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Abstract: In co-expression analyses of gene expression data, it is often of interest to interpret clusters 
of co-expressed genes with respect to a set of external information, such as a potentially incomplete list 
of functional properties for which a subset of genes may be annotated. Based on the framework of finite 
mixture models, we propose a model selection criterion that takes into account such external gene anno-
tations, providing an efficient tool for selecting a relevant number of clusters and clustering model. This 
criterion, called the integrated completed annotated likelihood (ICAL), is defined by adding an entropy 
term to a penalized likelihood to measure the concordance between a clustering partition and the exter-
nal annotation information. The ICAL leads to the choice of a model that is more easily interpretable 
with respect to the known functional gene annotations. We illustrate the interest of this model selection 
criterion in conjunction with Gaussian mixture models on simulated gene expression data and on real 
RNA-seq data.

Keywords: functional gene annotation; gene expression data; model-based clustering; model selection.

1  Introduction
Genome annotation broadly refers to the set of meta-data associated with the coding regions in the genome, 
typically including the identification of the location of each gene as well as a determination of the functions 
related to the gene product (e.g. protein or RNA). In particular, gene annotations correspond to known func-
tions related to the gene product, including molecular functions, biological pathways, or the cellular location 
of the gene products. A variety of well-known unified databases have been constructed with known func-
tional annotations collected from bibliographic sources across species, including the Gene Ontology (GO) 
(Ashburner et al., 2000), the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and Goto, 2000) or 
the MSigDB (Molecular Signatures) databases (Liberzon et al., 2011). Although such databases contain a rich 
source of functional information about the genome in a large variety of species (e.g. Arabidopsis thaliana, 
human, rat, mouse, fly), our knowledge of functional annotations is often far from complete (Tipney and 
Hunter, 2010).

In recent years, substantial improvements in high-throughput technologies, such as microarrays (Schena 
et al., 1995) and more recently RNA sequencing (RNA-seq) (Mortazavi et al., 2008), have enabled the simul-
taneous measurement of the expression levels of tens of thousands of genes. A rich body of work is now 
available on the appropriate statistical analyses of such gene expression data, including the analysis of dif-
ferential expression (Smyth, 2004; Anders and Huber, 2010) and co-expression analyses to identify groups 
of genes with similar profiles across several experimental conditions or over the course of time (Yeung et al., 
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2001; Rau et al., 2015). The latter is of particular interest in this work, as identifying genes that share the same 
dynamic patterns of expression may help identify groups of genes that are involved in similar biological pro-
cesses and generate hypotheses about the functional properties of poorly characterized genes (Eisen et al., 
1998; Jiang et al., 2004). Reviews and comparisons of different clustering methods for gene expression data 
may be found in Datta (2003).

In practice, annotation databases are often used to perform a posteriori validation and interpretation 
of co-expressed gene clusters through tests of functional enrichment (Steuer et al., 2006). Such functional 
annotation may instead be directly integrated into the clustering model itself. For example, Tari et al. (2009) 
incorporate GO annotations as prior knowledge in a fuzzy c-means clustering. Verbanck et al. (2013) proposed 
a clustering approach based on a distance defined conjointly on the similarity among expression profiles 
and that among functional profiles. Pan (2006) and Huang et al. (2006) proposed including gene annotation 
as prior information in a stratified mixture model. However, the inclusion of gene annotation directly in the 
model itself in this way may be questionable, particularly when they are also used to validate the gene clus-
ters a posteriori. Moreover, as gene annotations tend to be incomplete, biases may be introduced if they are 
directly incorporated in the model, as unannotated genes (which represent those known to be unassociated 
with a given function as well as those of unknown function) may be erroneously separated from annotated 
genes.

One alternative to such approaches is to define a clustering model that accounts for external gene anno-
tations without directly including them in the model itself. To this end model-based clustering provides a 
convenient framework, as it 1) allows for a large set of clustering models to be fit to the gene expression alone, 
and 2) facilitates the choice among this set, a parsimonious model that simultaneously provides a good fit to 
the data and coherence with the external gene annotations. In this work, we address these points by propos-
ing a model selection criterion that accounts for external gene annotations.

The rest of this paper is organized as follows. In Section 2, we present the context of model-based clus-
tering and review classic model selection criteria. Our proposed annotated model selection criterion is pre-
sented in Section 3, and numerical illustrations of its behavior are presented on simulated data in Section 4 
using Gaussian mixture models. Finally, we illustrate a co-expression analysis of real RNA-seq data in Section 
5, and a discussion ends the paper.

