
HAL Id: hal-01255765
https://hal.inria.fr/hal-01255765

Submitted on 13 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Instance-level video segmentation from object tracks
Guillaume Seguin, Piotr Bojanowski, Rémi Lajugie, Ivan Laptev

To cite this version:
Guillaume Seguin, Piotr Bojanowski, Rémi Lajugie, Ivan Laptev. Instance-level video segmentation
from object tracks. CVPR 2016, IEEE, Jun 2016, Las Vegas, United States. �hal-01255765�

https://hal.inria.fr/hal-01255765
https://hal.archives-ouvertes.fr


Instance-level video segmentation from object tracks

Guillaume Seguin1,∗ Piotr Bojanowski2,∗ Rémi Lajugie2,∗ Ivan Laptev2,∗
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Abstract

We address the problem of segmenting multiple object
instances in complex videos. Our method does not require
manual pixel-level annotation for training, and relies in-
stead on readily-available object detectors or visual object
tracking only. Given object bounding boxes at input, we
cast video segmentation as a weakly-supervised learning
problem. Our proposed objective combines (a) a discrim-
inative clustering term for background segmentation, (b) a
spectral clustering one for grouping pixels of same object
instances, and (c) linear constraints enabling instance-level
segmentation. We propose a convex relaxation of this prob-
lem and solve it efficiently using the Frank-Wolfe algorithm.
We report results and compare our method to several base-
lines on a new video dataset for multi-instance person seg-
mentation.

1. Introduction
Semantic object segmentation in images and videos is a

challenging computer vision task [23, 28, 30, 38, 44]. Com-
mon difficulties arise from frequent occlusions [42] and
background clutter, as well as variations in object shape
and appearance. Video object segmentation also requires
accurate tracking of object boundaries over time in the
presence of possibly fast and non-rigid motions. An ad-
ditional challenge addressed by several recent works is in
segmentation of individual instances of the same object
class [17, 18, 44, 43, 48]. Indeed, while it may be easy
to segment a herd of cows from a grass field, segmenting
each cow separately is a much harder task.

Instance-level object segmentation in video is an inter-
esting and understudied problem at the intersection of se-
mantic and motion-based video segmentation. Solutions to
this problem can benefit from class-specific object models
and motion cues. Segmentation of static and/or partially
occluded objects of the same class, however, pose addi-
tional challenges, difficult to solve with existing methods of
motion-based and semantic segmentation. Meanwhile, suc-
cessful solutions to instance-level video segmentation can
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Figure 1: Results of our method applied to multi-person seg-
mentation in a sample video from our database. Given an input
video together with the tracks of object bounding boxes (left),
our method finds pixel-wise segmentation for each object instance
across video frames (right).

serve in several tasks such as video editing and dynamic
scene understanding.

Given recent advances in object detection [35] and visual
object tracking [10], coarse object localization in the form
of object bounding boxes can now be used as input for solv-
ing other problems. In particular, we address in this paper
the problem of instance-level video segmentation given ob-
ject tracks. We assume that prior (weak) knowledge about
objects is available in the form of tracked object bounding
boxes, obtained by a separate process. For instance, pre-
trained object detectors or visual object tracking algorithms
as the ones cited above can be used.

Segmentation methods typically optimize carefully de-
signed objective functions combining data terms and prior
knowledge. Object prior knowledge in such methods is of-
ten encoded by higher-order potentials [25, 26, 37], which
enable richer modeling but lead to hard optimization prob-
lems. Here we take an alternative approach and build on the
discriminative clustering framework [2, 16]. Following pre-
vious work on co-segmentation [23] and weakly-supervised
classification [5], we formulate our problem as a quadratic
program under linear constraints. We use object tracks as
constraints to guide segmentation, but other forms of prior
knowledge could easily be integrated in our method. Our fi-
nal segmentation is obtained by solving a convex relaxation
of our objective with the Frank-Wolfe algorithm [14].

We compare our method to the state of the art and show
competitive results on a new dataset for instance-level video
segmentation. In contrast to most previous methods, our ap-
proach segments multiple instances of the same object class
and supports reasoning about occlusions. Figure 1 illus-
trates the data and results of our method on a sample video
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from our dataset.
The contributions of this paper are three-fold. (i) We pro-

pose a discriminative clustering approach for instance-level
video segmentation using external guidance in the form of
object bounding boxes. (ii) We introduce a new dataset for
multiple person segmentation with challenging sequences,
including self-occlusions, crowded scenes and varied poses.
(iii) We demonstrate the high accuracy and flexibility of our
model on the task of multi-instance person segmentation in
video.

