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Abstract
This paper presents a self-contained proof of the strong completeness of the labeled tableaux method for
partial monoidal Boolean BI: if a formula has no tableau proof then there exists a counter-model for it which
is simple. Simple counter-models are those which are generated from the specific constraints that occur during
the tableaux proof-search process. As a companion to this paper, we provide a complete formalization of this
result in Coq1 and discuss some of its implementation details.

1 Introduction
This paper presents the detailed and self-contained proofs of soundness and (strong) completeness of a
sub-structural logic called partial monoidal Boolean BI. To our knowledge, the completeness proof for
this logic has never been published but the soundness proof was already presented in [19]. The aim of
this paper is double: first, to serve as a reference for the completeness result of an important variant
of Boolean BI [20] strongly related to Separation Logic [17, 21]; and second, to serve as a guideline for
the formal Coq2 proof that implements the results of this paper. Although not strictly identical to the
informal proof, the formal proof follows the same plan and there exists a high level of correspondence
between intermediate results of both proofs. This correspondence is discussed in a specific section.

The logic Boolean BI is characterized here both with its Kripke semantics and through a proof
system based on a labeled tableaux calculus. The addition of labels (and constraints) to traditional
proof systems like sequent calculi or tableaux calculi can be a way to introduce specific semantic
informations within the proof system, something that could otherwise be difficult or impossible with
a pure syntactic setting. This framework of labels was introduced for intuitionistic BI in [14] and for
Boolean BI in [19]. It has been used for other logics like intuitionistic or intermediate logics as well: as
an example, Roy Dyckhoff and Sara Negri used a labeled sequent calculus to propose decision methods
for Gödel-Dummett logic [11].

The Logic of Bunched Implications [26, 27] called BI is a sub-structural logic usually considered as
the foundation of separation logics [17, 23] and spatial logics [6]. It contains both additive operators
like ∧, ∨ and → and multiplicative operators like ∗ and −∗. The multiplicative operators are those of
multiplicative intuitionistic Linear Logic [15]. The additives can be interpreted either as in intuitionistic
logic which gives rise to intuitionistic BI [27], or as Boolean operator which gives rise to Boolean

1the Coq code is distributed under a free software license and is accessible at http://www.loria.fr/~larchey/BBI.
2the Coq system is open source software accessible at http://coq.inria.fr.
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BI [27, 13]. We mention also Classical BI [3, 4] as another variant of BI which combines Boolean
additives with classical multiplicatives.

The core semantic link between BI and separation logic can be summed up in the Kripke sharing
interpretation of the multiplicative conjuction:

m  A ∗B iff there exists a, b such that a ◦ b . m and a  A and b  B

The ternary composition/decomposition relation − ◦ − . − reads either as “m is a result of the
composition of a and b” or “m can be decomposed into a and b.” The interpretation of composi-
tion/decomposition depends on the variant of the logic and/or model, see [19, 21] for an overview
of some possible interpretations of this relation. In this paper we will focus on Boolean BI (denoted
BBI), more precisely on partial monoidal BBI. In this case, the composition ◦ is a partial monoidal
operator and the relation . is the identity or at least a congruence relation w.r.t. the partial monoidal
composition ◦. This is not a restriction since all the models of separation logic and abstract separation
logic [7] are in fact partial monoids [21].

Contrary to what happened with intuitionistic BI which was well defined by a cut-free bunched
sequent calculus since its inception [27], later completed with a decidability result [14], the proof theory
of BBI was, at first, not very well understood. In [27], it is defined as the addition of a double negation
principle/axiom to intuitionistic BI, but of course, with this axiom, you loose either cut-elimination
or the bunched sequent calculus. In [13], a sound and complete Hilbert style proof system is given
for relational/non-deterministic BBI. Later, [2] provided a cut-free Display-style sequent calculus for
relational BBI. In [19], a sound labeled tableaux calculus is given for partial monoidal BBI, leading to
an embedding of intuitionistic BI into Boolean BI, a result which was quite unexpected at that time.3
But it was still unknown whether relational and partial monoidal BBI coincide or not, or whether BBI
was decidable or not.

The situation recently improved a lot with a model that distinguishes relational and partial
monoidal BBI [20] as well as other variants of Boolean BI, leading to a family of different logics [18],
and an undecidability result otained for the whole family of BBI/separation logics, independently and
simultaneously in [5] and [20]. We also mention the undecidability result for Classical BI [5, 18]. These
undecidability results doomed the different attempts made at providing a decision procedure for BBI
either through Display logic [2] or through tableaux calculi [19].