2  Model-based clustering and model selection
Let y be the (n × q) matrix of observed gene expression, where n is the number of genes and q the number of 
biological samples. The vector yi denotes the expression of gene i (i = 1, …, n) across the q samples. In the 
context of model-based clustering, the data y are assumed to be sampled from a finite mixture density of 
K random variables, each with parameterized density φ(yi; ak), k = 1, …, K, where the mixture parameters 
(a1, …, aK) are all assumed to be distinct. The density of y may thus be written as

 
θ φ

= =
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1 1

( ;  , ) ( ;  ),
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K k i k
i k

f K py y a
 

(1)

where θK = (p1, …, pK-1, a1, …, aK) are the parameters of the mixture model, and (p1, …, pK) are the mixing pro-
portions with pk∈(0, 1) for all 

=
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For parameter estimation, the mixture model in Equation (1) may be thought of as an incomplete data 
structure model where z is the (n × K) matrix of unknown mixture labels, where zik = 1 if gene i is from group k 
and 0 otherwise. Note that this matrix defines a partition of the genes.

Using the mixture labels z, the completed density of y may be written as follows:
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The maximum likelihood estimate θ̂K  of the mixture parameters is computed through the expectation- 
maximization algorithm (Dempster et al., 1977) by replacing the unknown labels z in Equation (2) with ˆ,z  
defined as:

τ θ ==


� �
ˆ1 if  arg max ( )ˆ

0 otherwise,
i K

ik

k
z

where τ θ�
ˆ( )i K  denotes the conditional probability given yi of the ℓ th mixture component under θ̂ :K
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In the context of model-based clustering, one important task is the choice of an appropriate model, most 
notably the revelant number of clusters K. To this end, a standard model selection criterion is the Bayesian 
information criterion (BIC) (Schwarz, 1978):

ν
θ= −ˆˆBIC( ) log ( ;  , ) log( ),

2
K

KK f K ny

where θ̂K  is the maximum likelihood estimator of the mixture parameters and vK the number of free param-
eters in the model with K components. This criterion is an asymptotic approximation of the logarithm of the 
integrated likelihood:

θ
θ π θ θ=∫( ;  ) ( ;  , ) ( ) ,

K
K K Kf K f K dy y

where π(θK) is a weakly informative prior distribution on θK.
An alternative to the BIC is the integrated completed likelihood (ICL) criterion (Biernacki et al., 2000):

 = −ICL( ) BIC( ) Ent( ),K K K  (3)

where Ent(K) is the estimated mean clustering entropy
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Note that the ICL is a BIC-like approximation of the logarithm of the completed integrated likelihood:

θ
θ π θ θ=∫( , ;  ) ( , ;  , ) ( ) .

K
K K Kf K f K dy z y z

Because of the additional entropy term defined in Equation (4), the ICL favors models that lead to data 
partitions with the greatest evidence in terms of classification.

More recently, Baudry et al. (2014) proposed an ICL-like criterion that takes advantage of the potential 
explicative ability of external categorical variables u = (u1, …, uR) where =� 1r

iu  indicates that the gene i is in 
category ℓ for the rth external categorical variable and 0 otherwise. The idea is to choose a classification z 
based on y that is coherent with u. Assuming that y and u are conditionally independent given z, the Super-
vised Integrated Completed Likelihood (SICL) criterion is an asymptotic approximation of the logarithm of 
the integrated completed likelihood:

θ π θ θ=∫( , , ;  ) ( , , ;  , ) ( ) .K K Kf K f K dy u z y u z

The SICL criterion is defined as follows:

 1 1 1 ·
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where Ur is the number of levels of the variable ur,

= = =� �card{ : 1 and 1},r r
k ik in i z u

and 
=

=∑ ��. 1
.rU r

k kn n  The last additional term in Equation (5) quantifies the strength of the link between the cat-
egorical variables u and the classification z.

3  Taking genome annotations into account
As previously stated, the objective of this work is to make use of external gene annotations to choose a model 
for which clusters may be meaningfully interpreted both with respect to their expression profiles and their 
functional properties. To do so, we propose a novel model selection criterion that highlights the association 
between the clusters of expression profiles and the functional annotations associated with a subset of genes. 
Since gene annotations are binary variables (i.e. a gene is either annotated or unannotated), it may seem 
natural to directly use the SICL defined in Equation (5). However, in contrast to the situation considered by 
Baudry et al. (2014), gene annotation information is often incomplete. More precisely, for each of the G anno-
tation terms, indexed by g, the available information ug is as follows:

=


1 if gene  is known to be implicated in function ,
0 if gene  is not known to be implicated in function .

g
i

i g
u

i g

Note that =0g
iu  can indicate that information is missing (i.e. gene i has not yet been identified for anno-

tation g) or that gene i is known to be unrelated to annotation g. As such, =0g
iu  does not represent the null 

level of variable and thus represents an incomplete binary variable. For this reason, the SICL criterion is not 
an appropriate measure of the link between an external annotation ug and a classification z, and a specific 
criterion must be defined to incorporate the gene annotation information into the model selection step. To 
this end, we propose the integrated completed annotated likelihood (ICAL) criterion as follows.