The rest of the paper is organized as follows. We discuss
related work in Section 2 and then present our problem for-
mulation in Section 3. We describe the convex relaxation
of our model and the optimization of the cost function with
the Frank-Wolfe algorithm in Section 4. The new dataset
is presented in Section 5. Finally, Section 6 presents our
experimental setup and results.

2. Related Work

Segmentation of multiple objects in video has been ad-
dressed for example in [9, 13, 22]. Typical approaches in-
clude (a) pure color- or motion-based segmentation [27, 33,
42], for instance using long term tracks [29, 31], (b) track-
ing segmentation proposals through the entire video [9, 30]
or (c) learning instance-specific object appearance mod-
els [13]. Deep neural networks can be used on each frame to
perform high quality semantic segmentation [49] or multi-
instance segmentation for a specific class and setup, for in-
stance to segment cars in images recorded by a car-mounted
camera [48].

Prior information, such as object bounding boxes or pose
estimation can be used to guide the segmentation. Person
and body-part detectors as well as skin color models have
been used to seed the GrabCut algorithm [19], as unary po-
tentials in CRFs [28, 36] or as higher order terms [26, 44].
Parameters of semantic segmentation models can be esti-
mated using bounding boxes instead of exact ground-truth
segmentations [32]. Pose estimation has also been used as a
unary term for pixel-wise segmentation in 3D movies [37],
although erroneous pose estimation will cause false seg-
mentations. The use of object detectors as weak cues for
semantic video segmentation been explored in [47]. A re-
cently proposed task, simultaneous detection and segmenta-
tion [17], closes the gap between object detection and seg-
mentation. In our work, bounding boxes are used to con-
strain the set of possible segmentations instead of being in-
volved in the energy function.

Our formulation of the segmentation problem is related
to discriminative clustering [2, 16]. The idea is to jointly
partition the data and learn a discriminative model for
each cluster seen as a class. Discriminative clustering has
recently been applied to several problems including im-
age co-segmentation [23, 24], object co-localization in im-

Video frames and superpixels

t t+ 1
Figure 2: Spatio-temporal graph of superpixels. For the yellow su-
perpixel, spatial edges are shown in dark blue and temporal edges
in dark green.

ages [41], finding actor identities in movies [5, 34] and
temporal action localization [6]. Each of these techniques
is built upon a task-dependent set of constraints, modeling
simple assumptions and encoding prior knowledge. We use
a similar framework for video segmentation and define an
original set of constraints that are well suited to our prob-
lem.

We build upon these works and combine a grouping
model, a foreground-background model and weak priors.
Our proposed method is experimentally compared to sev-
eral previous approaches [17, 31, 33, 37, 49] in Section 6.

3. Problem formulation
The segmentation problem we aim to solve is to as-

sign to every pixel a label in {0, . . . ,K}. To design a
suitable cost function, we follow previous work on co-
segmentation [23, 24]. This implies using two complemen-
tary cost functions: the first one is a spectral clustering
term [38], which enforces spatial and temporal consisten-
cies according to some descriptors φ. The second term is a
discriminative clustering cost based on the square loss [2]
which learns a foreground vs. background classifier. In or-
der to include prior information, we propose several con-
straints which we detail in Section 3.4. The proposed con-
straints are linear, leading to a tractable (relaxed) optimiza-
tion problem (see Section 4).

The intuition behind our approach is that constraints pro-
vide weak localization cues for each object instance. Dis-
criminative clustering separates foreground objects from the
background based on appearance features. Spectral clus-
tering helps producing clean spatial boundaries, separating
different instances of the same class and smoothing the seg-
mentation in time for each object instance.

3.1. Notations and model
We are given a video clip composed of T frames indexed

by t. Our problem is to assign a label k in {0, 1, . . . ,K} to
each pixel in each frame, where label k = 0 corresponds
to the background and all other integers in {1, . . . ,K} cor-
respond to the K object instances in the video. Since the



number of pixels in a video is usually high, we propose
to work with superpixels instead. Assuming that there are
N superpixels in the whole video, we index them by n in
{1, . . . , N}.

Let us define a label matrix y in {0, 1}N×(K+1). The
matrix y is such that ynk is equal to one if and only if the
superpixel n is of label k. This matrix sums up to one along
rows, since every superpixel is assigned to a single label. In
Section 3.4, we propose several constraints that will restrain
the set of admissible matrices y. We denote by Y this set.
The constraints can be indexed by c in {1, . . . , C}. Since
some of them may not be satisfied, for every constraint c,
we define a slack variable ξc which will allow us to violate
it. Let ξ be the concatenation of all the ξc into a single
vector. We denote by C(y, ξ) the set of constraints over a
specific y with slack ξ.

