q̄N,nα,B (x) (with B = 50). Based on a random sample of size n = 500 from the

model

Y = X2 + ε, (2.8)

where X = 4Z − 2 (with Z ∼ Beta(0.3, 0.3)) and ε ∼ N (0, 1) are independent, we

evaluated both q̂N,nα (x) and q̄N,nα,B (x) forN = 10, 25, and 50 (actually, these were evaluated

only at 300 equispaced points between the minimum and maximum values ofX1, . . . , Xn).

Clearly, the bootstrap significantly smooths all curves. This happens provided that B is
7
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Figure 1: Estimated conditional quantile curves x 7→ q̂N,nα (x) (left) and their bootstrap counterparts x 7→

q̄N,nα,B (x) for B = 50 (right), based on N = 10 (top), N = 25 (middle), and N = 50 (bottom). In all

cases, the sample size is n = 500, and the quantile orders considered are α = 0.05 (red), 0.25 (orange),

0.5 (green), 0.75 (orange), and 0.95 (red); see (2.8) for the data generating model.
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not too small. But of course, B should not be taken very large, as it would increase the

computational burden (in the sequel, we use B = 50 throughout).

Figure 1 also shows that the number N of quantizers has an important impact on

the resulting quantile curves. For small N (N = 10), the curves show a large bias

and a small variability. For larger N (N = 50), the bias is smaller but the variability

is larger (with or without bootstrap). This bias-variance trade-off is standard in the

selection of a smoothing parameter. The intermediate value N = 25, that achieves a

nice balance between those two extreme cases, was actually obtained from an original

N -selection method we describe in Section 3 below. This method to choose N , along

with the computation of the (bootstrap or non-bootstrap) quantization-based estimators

of conditional quantiles under investigation, are entirely implemented in a package R

called QuantifQuantile, that is available on the CRAN.

3. Data-driven selection of N

In this section, we first define (Section 3.1) a natural integrated square error (ISE)

quantity that is essentially convex in N , hence allows to identify an optimal value Nopt

for N . ISEs involve the true unknown conditional quantiles, so that Nopt cannot be

obtained from the data. We therefore propose (Section 3.2) a data-driven selection

method for N obtained by replacing the true ISEs with bootstrap versions. We then

investigate how close the resulting N̂opt is to Nopt.

3.1. Infeasible selection of N

For any fixed N , we can consider the ISEs (recall that SX denotes the support of X)∫
SX

(
q̂N,nα (x)− qα(x)

)2
dx and

∫
SX

(
q̄N,nα,B (x)− qα(x)

)2
dx,

associated with the non-bootstrap and bootstrap estimators, respectively. These can be

approximated by

ISEˆ
α,J(N) =

1

J

J∑
j=1

(
q̂N,nα (xj)−qα(xj)

)2 and ISE¯
α,B,J(N) =

1

J

J∑
j=1

(
q̄N,nα,B (xj)−qα(xj)

)2
,

where x1, . . . , xJ are equispaced between the minimum and maximum values ofX1, . . . , Xn.

It is of course natural to consider optimal a value of N that minimizes these ISEs, which
9



leads to considering

Nˆ
α,J;opt = arg min

N∈N0

ISEˆ
α,J(N) and N¯

α,B,J;opt = arg min
N∈N0

ISE¯
α,B,J(N).

These optimal N -values may depend on α, which explains the notation. The dependence

on J of these ISEs and of optimal N -values is way less crucial than their dependence

on α and B; accordingly, we simply write ISEˆ
α(N), ISE¯

α,B(N), Nˆ
α;opt and N¯

α,B;opt in

the sequel.

To illustrate these definitions, we generated mutually independent random samples

of size n = 300 according to the models

(M1) Y = 1
5X

3
1 + ε,

(M2) Y = f(X2) + ε′,

where X1 = 6Z1 − 3 (with Z1 ∼ Beta(0.3, 0.3)), X2 = 3Z2 − 1.5 (with Z2 ∼ Beta(2, 2)),

ε ∼ N (0, 1), and ε′ ∼ χ2
2 are mutually independent. Denoting the standard normal

density as ϕ, the link function f is defined as f(x) = 1
2 ϕ(x) + 10

∑3
`=1(0.2)`ϕ(10(x −

`
2 + 1)), a choice that is inspired by Marron and Wand (1992). Obviously, qα(x) =

x3

5 +Φ−1(α) for (M1) and qα(x) = f(x)+Ψ−1
2 (α) for (M2), where Φ and Ψ2 denote the

cumulative distribution functions of the N (0, 1) distribution and of the χ2
2 distribution,

respectively. We evaluated the ISEs above with J = 300 points. Figure 2 focuses on

Model (M1). Its top panels plot the graphs of N 7→ ISEˆ
α(N) and N 7→ ISE¯

α,B(N)

(with B = 50) for a single sample, while the bottom panels plot the corresponding

graphs averaged (pointwise in x) over m = 500 mutually independent samples. For the

sake of brevity, Figure 3, that is related to Model (M2), only reports the corresponding

plots for bootstrapped estimators (still with B = 50).