For each gene annotation ug, we first define the random matrix bg of latent variables indicating the allo-
cation of the annotations among the K clusters:

 

 == =

1 with probability  if 1,
0 if 0.

g g
g k i
ik g

i

p u
b

u
 

(6)

Each row of the matrix bg is a random vector following a multinomial distribution with parameters g
iu  

and …1( , , )g g
Kp p  if >0,g

iu  and is the null vector 0 if =0.g
iu

For the sake of simplicity, we first derive ICAL when a single external annotation b1 is available. ICAL 
aims to select the clustering model that maximizes the logarithm of the integrated annotated likelihood:

 
θ

θ π θ θ=∫1 1( , , ;  ) ( , , ;  , ) ( ) .
K

K K Kf K f K dy z b y z b  (7)

As for the definition of the SICL, the variables y and b1 are assumed to be conditionally independent 
given z. Using Bayes formula, we have

θ θ θ=1 1( , , ;  , ) ( , ;  , ) ( | , ;  , ).K K Kf K f K f Ky z b y z b y z

Note that since y and b1 are assumed to be independent given z, the conditional distribution of b1 given z 
does not depend on y or the mixture parameters. Thus, as f(b1|y, z; K, θK) = f(b1|z; K), it follows that:

 
θ

θ π θ θ= + ∫1 1log ( , , ;  ) log ( | ;  ) log ( , ;  , ) ( ) .
K

K K Kf K f K f K dy z b b z y z  (8)

Brought to you by | INRA Institut National de la Recherche Agronomique
Authenticated

Download Date | 12/4/15 10:02 AM



M. Gallopin et al.: Model selection for clustering of annotated gene expression data      417

The last term in Equation (8) can be approximated with ICL(K) from Equation (3), and the first term may be 
approximated with

=

=∑
1

1 1
1

1

ˆlog ( | ;  ) log ,
K

k
k

k

n
f K n

n
b z

where = =1 1card{ : 1}in i u  and = = =1 1ˆcard{ : 1 and 1}.k ik in i z u  Finally, an asymptotic approximation of the expres-
sion in (7) leads to the ICAL criterion:

=

= +∑
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1
ICAL( ) ICL( ) log .

K
k

k
k

n
K K n

n

The generalization of this criterion to the case where G > 1 gene annotations are available is straightfor-
ward. The aim is now to maximize the logarithm of the integrated annotated likelihood:

θ
θ π θ θ= ∫… …1 1log ( , , , , ;  ) log ( , , , , ;  , ) ( ) .

K

G G
K K Kf K f K dy z b b y z b b

Assuming that b1, …, bG and y are conditionally independent given z, we have

θ
θ π θ θ= + ∫… …1 1log ( , , , , ;  ) log ( , , ;  , ) log ( , ;  , ) ( ) .K K K

K

G Gf K f K f K dy z b b b b z y z

Assuming in addition that b1, …, bG are independent and that gene annotations are missing at random, 
we can write

 =

=∏…1

1
( , , ;  , ) ( | , ),

G
G g

g
f K f Kb b z b z

 
(9)

leading to the generalized ICAL criterion:

 = =

= +∑∑
1 1

ICAL( ) ICL( ) log .
gG K

g k
k g

g k
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K K n

n  
(10)

Comparing ICAL and SICL If we ignore the uncertainty associated with =0g
iu  (i.e. that gene i could either 

be unassociated with function g or that this information is missing), the SICL criterion could be considered to 
choose the model dimension K. In this case, using the notation from Section 2 and defining nk the size of the 
cluster k, the SICL may be written as follows:

= + SICLSICL( ) ICL( ) pen ,K K

where

01
SICL 1 0

1 1 1 1

1 1 0 0
1 1 1 1 1

pen log log ,

log log log .

ggG K G K
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On the other hand, using the notation from Section 2 and defining 
=

=∑.1 11
,Kg g

kk
n n  the ICAL may be written 

as follows:

= + ICALICAL( ) ICL( ) pen ,K K
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where
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We note that the last term in the equation above is a constant independent of K. Finally, we can rewrite 
ICAL as a function of SICL:

 = = =

= − + +∑∑ ∑0 0
1 1 1

ICAL( ) SICL( ) log log constant.
G K K

g g
k k k k

g k k
K K n n G n n

 
(11)

From Equation (11), we note that the SICL takes into account both modalities (0 and 1) of the external 

 variables u, while the ICAL discards the null modality (the 
= =

−∑ ∑ 0 01 1
logG K g g

k kg k
n n  term). Moreover, it can be 

seen that the ICAL penalizes a large number of clusters, while the SICL does not (the 
=∑ 1

logK

k kk
G n n  term). As 

such, the ICAL tends to select parsimonious models with a relatively small number of clusters, as compared 
to SICL.