The cost we minimize is a sum of three terms: a grouping
term EG, a discriminative term ED, and a term penalizing
the slack ξ:

min
y∈Y, ξ∈RC

+

EG(y) + α ED(y) + β‖ξ‖2, (1)

under linear constraints C(y, ξ), where α and β allow us to
weigh the different terms. We provide a detailed description
of these terms in the following sections.

3.2. Grouping term

The grouping term EG is a classic spectral clustering
term meant to ensure spatial and temporal consistency of
the segmentation. To this end, we define a superpixel graph
G = (S, E), whose nodes correspond to superpixels and
edges encode spatio-temporal neighborhood information. A
sample graph G is illustrated in Fig. 2. For two nodes n and
n′ from the same frame, there is an edge (n, n′) in E if the
two superpixels are spatial neighbours. For node n in frame
t and node n′ in frame t+ 1, we add an edge (n, n′) to E if
n and n′ are temporal neighbours. The exact way we define
neighbourhoods is discussed in Section 6.1.

For each superpixel n, we define a set of descriptors φin
indexed by i in {1, . . . , I}. We denote by di the dimension
of φin and by d the sum of all the di. Let us denote by φn
the concatenation of all the φin. We then define the sim-
ilarity matrix W in RN×N which encodes the similarities
between superpixels: Wnn′ =

∑I
i=1 µi exp(−λi〈φin, φin′〉)

if (n, n′) ∈ E and 0 otherwise. µi and λi are weighting
parameters for the i-th descriptor.

Following [38], we define the associated unnormalized
Laplacian matrix L = D −W . D is the diagonal matrix
composed of the row sums ofW : D = Diag(W1N ). Using
these definitions, the grouping term can be written as the
following quadratic form:

EG(y) =
1

N
Tr(yTLy). (2)

3.3. Discriminative term

ED is a standard discriminative clustering term, which
aims to learn an affine classifier for separating foreground
vs. background. LetM be a binary matrix in {0, 1}(K+1)×2

which maps labels to foreground and background. Let us
denote by w ∈ Rd×2 and b in R2 the parametrization of this
model. We also define the matrix Φ in RN×d whose rows
are the φn. The discriminative cost is defined as follows:

ED(y) = min
w∈Rd×2

b∈R2

1

N
‖yM−Φw−1Nb

T ‖2F +κ||w||2F . (3)

The minimization w.r.t. w in (3) is a ridge regression prob-
lem, whose solution can be found in closed form, and ED
is easily rewritten [23] as a quadratic form in y:

ED(y) =
1

N
Tr(MT yTAyM), (4)

where A = 1
NΠN (IN − Φ(ΦTΠNΦ + NκId)

−1ΦT )ΠN

and ΠN is the centering projection matrix IN − 1
N 1N1TN .

Note that the foreground vs. background model we learn
is fit for segmenting the background from multiple instances
of the same object category. If needed, we could easily learn
one model per object category by adapting the M matrix.

3.4. Constraints

As mentioned earlier, our model incorporates constraints
on the y matrix. They allow us to encode simple priors
as well as more complicated, instance-specific information.
We can constrain the number of superpixels assigned to
a given label in a spatio-temporal region using linear in-
equalities. We can also use strict equality constraints to fix
the labels of some superpixels. We first provide a general
form and then describe the different variants used in our
experiments. Some of them are also illustrated in Fig. (3)
for multi-instance person segmentation using head and full-
body tracks.

Object tracks. We assume that we are given a track of
bounding boxes for each object in the video. We denote by
B this set and index the elementsB of B by k in {1, . . . ,K}
and t in {1, . . . , T}, such that Btk denotes the bounding box
of the k-th object in frame t.

Inequality constraints. We want to impose linear in-
equality constraints on a set of superpixels in the video. In
the following sections we will describe in details what these
sets can correspond to. For now, let us denote by R a sub-
set of the indices of superpixels, R ⊂ {1, . . . , N}. We can
represent R by the indicator vector 1R, such that the n-th
entry is equal to one if the superpixel n is in R. Note that
for videos, this set R can correspond to a spatio-temporal
region. We use the notation ek to denote the k-th vector of
the canonical basis of RK+1.

For some regionR and a label k, we propose to constrain



(a) Head constraint. (b) Body constraint. (c) Background constraint. (d) Non-person. (e) Must-be background.