Figures 2-3 show that ISE curves are indeed essentially convex in N : while random

variability prevents perfect convexity for a single sample, the smoothest case based on

500 replications with q̄N,nα,B leads to strictly convex I(M)SE curves. Besides, these curves

are quite flat in a neighborhood of Nˆ
α;opt or N¯

α,B;opt, so that picking a value of N that

is close to (but not exactly equal to) the optimal N -value will not have an important

impact on the resulting ISE values. It seems that, as expected, Nˆ
1−α;opt = Nˆ

α;opt

and N¯
1−α,B;opt = N¯

α,B;opt when the error ε has a symmetric distribution. In contrast,

asymmetric errors (Figure 3) lead to optimal values of N that are not symmetric in α
10
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Figure 2: Plots of the mappings N 7→ ISEˆ
α(N) (top left) and N 7→ ISE¯

α,B(N) with B = 50 (top right)

for a random sample of size n = 300 from Model (M1). The bottom panels report the corresponding

plots obtained by averaging these mappings over m = 500 mutually independent random samples (all

mappings are actually only evaluated at N = 5, 6, 7, . . . , 29, 30, 35, 40, . . . , 150).
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Figure 3: The same plots as in the right panels of Figure 2, but for Model (M2).

and depend more strongly of α.

To conclude this section, we stress that the existence of such an optimal value of N

does not contradict the theoretical results from Section 2. One might indeed have guessed

from (2.3) that the ISE functions above would be monotone decreasing (rather than con-

vex) in N . The result in (2.3), however, (i) involves the population quantile approxima-

tion q̃Nα (x) and not its sample counterpart q̂N,nα (x), and (ii) requires that the projection,

for any N , is performed on an optimal quantization grid. As pointed out earlier, the

CLVQ algorithm provides a good approximation of an optimal grid only if the number

of iterations, that is equal to the sample size n, is large compared to N . Consequently,

in the present setup where the sample size n is fixed, increasingly large values of N will

result into CLVQ grids that are less and less optimal, which explains the increasing ISE

values for such values of N .

3.2. Data-driven selection of N

In practice, the population conditional quantile function qα(·) is unknown, so that

it is impossible to obtain optimal N -values by minimizing ISEˆ
α(N) and ISE¯

α,B(N) as

above. We then propose the following approach that consists in replacing the unknown

12



quantile qα(x) by a bootstrap estimate (see Efron (1982) for more details on such meth-

ods).

Consider a grid {x1 = X(1), x2, . . . , xJ−1, xJ = X(n)} of equispaced points between

the minimal and maximal observed X-values. We generate B̃ bootstrap samples of size n

from X1, . . . , Xn and use them as stimuli (that is, as the ξt’s) in the CLVQ algorithm,

which provides B̃ resulting quantization grids. We then consider

ÎSE
ˆ

α,B̃,J(N) =
1

J

J∑
j=1

(
1

B̃

B̃∑
b̃=1

(
q̂N,nα (xj)− q̂(b̃)

α (xj)
)2)

and

ÎSE
¯

α,B,B̃,J(N) =
1

J

J∑
j=1

(
1

B̃

B̃∑
b̃=1

(
q̄N,nα,B (xj)− q̂(b̃)

α (xj)
)2)

, (3.1)

where q̂(b̃)
α (xj), b̃ = 1, . . . , B̃, stands for the estimator from (S2) in Page 5 computed

from the original sample (X1, Y1), . . . , (Xn, Yn) and the b̃th grid obtained above. Evalu-

ating ÎSE
¯

α,B,B̃,J(N) thus requires generating B + B̃ bootstrap samples of size n : B for

the construction of q̄N,nα,B (xj), and B̃ to obtain q̂(b̃)
α (xj), b̃ = 1, . . . , B̃. These sample ISEs

are to be minimized in N . Since not all values of N can be considered in practice, we

rather consider

N̂ˆ
α,B̃,J;opt

= arg min
N∈N

ÎSE
ˆ

α,B̃,J(N) and N̂¯
α,B,B̃,J;opt

= arg min
N∈N

ÎSE
¯

α,B,B̃,J(N),

where the cardinality of N (⊂ N0) is finite (and may be chosen as a function of n). As

for their infeasible counterparts, we will not stress in the sequel the dependence on J in

these sample ISEs and optimal N -values, nor the dependence on B̃, that we choose equal

to 30 throughout.