It is also helpful to consider the behavior of the ICAL and SICL criteria in extreme conditions. If the 
number of clusters K equals 1, the ICAL penalty penICAL equals zero whereas SICL penalty penSICL is not 

null 
= =

 
+  ∑ ∑ 01

1 01 1
log log .

gg
G Gg g
g g

nn
n n

n n
 In contrast, if the number of clusters K is equal to the number of 

 observations, with one gene per cluster, the SICL penalty penSICL equals zero whereas the ICAL penalty is 

not null ( )=∑ 1 11
log .G g g

g
n n  In general, ICAL tends to merge clusters to group genes annotated for the same 

 function, reducing the number of optimal clusters K with respect to the optimal number of clusters selected 
by ICL. SICL tends to split clusters in order to obtain clusters made up only of annotated genes, increasing 
the number of optimal clusters with respect to the optimal number of clusters selected by ICL. In other 
words, SICL tends to select more complex models than ICL while ICAL tends to favor more parsimonious 
models than ICL. Note that this behavior of ICAL and SICL is a general trend, not a rule: ICAL does not 
always merge clusters and SICL does not always split them since clusters for different solutions are not nec-
essarily nested in each other.

Code to implement our method is available in the R package ICAL, which may be found at the following 
website: https://github.com/Gallopin/ICAL.

4  Numerical illustrations

4.1  Simulation settings

To illustrate the behavior of the proposed ICAL criterion, we consider a numerical example. We simulate 200 
observations from a mixture of four bivariate Gaussian distributions, 100 independent times (see parameters 
in Table  1). The first two components are close to one another while the third and fourth are clearly dis-
tinct from the first two and also distinct from each other. For a given model indexed by K, the estimation of 
parameters is performed with the R package Rmixmod (Biernacki et al., 2006; Lebret et al., 2015) for a Gauss-
ian mixture model with diagonal variance matrix (that is, the pkLkBk model in the notation of the Rmixmod 
package, corresponding to clusters with variable proportions, variable volumes, variable shapes and vertical 
or horizontal orientation). We estimate the parameters for models with the number of clusters K varying from 
1 to 10 and perform model selection to select the most appropriate number of clusters. Over the 100 replicated 
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datasets, the BIC most frequently selects four clusters (81 times). Indeed, we note that these clusters corre-
spond to the simulated Gaussian components. The ICL criterion selects either three (54 times) or four clusters 
(46 times), as it tends to merge the two similar components (1 and 2 from Table 1).

We illustrate the potential utility of accounting for external gene annotations in model selection by simu-
lating such annotations and performing model selection with the corresponding SICL and the ICAL criteria. 
We simulate three types of functional annotations: uA, uB and uC (see Figure 1). The genes annotated for the 
first function uA are shared by the two closest mixture components (components 1 and 2 from Table 1). This 
annotation is designed to be associated to the components in the sense that it suggests the interest of merging 
the two clusters, as they share similar joint distributions and external annotations. The genes annotated for 
the second function uB are shared only by the two clearly distinct components (components 3 and 4 from 
Table 1). This annotation is designed to be unassociated with the components: although the components share 
a similar function, their joint distributions are too distinct to be merged from a modelling point of view. Finally, 
the genes annotated for the third function uC are randomly spread over the four components: meaning the 
annotation is mixed (half associated/half unassociated). For each function, we simulate the annotation using 
binomial random variables, with parameters fixed to yield on average nannot annotated genes over 200 possible 
genes. In the following, we tested two levels of annotation densities = =annot

annot :  0.05annot

n
d d

n
 and dannot = 0.25. 

Since the ICAL and SICL criteria can be used with more than one external annotation, we also illustrate the 
potential utility of including more than one annotation. For each set of annotations used in our simulation, 
the number of annotations varies from 1 to 12. Each annotation in the set is simulated independently.

Table 1: Parameters of simulated datasets: the first two components are close to one another while the third and fourth are 
clearly distinct from the first two and also distinct from each other.

Component  Mixing proportions  Component distribution

1   0.25  
0 1 0

 , 
0 0 1.7

    
    
    

N

2   0.25  
0 1 0

 , 
5 0 1.7

    
    
    

N

3   0.25  
9 0.1 0

 , 
8 0 1

    
    
    

N

4   0.25  
9 1 0

 , 
0 0 0.8

    
    
    

N
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Figure 1: Illustration of a simulated dataset and three annotation patterns. For each figure, the 200 observations are drawn 
from a mixture of Gaussian bivariate components whose parameters are defined in Table 1: circles, triangles, inverted triangles 
and diamonds correspond to components 1–4. The three figures correspond to three annotation patterns: associated anno-
tation uA (A), unassociated annotation uB (B) and mixed annotations uC (C). For each annotation, the 20 annotated genes are 
represented by colored bold crosses.
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4.2  Simulation results