Figure 3: Constraints (see Section 3.4) used in our model for multi-person segmentation. In this setup we are provided head detections,
from which we derive body boxes. We require 75% of pixels inside head detections (a) and 50% of pixels inside body boxes (b) to belong
to the instance. Part (c) illustrates the background constraint (96% of this surface should be background); non-person constraints which
enforce superpixels far from the person to be assigned to the corresponding label (d) ; and the superpixels which can only be background (e).

the matrix y using constraints of the following form:

0 ≥ σ
(
1TR y ek − ρ

)
− ξc, (5)

where σ ∈ {−1, 1} controls whether this is an at least or an
at most constraint, ρ a parameter and ξc is the slack variable
allowing this constraint to be violated. The parameters R,
σ, k and ρ depend on the kind of prior we want to enforce.

Note that while our notations refer to superpixels and
counts of superpixels, in practice we weigh the contribu-
tion of each superpixel to the constraint by its relative area
in region R. Likewise, we reason in terms of pixels when
computing the ρ parameters.

Equality constraints. When some supervision is avail-
able (semi-supervised setting), or when a strong cue allows
us to freeze variables, we want to use equality constraints.
Let us suppose that we have a set of superpixels R and a set
of labels Q. We set variables for region R and labels Q to
predetermined values stored in ỹ:

∀r ∈ R, ∀q ∈ Q, yrq = ỹrq. (6)

As for the inequality constraints, the definitions ofR,Q and
ỹ depend on the prior.

Track constraints. Given an object bounding box Btk,
we require that at least ρB superpixels inside Btk get as-
signed the label k. This can be enforced by setting R, and
σ appropriately in Eq. (5). We set R to the set of superpix-
els that lie inside Btk. Since this is an at least constraint,
we set σ = −1. The amount of superpixels ρB is set to a
ratio of the total number of superpixels in Btk. In Figure 3
(a) and (b), head tracks and object tracks are used for such
constraints.

In complex videos picturing multiple objects, the bound-
ing boxes, and thus the corresponding constraint regions,
can heavily overlap. Without slack variables, our problem
may be infeasible in such situations, and even with slack
variables the constraints may still be misleading. To cope
with occlusions, we propose a simple occlusion reasoning.
In a given frame, for each pair of overlapping bounding
boxes, pixels inside the region of overlap are marked as oc-
cluded. In turn, we reduce the strength of each such con-
straint by multiplying ρB by (1− o) where o is the ratio of
occluded pixels in the bounding box.

Area constraints. To reduce “leaking” effects in the seg-

mentation, we constrain the area of each object segment in
each frame. For object k in frame t, we impose that at most
ρarea of the superpixels in frame t get assigned the label k.
This can be expressed by settingR to be the set of superpix-
els in frame t. Since this is an at most constraint, we have
σ = +1. We set ρarea to the amount of superpixels in track
Btk times a constant, to take object size into account.

We can also enforce a minimal amount of superpixels
per label and per frame. We do so by changing σ to −1 and
setting an appropriate ρ. This constraint can be used if we
know the object is in the frame but lack the corresponding
bounding box.

Background constraints. We request that most super-
pixels which are outside object bounding boxes belong to
the background label. The rationale is that only a few of
the superpixels outside object detections may belong to ob-
jects, as shown in Figure 3 (c). Typically, in the case of
multiple people segmentation, these superpixels belong to
lower arms. We express this constraint by setting R to the
set of superpixels that do not belong to any track in frame
t. This is an at least constraint so we set σ = −1. We set
ρ = ρbg to a ratio of the cardinality of R.

Non-object constraints. In our work, we make the as-
sumption that if a pixel is far enough from an object detec-
tion, it is reasonable to assume that it does not belong to
the corresponding object. We assume that when there are
no detections at all, we do not apply these constraints. For
a bounding box Btk, we build R as the set of superpixels in
frame t that are further away fromBtk than a given distance,
as shown in Figure 3 (d). In practice, we set this minimum
distance to the width of the object bounding box. R can
be computed by performing a distance transform and then
thresholding. We then enforce an equality constraint with
Q containing only the label k and ỹ filled with zeros.