Figure 4 plots the mappings N 7→ ÎSE
ˆ

α(N) and N 7→ ÎSE
¯

α,B(N) and, for the sake of

comparison, the (infeasible) mappings N 7→ ISEˆ
α(N) and N 7→ ISE¯

α,B(N), in the setup

of Model (M1) with sample size n = 300 (more precisely, the average of the corresponding

plots, over 500 mutually independent random samples, are showed there). It is seen that,

for large N , the (averaged) sample ISE functions quite poorly estimate their theoretical

versions. Our primary interest, however, rather is in the agreement of the corresponding

argmins, which are associated with the feasible or infeasible optimal N -values. In that

respect, the results show that the values of N minimizing the sample ISE functions tend
13
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Figure 4: Plots of the mappings N 7→ ISEˆ
α(N) (top left), N 7→ ISE¯

α,B(N) with B = 50 (top right),

and of the sample mappings N 7→ ÎSE
ˆ

α(N) with B̃ = 30 (bottom left), N 7→ ÎSE
¯

α,B(N) with B̃ = 30

and B = 50 (bottom right), averaged over 500 mutually independent random samples from Model (M1)

with sample size n = 300.
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to over-estimate the optimal N -values, with a bias of about 10. Note that this bias is

not alarming since Figure 2 shows that virtually the same performances in terms of ISE

are obtained with or without bias (particularly so for intermediate values of α). Finally,

we point out that, when considering a single sample (instead of 500 replications), the

estimated optimal N -value stays in the same interval (the plots are not provided here).

To sum up, the above simulation results suggest that the sample ISE functions allow

us to obtain a data-driven value of N that, for all practical purposes, is as satisfactory

as the infeasible optimal N -value based on the original ISE functions. Note that, in

a nonparametric framework, the smoothing parameter is often rather selected by min-

imizing the mean square error of the estimator at hand. In the context of this paper,

however, deriving explicit expressions of the bias and variance (or standard errors) of

quantization-based quantile estimators turns out to be extremely challenging. The main

reason is that the randomness of observations appears twice in the definition of these

estimators : (i) when obtaining the quantization grid (through the CLVQ algorithm,

on which few theoretical results are available) and (ii) when calculating the empirical

quantile of the selected observations. This explains why we need to rely on the selection

procedure described in this section.

4. Comparison with some classical competitors

The aim of this section is to investigate how the proposed estimator of conditional

quantile behaves compared to its main competitors, that are introduced in Section 4.1.

We both compare the estimated quantile curves themselves (Section 4.2) and the respec-

tive ISEs, averaged over m = 500 mutually independent random samples (Section 4.3).

4.1. The competitors considered

The first competing estimator we consider is associated with quantile regression spline

methods; see Koenker et al. (1994). More precisely, this estimator, q̂ sp
α , say, is defined as

q̂ sp
α = q̂ sp

α,λ = arg min
g∈G

{ n∑
i=1

ρα(Yi − g(Xi)) + λP (g)

}
,

where λ is a nonnegative real number, G is an appropriately chosen space of functions,

and the penalty P (g) =
∫ 1

0
|g′′(x)| dx is the total variation of the first derivative of g.
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It is well-known that q̂ sp
α is always piecewise linear. As usual in penalization methods,

λ governs the trade-off between fidelity to the sample and smoothness of the resulting

estimator. Several methods to select an appropriate value of λ are available in the

literature. Below, we will use the AIC criterion, which selects the value λ = λ̂α;opt

minimizing

AIC(λ) = log

[
1

n

∑
i

ρα
(
Yi − ĝλ(Xi)

)]
+
pλ
n
,

where pλ is the number of knots defining the spline. The reader can refer to Koenker et al.

(1994) and Koenker and Mizera (2004) for more details on how to choose λ (or G). When

implementing this method, we used the rqss function from the R package quantreg to

compute q̂ sp
α and performed the λ-selection via the R function AIC (the package quantreg

does not propose an automatic λ-selection procedure).