All penalized criteria (BIC, ICL, SICL and ICAL) versus the number of clusters for one simulated dataset with 
dannot = 0.05 are displayed in Figure 2A. Over the 100 simulated datasets, ICAL selects three clusters 72 times, 
merging the two closest components 1 and 2 (Table 2). This three cluster solution is meaningful with respect 
to the information provided by uA, as all annotated genes are attributed to the same cluster. In this case, 
the external information provided by the associated annotation uA reinforces the model selection. Using the 
same pattern as uA (annotations shared by components 1 and 2 only), we simulate 12 independent associated 
annotations with density dannot = 0.05. The evidence to merge clusters increases with the number of annota-
tions (one versus 12 annotations). The number of annotations in the set (12 annotations) is chosen so that 
the evidence to merge clusters was sufficiently strong: over the 100 simulated datasets, ICAL systematically 
selects a three cluster solution (Table 2). For this set of 12 external annotations, the peak of the ICAL displayed 
in Figure 2B is much sharper than the peak of ICL. In contrast, SICL more frequently selects a four- or even 
five-cluster solution, as it leads to a preference of smaller clusters containing only annotated genes (i.e. a 
high specificity of annotation within each cluster). This demonstrates the utility of the ICAL criterion over the 
SICL, as it does not correctly take into account the specificity of gene annotation.
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Figure 2: BIC, ICL, SICL and ICAL information criteria versus the number of clusters on one simulated dataset for the informative 
annotations: uA (A) and 1 12

A A, , …u u  (B). Triangles indicate the maximum value attained by each criterion.

Table 2: Number of simulated datasets for which each model (K = 1, …, 10) was selected by BIC, ICL, SICL and ICAL for several 
external annotations with density dannot = 0.05 over 100 independent datasets simulated with parameters detailed in Table 1.

    K   1  2  3  4  5  6  7  8  9  10

    BIC       19  81           
    ICL       53  47           

Associated annotations   uA   SICL       51  49           
    ICAL       72  28           
  1 12

A A, , u u…   SICL       27  70  3         
    ICAL       100             

Unassociated annotations  uB   SICL       53  46  1         
    ICAL       53  47           
  1 12

B B, , u u…   SICL       53  44  3         
    ICAL       53  47           

Mixed annotations   uC   SICL       50  50           
    ICAL       67  33           

Multiple annotations   uA, uB, uC   SICL       48  51  1         
    ICAL       81  19           

The model most commonly selected for each criterion is highlighted in bold.
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For unassociated annotation uB with dannot = 0.05, the behavior of the information criteria versus the 
number of clusters for one simulated dataset is displayed in Figure 3A. We note that the ICAL criterion behaves 
similarly to the ICL. Over the 100 simulated datasets, ICAL, as ICL, leads to some uncertainty as to whether a 
three cluster solution (53 times) or a four cluster solution (47 times) is best (Table 2). In this case, the annota-
tion uB is not related to the components and has no impact on the resulting clustering, even if the number of 
annotations in the set is increased to 12, each simulated with the same pattern as uB as displayed in Figure 3B.

Finally, for the mixed annotation uC with dannot = 0.05, ICAL most frequently selects three clusters (67 
times) or four clusters (33 times). Because the annotation uC is mixed, there is less evidence to merge the two 
clusters on the left than in the case of the informative annotation uA. Using the three types of annotations at 
the same time (uA, uB, uC), the ICAL criterion almost systematically selects three clusters (Table 2).

The potential utility of accounting for external gene annotations in model selection is highlighted in the 
numerical results summarized in Table 2. First, these results illustrate that the SICL is not well-adapted to 
account for gene annotations in model selection; at best SICL behaves like ICL and at worst, erroneously splits 
clusters that should be merged. However, if the external information is associated to the components, even 
partially so, the use of the ICAL criterion improves model selection in terms of functional interpretability. If 
the external information is unassociated to the components, the ICAL criterion simply behaves like the ICL.

To assess the influence of annotation density on our results, we repeated the experiment for a higher 
density (dannot = 0.25), as summarized in Table 3. Generally speaking, we note that when the number of anno-
tations in the set increases, the evidence to merge clusters is stronger; for a higher density of annotations, 
a smaller number of annotations in the set is needed to merge clusters. In particular, for a lower density of 
annotations (dannot = 0.05), increasing the number of associated low density annotations in the set (from one 
to twelve) also increases the level of confidence to merge clusters; clusters 1 and 2 are merged 72% of the time 
for a single annotation, and systematically merged in all simulated datasets for a set of twelve annotations 
(Table 2). On the other hand, for a higher density of annotations (dannot = 0.25), clusters 1 and 2 are systemati-
cally merged even for a set of one single annotation (Table 3). If the annotation density is high (i.e. where 
more than half of the genes in clusters 3 and 4 are annotated), multiple unassociated annotations can lead to 
overly parsimonious solutions, such as the two cluster solutions in Table 3.