4. Optimization

4.1. Continuous relaxation

The quadratic problem defined in Eq. (1) is known to
be NP hard when y takes binary values. Indeed, when the
quadratic cost matrix has positive off diagonal entries, this
is as hard as solving a max-cut problem. Classic relaxations
of such problems [23] imply working with equivalence ma-



trices Y = yyT . Doing so in our case would be intractable
due to the problem size and would prevent us from impos-
ing constraints relating superpixels to labels. Instead, we
propose a continuous relaxation of our problem by solving
it over the convex hull Y of the initial set Y . Then, we
aim at solving the minimization of a positive semi-definite
quadratic form over a convex compact set defined by a large
number of linear constraints. Due to the size of y (of the or-
der of 106 entries) and the number of constraints it is not
realistic to use a standard off-the-shelf quadratic program-
ming solver based on interior point methods [7]. Neverthe-
less it is possible to solve linear programs of such a size.
This is why, following other approaches to discriminative
clustering [6], we propose to use the Frank-Wolfe optimiza-
tion algorithm [14, 21] which only relies on the minimiza-
tion of linear forms over Y .

4.2. Frank-Wolfe algorithm

The Frank-Wolfe algorithm is an iterative method to
optimize convex objectives over compact convex sets and
suites well for our problem. Let us now briefly describe the
iterations. We define our optimization variable z = (y, ξ)
in Z = Y × RC+. For the sake of simplicity, we rewrite as
E(z) the sum of the three terms from Eq. (1). Let us de-
note by zk the current point at iteration k. At iteration k, we
compute the gradient∇zE(zk) and minimize the following
linear form: Tr(∇zE(zk)(z−zk)). This can be easily done
using a generic LP solver, and yields a corner of the poly-
tope that we will denote z FW. We then update the current
point as follows: zk+1 = zk+γ(z FW−zk). The optimal pa-
rameter γ∗ leading to the best improvement in that direction
can be found in closed form by doing an exact line search.

Rounding. Using the Frank-Wolfe algorithm we obtain
a solution z∗ = (y∗, ξ∗). The solution continuous solution
we obtain needs to be rounded. We first freeze the slack
variables of the constraints to the values ξ∗. We then round
y∗ into a binary matrix by finding the closest point to y∗ in
Y in terms of Frobenius norm ‖y−y∗‖2F which is equivalent
to

min
y∈Y
−2Tr(y∗T y). (7)

We solve this linear program using the LP solver.

4.3. Non-convex refinement

Experimentally, we observe that the convex relaxation
of our problem may lead to sub-optimal rounded solutions.
Indeed, our model is attracted to a degenerate solution with
all constant entries of value 1

K+1 , which has a low objec-
tive value for the discriminative term. This is a common
drawback of discriminative clustering techniques, as noted
by [23, 16]. In order to push our solution away from these
near-constant solution, and following the approach of grad-
uated non-convexity [4, 46], we propose to add a concave
quadratic term to our objective: Tr(yT (1− y)), and weight

it using a parameter δ. This term encourages the entries y
to be close to either 0 or 1. The corresponding optimization
problem is the following:

min
y∈Y, ξ∈R+

C
EG(y) + αED(y) + β‖ξ‖2 + δ Tr(yT (1− y)).

The parameter δ can be a function of the iteration count k.
In practice however, choosing a scalar value is already com-
plicated and we therefore use a piecewise constant function.
We first optimize the convex relaxation of our problem with
δ = 0. Then we perform Frank-Wolfe steps on the non-
convex objective with a non-zero δ which has been selected
by parameter search. Although we are only guaranteed to
converge to a local optimum of this non-convex function [3,
Section 2.2.2], we empirically observe a drastic improve-
ment of performance as shown in Table 1.

5. Dataset
To evaluate the performance of our method on the task

of instance-level video segmentation, we have collected a
dataset composed of 27 video clips, corresponding to a total
of 2476 frames. The video clips are taken from the 3D fea-
ture movie “StreetDance 3D” [Giwa and Pasquini, 2010].
The proposed dataset is an improved version of the Inria
3D Movie Dataset [37] adding a substantial amount of chal-
lenges, such as longer shots, self-occlusions, inter-person
occlusions, and hard poses such as dancing or jumping.

Providing ground-truth annotations for evaluation in an
entire video is a highly time-consuming task. As a con-
sequence, we have only annotated a sparse subset of 235
frames out of 2476, for all 632 person instances present in
these frames. We split the dataset into a set of 7 clips for
adjusting hyperparameters and a set of 20 clips for evalua-
tion. Note that there is no training step in our method, but
only a validation step to find appropriate hyperparameters.
Examples from our dataset and our procedure for adjusting
parameters using the Bayesian framework of [40] are pre-
sented in the supplementary material. Our dataset will be
made publicly available upon publication.

6. Experiments
In this section, we describe experimental details and

evaluation procedures for the proposed method. We evalu-
ate multi-instance person segmentation in 3D movies using
head tracks and full-body bounding boxes.