Another competitor is the kNN estimator, which is defined as follows; see Bhat-

tacharya and Gangopadhyay (1990). For any integer k ∈ {1, . . . , n}, this estimator,

q̂kα;kNN(x) say, is defined as the α-quantile of Y1, . . . , Yk after permuting the observa-

tions (Xi, Yi), i = 1, . . . , n in such a way that |Xi − x| is increasing in i. In other

words, q̂kα;kNN(x) is the α-quantile of the Yi’s associated with the k Xi’s that are closest

to x. There does not seem to exist an efficient and well-accepted data-driven method to

choose k in the literature. In the sequel, we throughout considered the kNN estimator

q̂α;kNN(x) = q̂
kα;opt

α;kNN(x),

with

kα;opt = arg min
k∈K

1

J

J∑
j=1

(
q̂kα;kNN(xj)− qα(xj)

)2
,

where {x1, . . . , xJ} is chosen as in Section 3.2 and K denotes some set of possible values

for k. Clearly, k cannot be chosen this way in practice since the theoretical quan-

tiles qα(xj) are unknown. To the best of our knowledge, no R package allows to com-

pute q̂α;kNN(x) and we therefore wrote our own implementation to conduct the simula-

tions below.

The last estimators we consider are the kernel (local linear or local constant) estima-

tors introduced in Yu and Jones (1998). The local linear estimator is of the form q̂α;YJ(x) =

16



â, with

(â, b̂) = arg min
(a,b)∈R×R

n∑
i=1

ρα
(
Yi − a− b(Xi − x)

)
K

(
Xi − x
h

)
,

where K is a kernel function and h is the bandwidth. In the sequel, K will be the

standard normal density, and we choose

h = ĥα;opt =
α(1− α)(

ϕ(Φ−1(α))
)2 hmean,

where ϕ and Φ are respectively the standard normal density and distribution functions,

and where hmean is the optimal choice of h for mean regression, selected through cross-

validation; see Yu and Jones (1998). The local constant version of this estimator is

defined as q̂α;YJc(x) = â, with

â = arg min
a∈R

n∑
i=1

ρα
(
Yi − a

)
K

(
Xi − x
h

)
,

whereK and h will throughout be chosen as for the local linear estimator. As for q̂α;kNN(x),

the simulations below are based on our own R implementation of q̂YJ
α (x) and q̂YJc

α (x).

4.2. Comparison of estimated quantile curves

We now compare our quantization-based estimators with their competitors described

above. Since we saw in Section 2.3 that the bootstrap estimators q̄N,nα,B are to be favored

over their original versions q̂N,nα , we restrict to q̄N,nα,B below, with the corresponding data-

driven value of N , namely N̂¯
α,B;opt, that was proposed in Section 3.2. In this section, we

also do not consider the local constant estimator q̂YJc
α (x) since the results in Section 4.3

below show that it is usually outperformed by its local linear version in terms of ISEs.

We start the comparison by investigating estimated quantile curves computed from n

independent observations generated according to the models

(M1) Y = 1
5X

3
1 + ε,

(M2) Y = f(X2) + ε′,

(M3) Y = sin(X3) +
(
0.5 + 1.5 sin2(π2X3)

)
ε,

where X1 = 6Z1 − 3 (with Z1 ∼ Beta(0.3, 0.3)), X2 = 3Z2 − 1.5 (with Z2 ∼ Beta(2, 2)),

X3 = 6Z2 − 3, ε ∼ N (0, 1), and ε′ ∼ χ2
2 are mutually independent. The link function f

is the same as in Section 3.1. For n = 300, the resulting estimated quantile curves are
17



plotted in Figures 5-7 for Models (M1)-(M3), respectively. For the sake of comparison,

Figure 8 provides the results for Model (M1) and n = 1, 000.

The quantization-based quantile curves are smooth and adapt well to the polynomial

or more complex nature of the link function at hand. In contrast, while the piecewise

linear curves obtained from the spline estimator are beneficial for polynomial link func-

tions (see Figure 5), they hurt for more complex link functions (Figure 6, e.g., shows that

the spline-based curves miss some of the underlying bumps). The curves resulting from

kNN estimation are relatively close to the theoretical ones in each model, but show some

peaks or constant pieces, hence are less pleasant from a visual point of view. Eventually,

the curves associated to q̂YJ
α (x) lack smoothness for medium values of the covariate in

Figure 5 (further numerical experiments, not reported here, reveal that this follows from

the non-uniform covariate distribution). Also, the local linear estimator q̂YJ
α (x) does not

catch correctly the link function in Figure 7.

The values of the various tuning parameters are given in Table 2. For the sake of

brevity, we only comment on the results for Model (M2). We see that the optimal

value for N decreases with α, which is due to the chi-square error term, that implies

that estimation of conditional α-quantiles should be based on increasingly many data

points as α grows. In accordance with this, the optimal number of neighbours kα;opt

in kNN estimation increases with α. Such a monotonic pattern is not observed for the

bandwidth ĥα;opt used in kernel estimators since it is chosen such a way that ĥα;opt =

ĥ1−α;opt. Finally, the parameter λ̂α;opt, that is a monotone decreasing function of the

number of knots of the splines, is related to α in a quite unclear fashion.