5  RNA-seq data analysis

5.1  Presentation of the RNA-seq data and clustering settings

Mach et al. (2014) analyzed transcriptome differences in the small intestine of healthy piglets to better under-
stand their immune response. The expression of 24924 genes across 12 samples was measured using RNA-seq, 
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Figure 3: BIC, ICL, SICL and ICAL information criteria versus the number of clusters on one simulated dataset for the non inform-
ative annotations: uB (A) and 1 12

B B, , …u u  (B). Triangles indicate the maximum value attained by each criterion.
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corresponding to three different tissues (the duodenum, the jejunum and the ileum), each sequenced for four 
different healthy piglets. The raw data are available at NCBI’s SRA repository (PRJNA221286 BioProject; acces-
sions SRR1006118 to SRR1006133), and sequencing reads were pre-processed (i.e. quality control, alignment, 
and estimation of gene expression) as described in Mach et al. (2014). We performed a differential analysis 
using a negative binomial generalized linear model as implemented in the edgeR package version 3.4.2 (Rob-
inson et al., 2010). We identified 4021 genes as differentially expressed among any of the tissues after control-
ling the false discovery rate (FDR) below the level 0.05 with the approach of Benjamini and Hochberg (1995). 
For the following co-expression analysis, we restrict our attention to this set of differentially expressed genes.

The co-expression analysis was performed on the logarithm of the counts scaled by the library size times 
one million. This transformation was used in Law et al. (2014) to stabilize the unequal variabilities typical of 
RNA-seq data and enable the use of a Gaussian linear model. The count expression yij of gene i for sample j 

(i = 1, …, n; j = 1, …, q) is transformed as follows: 
 +

− = × + 
6

2

0.5
log cpm( ) log 10 ,

1
ij

ij
j

y
y

N where Nj is the total count 

normalization factor for sample j computed on the full set of genes. All replicates were included in the cluster-
ing analysis following transformation, rather than averaging over replicates within each condition.

Subsequently, Gaussian mixture models were estimated for the transformed data using the Rmixmod 
package version 2.0.2 (Biernacki et al., 2006) for a number of clusters from 1 to 50. For each model, we used a 
small EM strategy for initialization (Biernacki et al., 2003) and repeated estimation 10 times.

5.2  Presentation of functional annotation data

The Molecular Signatures Database (Liberzon et al., 2011) was built by the Brain Institute and provides col-
lections of annotated gene sets for use with the Gene Set Enrichment Analysis software (Subramanian et al., 
2005). The Molecular Signatures Database (MSigDB) contains collections of gene sets from several sources: 
positional gene sets, curated gene sets from online pathway databases, motif gene sets, computational gene 
sets, GO gene sets, oncogenic canonical pathways and immunologic signatures. We used the Canonical Path-
ways (CP) gene sets collection, compiling 1320 canonical representations of biological processes curated by 
domain experts from online metabolic and signaling pathways databases such as the KEGG (http://www.
genome.jp/kegg), BioCarta (http://www.biocarta.com) and Reactome databases (http://www.reactome.org).

Among the 1320 CP in the database, 1131 are represented among the 4021 differentially expressed genes. 
We select the CPs for which annotated genes are overrepresented in the set of differentially expressed genes 

Table 3: Number of simulated datasets for which each model (K = 1, …, 10) was selected by BIC, ICL, SICL and ICAL for several 
external annotations with density dannot = 0.25 over 100 independent datasets simulated with parameters detailed in Table 1.

    K   1  2  3  4  5  6  7  8  9  10

    BIC       19  81           
    ICL       53  47           

Associated annotations   uA   SICL       52  48           
    ICAL       100             
  1 2 3

A A A, , u u u   SICL       53  47           
    ICAL       100             

Unassociated annotations  uB   SICL       53  47           
    ICAL       53  47           
  1 2 3

B B B, , u u u   SICL       53  47           
    ICAL     6  47  47           

Mixed annotations   uC   SICL       52  48           
    ICAL       94  6           

Multiple annotation   uA, uB, uC   SICL       51  49           
    ICAL       100             

The model most commonly selected for each criterion is highlighted in bold.
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with respect to the set of non-null genes using a Fisher’s exact test. Since a test is performed for every possible 
annotation (i.e. each CP), we select those whose adjusted p-value is less than 0.05, after applying a Bonferroni 
correction for multiple testing. This procedure yields 10 CPs of interest, as described in Table 4.