6.1. Implementation details

Superpixels. We extract video superpixels using [8].
The superpixels are evenly distributed, fairly compact, and
tracked in time. We use temporal links obtained from super-
pixel tracks as edges in the superpixel graph (Section 3.2).
We also add edges between superpixels from consecutive
frames if sufficient pixel-wise correspondence is provided



Figure 4: Qualitative results of our method. Note that most of the visually unpleasant artifacts are due to the use of superpixels.

by optical flow.
Features. We first compute dense optical flow between

consecutive frames using DeepFlow [45]. Then, we use two
different sets of features φn for the grouping and discrimi-
native terms. These features are computed for each super-
pixel based on the underlying image pixels. For the spatial
edges in the similarity matrix W of the grouping term, we
use: (i) a histogram of optical flow with 8 bins for orien-
tations and one bin for no motion, and (ii) the average CIE
L*a*b* color, over the superpixel. For the temporal edges
ofW , we use the average CIE L*a*b* color. As discrimina-
tive features in Φ, we use: (i) the same histogram of optical
flow, (ii) a color histogram computed over RGB colors, with
8 bins per color channel, 512 bins in total, and (iii) the av-
erage SIFT descriptor over the superpixel, obtained by first
computing dense SIFTs over the whole image, and then av-
eraging the SIFTs which cover the superpixel.

We also optionally exploit recent advances in semantic
segmentation by including features produced by a deep neu-
ral network trained for semantic segmentation for the PAS-
CAL dataset [49]. We take the output of the method for
each pixel and pool it (either using max-pooling or mean-
pooling) over the superpixel, and use it as an additional dis-
criminative feature in Φ. As this output represents a strong
semantic cue, it should help our discriminative term to sep-
arate the foreground from the background.

For 3D movies, we also include median disparity over
the superpixel in both spatial grouping and discriminative
features. The method of Ayvaci et al. [1] is used to estimate
the disparity map from stereo pairs.

Person detection and tracking. We evaluate our
method on ground-truth (manually annotated) head tracks
as well as on tracks automatically produced by a tracking-
by-detection method: we use a CNN-based detector [15]
trained on heads in movies. The tracker associates these
detections based on KLT tracks [39], interpolates miss-
ing detections and smooths the tracks in time [11]. Using
ground-truth or automatic tracks, we extrapolate full-body
bounding boxes from the head bounding boxes using a lin-
ear transformation. Note that our full-body bounding boxes

Table 1: Comprehensive study of the influence of each component
of our method on our new dataset. See Section 6.3 for comments.

Method F1 Precision Recall Overlap

Ours + semantic cue 80.1% 81.9% 79.6% 68.6%
Ours 78.3% 80.8% 77.3% 66.0%

No temporal smoothness 76.4% 79.2% 75.4% 63.7%
Single frames 76.4% 77.9% 76.4% 63.7%

Grouping term only 77.6% 79.4% 77.2% 65.0%
Discriminative term only 66.9% 70.7% 64.7% 52.1%

No constraint 12.8% 10.4% 40.0% 09.0%
Convex only 75.6% 78.0% 74.1% 62.4%

No disparity 74.0% 77.5% 72.6% 59.9%

start below the head, as shown in Fig. 1. This way, the su-
perpixels on the sides of the head are not involved in the
corresponding constraints, since they do not belong to the
person in most cases.

Occlusion reasoning. We adapt the occlusion reasoning
of Section 3.4 to stereo videos by computing a depth esti-
mate from the median disparity inside the head box. Given
two overlapping bounding boxes in the frame, we mark the
pixels of the object which is behind as occluded. This pro-
cedure allows a more accurate handling of occlusions than
the original reasoning, since constraint strength will only be
reduced for objects which may actually be occluded.

We evaluate the proposed method on stereo videos where
head (bounding boxes) tracks for multiple people are given
as input to our algorithm. We use these tracks and extrapo-
lated full-body bounding boxes, to derive two types of track
constraints in our framework. We also integrate the corre-
sponding background and non-object constraints from Sec-
tion 3.4. We combine disparity, appearance and motion cues
and evaluate performance on a new dataset extracted from
3D movies with challenging scenes and poses.

6.2. Baselines

We compare our method to multiple baselines, spanning
the whole range of methods from pure semantic segmen-
tation to pure motion segmentation. Some of them are
completely unsupervised: Multi-modal motion segm. [31],



FG/BG motion segm. [33]. Some other require pixel-wise
supervision to train appearance models: Pose & segm. [37],
SDS [17], CRF as RNN [49]. We used the publicly available
code and models for all methods.