4.3. Comparison of the ISEs

Obtaining well-behaved curves is of course desirable, particularly so in applied statis-

tics, but this should not be achieved at the expense of efficiency. That is why we now

compare the various estimators in terms of ISEs. To do so, we generated 500 independent

samples from Models (M1)-(M3) with sample sizes n = 300 and n = 1, 000. In each

case, we evaluated the ISEs corresponding to the quantization-based estimators and to

their four competitors defined in Section 4.1. For each model, sample size, and quantile

order α considered, this provides a series of 500 observed ISEs for each estimator. Fig-

ures 9-11 draw the boxplots of those 500 ISE values for Models (M1)-(M3), respectively.
18
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Figure 5: For a random sample of size n = 300 generated according to Model (M1), conditional

quantile curves obtained from quantization-based estimation (upper left), spline methods (upper right),

nearest-neighbour estimation (lower left), and local linear kernel methods (lower right). In all cases, the

quantile levels considered are α = 0.05 (red), 0.25 (orange), 0.5 (green), 0.75 (orange), and 0.95 (red).

The lighter curves correspond to population conditional quantiles.

19



-1.0 -0.5 0.0 0.5 1.0 1.5

0
2

4
6

8
10

X

Y

(a) q̄N,nα,B

-1.0 -0.5 0.0 0.5 1.0 1.5

0
2

4
6

8
10

X

Y

(b) q̂ sp
α

-1.0 -0.5 0.0 0.5 1.0 1.5

0
2

4
6

8
10

X

Y

(c) q̂α;kNN

-1.0 -0.5 0.0 0.5 1.0 1.5

0
2

4
6

8
10

X

Y

(d) q̂YJ
α

Figure 6: The same plots as in Figure 5, but for Model (M2) and n = 300.
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Figure 7: The same plots as in Figures 5-6, but for Model (M3) and n = 300.
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Figure 8: The same plots as in Figures 5-7, but for Model (M1) and n = 1, 000.
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α = 0.05 α = 0.25 α = 0.5 α = 0.75 α = 0.95

N̂¯
α,B;opt 20 23 23 18 18

(M1) λ̂α;opt 0.595 0.971 1.075 0.638 1.033

n = 300 kα;opt 25 32 30 28 27

ĥα;opt 0.202 0.170 0.164 0.170 0.202

N̂¯
α,B;opt 23 23 19 16 15

(M2) λ̂α;opt 0.556 0.672 0.632 0.504 0.716

n = 300 kα;opt 16 38 42 43 55

ĥα;opt 0.135 0.113 0.109 0.113 0.135

N̂¯
α,B;opt 13 10 9 10 9

(M3) λ̂α;opt 0.518 1.127 1.490 0.840 0.516

n = 300 kα;opt 70 61 38 28 34

ĥα;opt 0594 0.498 0.482 0.498 0.594

N̂¯
α,B;opt 32 43 43 41 33

(M1) λ̂α;opt 1.122 1.117 0.927 1.120 1.208

n = 1, 000 kα;opt 72 54 84 74 94

ĥα;opt 0.148 0.124 0.120 0.124 0.148

Table 2: Values of the various tuning parameters involved in the conditional quantile estimators consid-

ered in Figures 5-8.

ISEs are, as expected, smaller for n = 1, 000 than for n = 300, but otherwise are quite

similar.

For most models and quantile orders considered, the quantization-based estimators,

spline estimators, and kNN estimators provide smaller ISEs than the local constant and

local linear estimators. Since the kNN estimators are based on a selection of k that is

infeasible, the main competitors to our quantization-based estimators are those based on

splines. Results reveal that polynomial link functions (see Figure 9) usually are more

favourable to splines-based methods (Figure 9(b) provides an exception, though, which

shows that the sample size may also play a role). On the contrary, quantization-based

estimators are better for more complex link function (see Figures 10-11), which is in

line with the comparison of the quantization-based and spline-based estimated curves in
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Figure 9: Boxplots, for α = 0.05, 0.25, 0.50, 0.75, and 0.95, of the ISEs of various conditional α-quantile

estimators obtained from 500 independent random samples from Model (M1), with size n = 300 (top)

and n = 1, 000 (bottom). The estimators considered are the quantization-based estimator q̄N,nα,B (in blue),

the spline estimator q̂ sp
α (in orange), the kNN estimator estimator q̂α;kNN (in green), the local linear

estimator q̂YJ
α (in purple), and the local constant estimator q̂YJc

α (in red).

Section 4.2 (note, however, that an exception also appears in Figure 11(b)).