5.3  Model selection

We compare the results of model selection performed by the four different criteria presented in Sections 2 and 
3: BIC selects 28 clusters, ICL and SICL select 23 clusters while ICAL selects 20 (see Figure 4). Figures 5 and 6 

Table 4: Number of genes annotated for each canonical pathway (CP): among the 4021 differentially expressed (DE) genes and 
among the full CP gene set collection of the MSigDB database.

CP   Name   DE genes  Total genes

1   Reactome metabolism of lipids and lipoproteins   141  480
2   Reactome transmembrane transport of small molecules   124  415
3   Reactome hemostasis   99  468
4   Reactome SLC mediated transmembrane transport   73  243
5   Reactome phospholipid metabolism   54  200
6   Reactome fatty acid triacylglycerol and ketone body metabolism   53  170
7   KEGG PPAR signaling pathway   34  71
8   KEGG ECM receptor interaction   34  86
9   Reactome transport of inorganic cations anions and amino acids oligopeptides  33  96
10   KEGG peroxisome   31  80
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Figure 4: BIC, ICL, SICL and ICAL information criteria (respectively A–D) versus the number of clusters for the pig RNA-seq data 
for 10 independent initializations, represented by 10 gray circles for each number of clusters K. Solid lines link the maximum of 
the criteria over the 10 initializations over the collection of models. The red crosses correspond to the maximum of the criteria, 
which correspond to the selected models.

Brought to you by | INRA Institut National de la Recherche Agronomique
Authenticated

Download Date | 12/4/15 10:02 AM



424      M. Gallopin et al.: Model selection for clustering of annotated gene expression data

Ile
um

_1

Ile
um

_2

Ile
um

_3

Ile
um

_4

Je
ju

nu
m

_1

Je
ju

nu
m

_2

Je
ju

nu
m

_3

Je
ju

nu
m

_4

D
uo

de
nu

m
_1

D
uo

de
nu

m
_2

D
uo

de
nu

m
_3

D
uo

de
nu

m
_4

−3 0 3

Row Z−Score

Color key

Figure 5: Heatmap of the ICL clusters. The RNA-seq data, expressed in log-cpm is centered and scaled. Colors on the heatmap 
reflect the level of normalized expression: low in red, high in yellow. The 23 clusters are indicated by colors on the left side of 
the heat map.

are heatmaps of the resulting clusters for the ICL and ICAL solutions respectively. The approximate corre-
spondences between clusters in the ICAL and ICL solutions are displayed in Table 5. Although the result of the 
former is not perfectly nested in the latter, in many cases the attribution of genes to clusters in the ICAL solu-
tion is a result of collapsing or partially collapsing several clusters from the ICL solution. For example, the 
ICAL merges most of cluster 2 and parts of clusters 5 and 18 from the ICL solution because they share similar 
expression profiles and functional annotations, as illustrated in Figure 7. This suggests that the ICL favors a 
slightly more complex solution, as expected; we next investigate whether the more parsimonious solution of 
the ICAL appears to be coherent given the set of CP used.

For the ICL and ICAL solutions, we examine associations between clusters and CP using Fisher’s exact 
test. Significant p-values are summarized in Table 6. The ICAL criterion yields a clustering that maximizes the 
number of genes annotated in each cluster for each CP while still only grouping genes that share sufficiently 
similar expression profiles. For example, we note that CP8 is associated with two different clusters in the ICL 
solution, while it is associated with a single cluster in the ICAL solution; similarly, CP10 is associated with 
three clusters in the ICL solution and only two clusters in the ICAL solution. On the other hand, although 
clusters 10 and 17 in the ICAL solution both share annotations for CP10, these clusters are not collapsed into 
one using the proposed criterion, as their expression dynamics are too different. As such, the ICAL solution 
appears to enable the identification of more biologically interpretable clusters than the ICL, while still ensur-
ing that the clustered genes share sufficiently similar expression dynamics.

Finally, we note that the ICAL solution exhibits two clusters of particular interest with respect to the 
biological processes studied: Cluster 5 (379 genes) is associated with CP3 (reactome homeostasis, p = 0.0002) 
and CP8 (KEGG ECM receptor interaction, p = 0.00001). Cluster 10 (297 genes) is associated with CP1 (reactome 
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Figure 6: Heatmap of the ICAL clusters. The RNA-seq data, expressed in log-cpm is centered and scaled. Colors on the heatmap 
reflect the level of normalized expression: low in red, high in yellow. The 20 clusters are indicated by colors on the left side of 
the heat map.

Table 5: Approximate composition of the 20 clusters of the ICAL solution with respect 
to the 23 clusters of the ICL solution.