CRF as RNN [49]1 is the state-of-the-art semantic seg-
mentation method. It uses an end-to-end deep network com-
bining a standard Convolutional Neural Network with a Re-
current Neural Network to perform dense CRF inference.
We adapt this method to the task of instance-level segmen-
tation for a given semantic class by assigning each pixel
labelled with the said semantic class to the instance which
has the closest bounding box. In practice, for humans we
assign the pixels to the person which spine (derived from
the head bounding box) is the closest.

SDS [17]2 is a simultaneous detection and segmenta-
tion method. It classifies region proposals by scoring CNN
features extracted from the region and the corresponding
bounding box. This method is inherently an instance-level
segmentation method, and we evaluate it directly. Note that
given the results produced by this method are using a differ-
ent set of detections (which are an output of the method it-
self), the performances are not directly comparable with the
other reported methods. This baseline is provided for ref-
erence as it is the best instance-level segmentation method
available.

Pose & segm. [37]3 is based on multi-class graph cuts,
has been designed for a similar dataset, and uses the same
set of features. Given person tracks, it combines pose esti-
mates and disparity cues in an unary term after reasoning on
occlusions. A binary term encodes spatio-temporal smooth-
ness using color and motion features.

Multi-modal motion segm. [31]4 separates objects which
exhibit different motions. It is a classic method for video
segmentation. We adapt it to our problem by assigning
the biggest segment (in terms of surface) to be the back-
ground segment, and inside each object bounding box we
label the largest non-background segment as belonging to
the instance.

FG/BG motion segm [33]5 is a pure figure-ground mo-
tion segmentation method. We adapt it to the task of
instance-level segmentation using the same method as for
the first baseline, by splitting the foreground segment in
multiple segments.

6.3. Results

We evaluate segmentation by computing per-person pre-
cision, recall, overlap (defined as the intersection over union
between the ground-truth and predicted labels [12, 20]) and
F1 score (the harmonic mean between precision and recall).

1
http://www.robots.ox.ac.uk/˜szheng/CRFasRNN.html

2
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/shape/sds/

3
http://www.di.ens.fr/willow/research/stereoseg/

4
http://lmb.informatik.uni-freiburg.de/resources/software.php

5
http://groups.inf.ed.ac.uk/calvin/FastVideoSegmentation/

Table 2: Quantitative performance comparison of our method with
5 baselines. Please note that the results from Ground truth tracks,
Automatic tracks and SDS detections sections are not comparable
as they use different sets of detections. See Section 6.3 for com-
ments.

Method F1 Precision Recall Overlap

Ground truth tracks:
Ours 78.3% 80.8% 77.3% 66.0%
Ours (+ semantic cue) 80.1% 81.9% 79.6% 68.6%
CRF as RNN [49] 78.5% 83.2% 77.7% 66.5%
Pose & segm. [37] 68.5% 68.3% 76.1% 55.0%
Multi-modal motion segm. [31] 27.4% 41.0% 30.4% 19.4%
FB/BG motion segm. [33] 52.2% 65.1% 49.8% 38.8%

Automatic tracks:
Ours 63.6% 61.6% 68.6% 52.0%
CRF as RNN [49] 56.2% 58.2% 54.9% 46.5%
Pose & segm. [37] 52.7% 57.2% 59.5% 40.8%
Multi-modal motion segm. [31] 27.4% 40.6% 30.4% 19.4%
FB/BG motion segm. [33] 48.4% 57.6% 50.7% 34.9%

SDS detections:
SDS [17] 65.1% 73.5% 62.8% 52.6%

We report the average of these measures over people and
frames. We show qualitative results of our method in Fig-
ure 4. Video results are provided in the supplementary
material.

Comprehensive analysis. We first analyze each com-
ponent of our method in Table 1. It is interesting to note
that similar results are achieved when removing temporal
edges from the graph (No temporal smoothness), or when
processing frames one by one (Single frames). Experiments
on single frames have a higher recall, while segmenting
all frames at once without temporal smoothness produces
higher precision, showing the influence of the discrimina-
tive term when it has access to the whole video context. Re-
sults obtained using the Grouping term only are quite good,
whereas using the Discriminative term only has a lower per-
formance since it only models foreground vs. background
segmentation without any spatial or temporal consistency.
Still, combining the two terms (Ours) leads to the best per-
formance as the discriminative term helps to improve preci-
sion. Performance is pushed even further when the discrim-
inative term contains strong semantic cues (Ours + seman-
tic cue). The non-convex refinement from Section 4.3 used
in Full method produces significantly better performance
than using Convex only optimization. As discussed in [2, 5],
using No constraint leads to trivial solutions and very poor
results. Last, even without disparity features (No disparity),
which are strong cues, our method produces decent results.