Since the computational burden is also an important issue, we gather in Table 3 the

computation times (in seconds) used by each estimator to produce Figure 9(a). To study

computation times in the light of efficiency, we further report there, for each estimator,

a global measure of efficiency (Eff), defined as the sum, over the five α-values considered

in that figure, of the medians of the 500 fixed-α observed ISEs. Since the choice of the

grid N plays an important role in the selection of the optimal N -value (at least from a

computational point of view), we considered two grids, namely N1 = {5, 6, . . . , 29, 30}

and N5 = {5, 10, . . . , 25, 30} (the latter one, that may seem too coarse, is actually the one

that led to the good ISE performances in Figures 9). Table 3 confirms that there is no free

lunch, as it shows that the gain in terms of efficiency (for Model (M1) and n = 300) has a

price in terms of computation time. This price, however, is quite reasonable. Moreover,
24
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Figure 10: The same boxplots as in Figure 9, but for Model (M2).
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Figure 11: The same boxplots as in Figures 9-10, but for Model (M3).
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q̄N,nα,B (N1) q̄N,nα,B (N5) q̂ sp
α q̂α;kNN q̂YJ

α q̂YJc
α

CPU 11,108,3 2,583.8 2,258.6 541.4 1,319.8 1,178.4

Eff

(M1) 0.503 0.518 0.368 0.522 0.845 1.001

(M2) 1.938 2.211 2.614 1.412 3.535 2.950

(M3) 1.108 1.109 1.223 1.046 1.618 1.784

Table 3: (First line:) Computation times (CPU, in seconds) used by each estimator to obtain Fig-

ure 9(a). (Subsequent lines:) ISE-based global efficiency measures (Eff) associated with Figures 9(a),

10(a), and 11(a); see Section 4.3 for details.

the Mac and Linux versions of our R package QuantifQuantile offer an option for

parallel computing, which divides the computing times shown in Table 3 by a factor of

4, which clearly makes our estimators very competitive in this respect. In addition, the

computation times for the nearest-neighbour estimator should be considered with care,

since kNN procedures here are not based on a (typically always quite computationally

intensive) data-driven selection of smoothing parameters. This table also gathers the

efficiency measures Eff associated with Figures 10(a) and 11(a) (we do not provide the

corresponding CPU times, that barely depend on the model considered). The grids N1

and N5 actually differ across models but not their size.

5. A real data example

In this section, we illustrate the behavior of q̄N,nα,B on a real data set, that was kindly

sent to us by Dr. Keming Yu. This data set, of size n = 298, corresponds to the serum

concentration, in grams per liter, of immunoglobulin-G in children aged from 6 months

to 6 years. This data set was already investigated in Yu and Jones (1998), where a

kernel local linear estimator and a double kernel estimator were considered; we therefore

refer to that paper for (smoothed versions of) the corresponding quantile curves. Also,

we do not plot the quantile curves resulting from the kNN estimator q̂α;kNN since the

selection of the parameter k is not data-driven, hence cannot be achieved on a real data

set. Consequently, we only compare the proposed quantization-based quantile curves

with those obtained from their main competitor, namely the spline estimator q̂ sp
α .

We now describe how we obtained quantization-based quantile curves in the present
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Figure 12: In the context of the real data example of Section 5, this figure plots, for various α-values,N 7→

ÎSE
¯

α,B(N) over N = {5, 10, . . . , 35, 40} (left) and over N = {4, 5, . . . , 9, 10} (right).

context, for each α = 0.05, 0.1, 0.25, 0.5, 0.75, 0.9 and 0.95.

(i) The first step consists in choosing the optimal number N of quantizers. To do

so, we adopted the method proposed in Section 3.2, based on the minimization

of ÎSE
¯

α,B(N) (see (3.1)), for which we considered throughout B = 50, B̃ = 30,

and a grid of J = 300 equispaced points between the minimum and maximum

values of the X-part of the sample. We first evaluated ÎSE
¯

α,B(N) for all N ∈

N = {5, 10, . . . , 35, 40}. Figure 12(a) plots the resulting sample ISE curves for

each α. Irrespective of α, these curves are monotone increasing, which means

that the tested values of N are too large. We therefore did the same exercise for

N = {4, 5, . . . , 9, 10}, which led to Figure 12(b). For each α, this provides an

optimal N (that is equal to 5 or 6).

(ii) The second step of course consists in obtaining the estimated quantile curves them-

selves, based on the selected values of N above. These are the plots of the map-

pings x 7→ q̄N,nα,B (x) in (2.7), where we chose B = 50.