ICAL clusters  ICL clusters

Cluster 1   1
2 9           

Cluster 2   15           
Cluster 3   10           
Cluster 4   11           
Cluster 5   1

2 5  +  12  +  1
2 20  +  1

2 22
Cluster 6   2  +  1

2 5  +  1
3 18   

Cluster 7   8           
Cluster 8   4  +  9  +  16   
Cluster 9   3  +  1

2 6       
Cluster 10   7  +  1

2 6       
Cluster 11   13  +  1

4 20  +  1
2 22   

Cluster 12   23           
Cluster 13   7  +  17  +  1

3 18   
Cluster 14   21           
Cluster 15   19           
Cluster 16   1           
Cluster 17   14  +  1

3 18       
Cluster 18   1           
Cluster 19   1

4 20  +  1
2 5       

Cluster 20   16           

Lines in bold correspond to clusters of the ICAL solution that are formed by several clus-
ters or parts from clusters of the ICL solution. For example, cluster 5 of the ICAL solution is 
approximately made of clusters 12 and parts of clusters 5, 20 and 22 of the ICL solution.
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Figure 7: Heatmap of cluster 6 of the ICAL solution. The RNA-seq data, expressed in log-cpm is centered and scaled. Colors on 
the heatmap reflect the level of normalized expression: low in red, high in yellow. The colors and numbers on the left side of the 
heatmap indicate the corresponding clusters from the ICL solution that have been merged in the ICAL solution.

Table 6: Table of associations between clusters and CP for the ICL solution (A) and the ICAL solution (B).

  Size  CP1   CP2   CP3   CP4   CP5   CP6   CP7   CP8   CP9  CP10

(A) [ICL solution]
 Cluster 2   58    ★   ★   ★            
 Cluster 5   203                ★    
 Cluster 6   47                    ★★

 Cluster 7   258  ★           ★         ★

 Cluster 8   96          ★★          
 Cluster 10  287                  ★  
 Cluster 14  225                    ★★

 Cluster 22  144      ★★           ★★★    

(B) [ICAL solution]
 Cluster 3   297                  ★  
 Cluster 5   379      ★★           ★★★    
 Cluster 6   156    ★★   ★              
 Cluster 7   92          ★          
 Cluster 10  267  ★           ★★         ★★

 Cluster 17  235                    ★★

Associations are detected using Fisher’s exact tests: the number of stars indicates the value of the p-value (★ below 0.01, ★★ 
below 0.001, ★★★ below 0.0001).
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metabolism of lipids and lipoproteins, p = 0.002), CP6 (reactome fatty acid triacylglycerol and ketone body 
metabolism, p = 0.005) and CP10 (KEGG peroxisome, p = 0.0001), all of which correspond to fatty acid metabo-
lism. Both clusters 5 and 10 contain unknown genes that may be good candidates for follow-up studies to 
determine whether they may be implicated in the corresponding canonical pathways.

6  Discussion
In this paper, we present a novel way to incorporate functional annotations into model-based clustering of 
gene expression data. To this end, we have developed a model selection criterion, the Integrated Completed 
Annotated Likelihood (ICAL) which is designed to select the model that jointly maximizes the goodness-of-fit 
to the data and the association of clusters and annotations. From a biological point of view, the ICAL criterion 
aims to select models with more interpretable clusters than those selected by BIC or ICL. It is important to 
note that the functional annotations are not directly included in the clustering model and are only used to 
select the best model. This approach is a good compromise between two opposite strategies: including func-
tional annotations directly in the clustering model (Morlini, 2011) or excluding them altogether and using 
them only to validate clusters a posteriori. Since we do not include annotations in the clustering model, we 
detect associations between annotations and clusters with a stronger evidence than if we had included the 
external annotations in the clustering model. In particular, the ICAL criterion is a good way to include prior 
biological expertise without according it too much importance, which is a good balance between what can be 
observed in the data and what experts expect to see in the data.

As illustrated in numerical simulations, the model selected by ICAL depends on the quality of the anno-
tation information provided. Selecting the appropriate annotations to include in ICAL is an important step 
and should be done based on expert knowledge. We also suggest the use of gene annotation databases that 
are curated manually by experts, such as the gene sets collection from the MSigDB database (Liberzon et al., 
2011). However, the choice of annotations should reflect the biological functions of interest to a particular 
study, making it difficult to provide general guidelines about how such annotations should be chosen in 
practice. We note that if the annotations chosen are not relevant to the cluster patterns present in the data, 
they do not contribute any information and ICAL tends to behave like the ICL criterion.

In this work, we applied the ICAL using the framework of Gaussian mixture models, but the extension to 
other mixture models is straightforward; including Poisson (Rau et al., 2015) or Dirichlet multinomial mixture 
models (Holmes et al., 2012). In addition, this model selection strategy may be useful for other types of data 
which may also be associated with incomplete external annotations (e.g. sociology, marketing).

Acknowledgments: We thank Jordi Estellé for providing the RNA-seq data in Section 5 and providing insight 
on the external annotations and clustering results.
Funding: Allocation ministérielle de recherche du ministère de l’enseignement supérieur et de la recherche. 
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