Baselines comparison. Quantitative and qualitative
comparisons between our method and baselines are shown
in Table 2 and Figure 5.

The motion segmentation baselines Multi-modal motion
segm. and FB/BG motion segm. perform poorly on this
challenging dataset. Both methods completely miss non-
moving and almost non-moving person by nature. Multi-
modal motion segm. also tends to separate the different

http://www.robots.ox.ac.uk/~szheng/CRFasRNN.html
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/shape/sds/
http://www.di.ens.fr/willow/research/stereoseg/
http://lmb.informatik.uni-freiburg.de/resources/software.php
http://groups.inf.ed.ac.uk/calvin/FastVideoSegmentation/


(a) Ours (b) CRF as RNN

(c) FB/BG motion segm. (d) Pose & segm.

(e) SDS (f) Multi-modal motion segm.
Figure 5: Qualitative comparison between our method and the five
baselines. Note that Pose & segm. may drop detections if the
pose estimator fails, and that SDS is producing both detection and
segmentation, so it uses its own set of detections. See Section 6.3
for comments.

limbs of a single person into multiple segments.
The SDS method performs fairly well. Its detection per-

formance is better than the automatic detector we used (on
some key sequences SDS detects twice more people than
our detector), but it still misses a significant part of person
instances. For instance, it misses most heavily occluded
persons. The other main downside is that the method mostly
provides upper body segmentations (due to either the region
proposals or the classifier itself which has been trained on
a mix of face, upper body and full body examples), in spite
of the refinement procedure which is applied at the end of
their method and is meant to provide more complete seg-
mentations.

The CRF as RNN method is the best performing base-
line. It produces a clean figure-ground segmentation for
a given object class. When people are separated in the
image, our relabelling procedure inherently produces good
instance-level segmentation results. However, when the
person instances are close by or overlap, our method of-
ten outperforms the baseline. Our method, which uses
only generic features (color, motion, SIFT) and ad-hoc con-
straints, still performs as well as this strong baseline. It suc-
cessfully segments each object instance with only coarse
localization cues (encoded in the constraints) and without
training a pixel-level appearance model for the segmenta-
tion as does the baseline. In addition, when including se-
mantic features in the discriminative term (extracted from
the baseline), the performance of our method exceeds the
one of the baseline.

Figure 6: Results of our method applied to two multi-instance
videos from SegTrack v2 [30].

Pose & segm., which uses instance-specific pose masks,
performs significantly worse than our method as it makes
strong assumptions about the pose or disparity priors. For
instance, it can not recover from errors from the pose esti-
mator. In comparison, our constraints only restrict the space
of possible segmentations. They can even be violated in
situations which do not satisfy the implicit priors they are
enforcing. However, they are strong enough to success-
fully guide the segmentation even for complicated poses,
crowded scenes and cluttered backgrounds.

We provide per-video quantitative results in the
supplementary material to help better understand the
strengths and weaknesses of each method.

Other object classes. The major strength of our method
is that it is mostly agnostic to the underlying object class.
We provide the method with a single floating point param-
eter specifying which amount of each bounding box is ex-
pected to belong to the object. With this single parameter,
the video input and the corresponding bounding box tracks,
our method is able to properly segment the object instance
from the background of the video and from the other object
instances. To the best of our knowledge, there is no proper
complete dataset for instance-level segmentation in videos
for the moment. To show that our method can handle non-
person object classes, we ran it on two videos with multiple
object instances from the popular SegTrack v2 dataset [30].
We show two sample frames in Figure 6 and videos in the
supplementary material.

7. Discussion and future work
We have presented a flexible and effective framework for

multi-instance object segmentation. We have demonstrated
its experimental performance on a challenging dataset,
showing that constraining the space of segmentations is a
robust way to incorporate object tracks information. We
plan to extend this method to multiple instances of multi-
ple object categories. This implies having a multi-class dis-
criminative model instead of a foreground vs. background
one. More class- or instance-specific knowledge can be in-
corporated in our constraints. This includes weighing our
constraints using noisy pixel-level information such as pose
masks. Also, more complex models – including non-convex
costs – could use our convex relaxation as an initializa-
tion. These refinements could lead to improved segmen-
tation quality.
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