The resulting quantile curves are plotted in Figure 13(a). As announced, we compare

these curves with those associated with the spline estimator q̂ sp
α . For each α considered,

the parameter λ was selected according to the AIC procedure described in Section 4.1,
27
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Figure 13: Conditional α-quantile curves for the real-data example of Section 5 and α = 0.05, 0.1,

0.25, 0.5, 0.75, 0.9 and 0.95. The estimators considered are the quantization-based estimator q̄N,nα,B with

B = 50 (left) and the spline estimator q̂ sp
α (right).

which led to λ̂α;opt = 0.40, 0.42, 0.96, 0.63, 0.96, 0.52, and 0.69. Figure 13(b) plots the

resulting quantile curves. Clearly, these piecewise linear curves are more irregular than

the quantization-based ones and show some important peaks and slight crossings.

6. Extension to multivariate regressors (d > 1)

The numerical exercises and simulations in Sections 4 and 5 focused on the case of a

single covariate (d = 1). All previous definitions and results, however, cover the general

case (d ≥ 1): this not only includes the theoretical results from CPS15 and the definitions

of the quantization-based estimators described in Section 2, but also the CLVQ algorithm

and the proposed data-driven method to select N . It is therefore natural to investigate

how well quantization-based conditional quantile estimation performs for d > 1. Clearly,

however, in the present context where any sparsity assumption or restriction on the
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regression function are avoided, d should be small enough to avoid the usual curse of

dimensionality.

For illustration purposes, we focus on the bivariate case d = 2 to be able to plot

the resulting conditional quantile hypersurfaces. We first generated a random sample of

size n = 3, 000 from the model

(M4) Y = sin(X1 +X2) +
(
0.5 + 1.5 sin2(π2 (X1 +X2))

)
ε,

with X = (X1, X2)′ = (6Z1 − 3, 6Z2 − 3)′ (Zi ∼ Beta(2, 2), i = 1, 2) and ε ∼ N (0, 9),

where Z1, Z2 and ε are mutually independent. Conditional quantile hypersurfaces of this

model for α =0.05, 0.25, 0.5, 0.75, and 0.95 are plotted in Figure 14(a). Figure 14(b)

provides the corresponding sample quantile surfaces obtained from our estimator q̄N,nα,B ,

with B = 50 and the optimal N -values that are obtained through our data-driven N -

selection procedure for the various values of α. The quantile surfaces were readily ob-

tained from the R package QuantifQuantile, that can therefore also be used for d > 1.

Clearly, q̄N,nα,B provides very smooth surfaces that properly catch the link function, even

though the amplitude, for extreme values of α, is a bit under-estimated.

The results of Section 4 suggest restricting the comparison to spline-based estimators.

For this purpose, we consider the triogram-based bivariate splines from Koenker and

Mizera (2004), that is implemented in the rqss function of the R package quantreg. The

resulting estimated quantile surfaces, based on the same λ-selection method as for d = 1

in Section 4, are plotted in Figure 14(c). Clearly, these quantile surfaces exhibit more

variability than the quantization-based ones. Incidentally, note that, unlike the proposed

estimator, this spline-based estimator does not extend easily to d > 2.

Parallel to our investigation of the case d = 1, we complement the results above

with some efficiency results in terms of ISE. To do so, we generated 50 independent

random samples from Model (M4) above with sample size n = 3, 000 and computed, for

each sample and various values of α, the quantization-based and spline-based conditional

quantile estimators. The corresponding 50 resulting ISEs for each estimator and every α

considered, that are defined in a similar way as in Section 4.3, are represented in Figure 15.

In line with the d = 1 results in Figure 11, this shows that, for the complex link function

considered, q̄N,nα,B dominates q̂ sp
α in terms of efficiency. Note that this is particularly true

for extreme values of α.
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(a) (b) (c)

Figure 14: Various conditional α-quantile surfaces for Model (M4) and α = 0.05, 0.25, 0.5, 0.75 and

0.95. The quantile surfaces are the population ones (left), the ones estimated (from 3, 000 independent

observations) through quantization (center), and through triogram-based splines (right); see Section 6

for details.
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Figure 15: Boxplots, for α = 0.05, 0.25, 0.50, 0.75, and 0.95, of the ISEs of quantization-based (in blue)

and triogram-based spline (in orange) conditional α-quantile estimators obtained from 500 independent

random samples from Model (M4), with size n = 3, 000.
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7. Summary and final comments

In this paper, we investigated the empirical performances of the quantization-based

estimators of conditional quantile that were recently introduced in CPS15. This led us

to design an efficient data-driven method to select the number N of quantizers to be

used, that plays the role of a smoothing parameter. From extensive simulations, we

concluded that quantization-based estimators compete well with alternative conditional

quantile estimators and sometimes dominate its main competitor, spline estimators, par-

ticularly when the link function is complex. We treated a real data example, in which we

showed that the proposed methodology provides very satisfactory conditional quantile

curves, and we saw that the good properties of quantization-based estimators extend to

the bivariate covariate case. This should make conditional quantile estimation based on

quantization of interest to practitioners; in this spirit, we wrote an R package, named

QuantifQuantile, that allows to compute in a straightforward way the proposed esti-

mators (the data-driven selection of N is included) and to plot the resulting quantile

curves/surfaces. This package is already available on the CRAN.

We conclude with two final comments.

(i) Since conditional quantiles qα(x) are monotone increasing in α for any fixed x,

population conditional quantile hypersurfaces cannot cross. Yet, like many of their com-

petitors, the proposed quantization-based quantile hypersurfaces might cross. No such

crossings occurred in the illustrations of this paper, nor in all other numerical experi-

ments we have conducted. Practitioners, however, usually do not like such crossings, that

violate their interpretation of quantiles. An easy way to exclude crossings is to select an

optimal N -value that is independent of α. A natural way to do so is to minimize

N 7→ ÎSE
¯

B(N) = AVEα

[
ÎSE

¯

α,B(N)
]
, (7.1)

where the average extends over all α-values considered. Figure 16 plots the resulting ISE

curve for the real data example from Section 5, which leads to the optimal value N = 5.

Another procedure that allows to avoid crossings is the rearrangement procedure from

Chernozhukov et al. (2010).

(ii) Both in CPS15 and in this work, quantization was applied to the covariate only.

One may wonder whether or not it may be of interest to move entirely to a discrete
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Figure 16: Plot of the mapping N 7→ ÎSE
¯

B(N) in (7.1) for the real data example of Section 5.

framework by applying quantization to both the covariate and the response. Such a

double quantization might involve different numbers of quantizers for X and Y (NX

and NY , say) and would lead to the approximate conditional α-quantile

q̃Y,NX ,NYα (x) = arg min
a∈R

E
[
ρα(Ỹ NY − a)|X̃NX = x̃

]
,

where Ỹ NY = ProjδNY (Y ) denotes the projection of Y onto δNY = (ỹ1, . . . , ỹNY ), an

optimal N -grid for Y (x̃ still denotes the projection of x onto the optimal NX -grid

for X). If observations (X1, Y1), . . . , (Xn, Yn) are available, then the resulting esti-

mator of q̃Y,NX ,NYα (x) is the sample α-quantile, q̂Y,NX ,NY ,nα (x) say, of the Ŷ NY ,ni =

Projδ̂NY ,n(Yi)’s corresponding to the indices i for which X̂N,n
i = x̂N,n (the optimal y-grid

δ̂NY ,n = (ŷNY ,n1 , . . . , ŷNY ,nNY
) can be obtained from the CLVQ algorithm). Of course, we

can also define a bootstrap version q̄Y,NX ,NY ,nα,B (x) of this estimator by proceeding as in

Section 2.3.

To investigate the performance of double quantization, we generated a random sample

of size n = 500 from the model

Y =
1

5
X3 + ε, (7.2)

where X ∼ U(−3, 3) and ε ∼ N (0, 1) are independent. Figure 17 plots, for five

values of α, the ÎSE
¯

α,B(NX , NY ) quantities achieved by the double-quantization esti-

mator q̄Y,NX ,NY ,nα,B (x) with B = 50; we only considered NX ∈ {5, 10, . . . , 75, 80} and

NY ∈ {5, 10, . . . , 245, 250}. In order to get smoother surfaces, we actually averaged
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sample ISEs over 5 independent random samples. The white curve in each panel is

the curve associated with NY 7→ ÎSE
¯

α,B(N̂¯
α,B;opt(NY ), NY ), where N̂¯

α,B;opt(NY ) is the

optimal value for NX at the given NY (i.e., the one that minimizes the ISE function

N 7→ ÎSE
¯

α,B(N,NY ). It is seen that, irrespective of NY and α, the optimal number

of quantizers for X stays close to 25. However, there is no optimal value for NY : the

larger NY , the smaller the averaged ISE. In conclusion, an optimal choice for (NX , NY )

appears to be NX close to 25 and NY → ∞. Since letting the size of the quantization

grid go to infinity is equivalent to not quantizing at all, this leads to favouring the solu-

tion adopted in CPS15 and in the present work over double quantization. Quantizing X

only also makes perfect sense in the problem of estimating nonparametrically a given

conditional quantile qα(x). Most estimation methods indeed consist in selecting the ob-

servations whose X-part is the closest to x (where the meaning of “close” depends on the

method at hand) and to take the sample quantile of the corresponding Y ’s. Quantizing Y

thus does not seem natural, as it adds an unnecessary approximation error.
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