However in this paper, we explain how the labeled tableaux calculus can still be usefull as a tool
for the study of the properties of BBI, like finer completeness results. We believe that the labeled
calculus can also serve as an effective semi-decision algorithm for partial monoidal BBI, but we will
only mention this as a perspective. This work also comes as a complement to [19], the knowledge of
which being advised but not required. Let us give a quick overlook of the content of the upcoming
sections:

• in Section 2, we describe a framework of labels represented by words and constraints between
those labels that can be used as a syntactic representation for partial monoids. The solutions of
those constraints, partial monoidal equivalences, give a foundation to the semantics of (partial
monoidal) BBI;

• in Section 3, we introduce the syntax and Kripke semantics of (partial monoidal) BBI and the
notion of (counter-)model;

• in Section 4, we present the labeled tableaux calculus for BBI with a table of branch expansion
rules and the conditions under which the branches of BBI-tableaux are closed. We review some
ground properties of the tableau calculus;

• in Section 5, we adapt the soundness proof already given in [19]: any BBI-formula that has a
closed BBI-tableau is a universally valid formula. There is nothing really new in this section
except the link with the formal Coq proof;

3and it is the completeness of that labeled tableau calculus that we establish here.
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• Section 6 details the main concepts that lie at the heart of the strong completeness result: the
notion of Hintikka set, the notion of fair strategy and the notion of oracle. We point out that
contrary to the case of first order logic, it is not sufficient to obtain a maximaly consistent set
of formulæ to be able to extract a counter-model. The Hintikka set has to be constructed more
carefully in the case of BBI. We characterize the constraints generated during proof-search as
basic: they are of the form ab−·····−m, am−·····− b and ε−·····−m where m is an already defined label, ε is
the empty label and a, b are two new labels. Simple models arise as those generated by (infinite)
sequence of basic constraints. We finish with the strong completeness result: any BBI-formula
that has no closed BBI-tableau has a simple counter-model;

• in Section 7 we focus on the slight differences that exist between the informal proof and the
formal proof, mainly consequences of the divergence between the informal meta-logic (classical
set theory) and the formal meta-logic (the calculus of inductive constructions);

• in Section 8 we discuss the perspectives of this work: the study of the specific properties of basic
and simple BBI models like cancellativity, the effective computation of the solutions of basic
sequences of constraints and its use in the context of semi-decision methods for BBI.

2 Partial Monoidal Equivalences
We will now introduce a framework of labels and constraints to syntactically represent partial monoids
which form the semantic basis of partial monoidal Boolean BI. As any partial monoid can be obtained as
a quotient of a set of words by a partial monoidal equivalence, we will derive a soundness/completeness
result from this labeled semantics of BBI (see Section 3).

2.1 Words, constraints and PMEs
Let L be a (potentially infinite) alphabet of letters. We consider the set of words L? where the order of
letters is not taken into account, i.e. we consider words as finite multisets of letters. The composition of
words is denoted multiplicatively and the empty word is denoted ε and thus (L?, ·, ε) is the commutative
monoid freely generated by L.

We denote x ≺ y when x is a subword of y, i.e. when there exists a word k such that kx = y. If
x ≺ y, there is only one k such that xk = y and it is denoted y/x, hence y = x(y/x). The (carrier)
alphabet of a word m is the set of letters of which it is composed: Am = {l ∈ L | l ≺ m}. We may view
the alphabet L or any of its subsets X ⊆ L as a subset X ⊂ L?, i.e. we identify letters and one-letter
words.

Definition 1 (Constraint). A constraint is a ordered pair of words in L? × L? denoted m−·····− n.

We represent a binary relation R ⊆ L? × L? between words of L? as a set of constraints through
the logical equivalence: x R y iff x−·····−y ∈ R. We view constraints as syntactic objects whereas relations
between words can either be viewed as syntactic or semantic. When C = {. . . , xi −·····− yi, . . .} represents
a finite or infinite collection of individual constraints, it is viewed as a syntactic notion and we write
x−·····− y ∈ C for example. When R represents a relation between words, it is viewed as a semantic notion
and we rather write x R y. But the very nature of C and R is the same, that of a set of constraints. So
we will use both terminologies for the same objects throughout this article depending on whether we
view them more as syntactic objects or semantic objects. We will consider particular sets of constraints
closed under some deduction rules and their corresponding relations. Because closed relations/closed
sets of constraints can themselves be viewed as models, they are most of the time considered as semantic
objects rather than syntactic ones.

Definition 2 (Language of/alphabet of). The language of a binary relation R ⊆ L?×L? denoted
LR is defined by LR = {x ∈ L? | ∃m,n ∈ L? s.t. xm R n or m R xn}. The carrier alphabet of R
denoted AR is defined by AR =

⋃
{Am ∪ An | m R n}.
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ε−·····− ε
〈ε〉

x−·····− y
y −·····− x

〈s〉
ky −·····− ky x−·····− y

kx−·····− ky
〈c〉

xy −·····− xy
x−·····− x

〈d〉
x−·····− y y −·····− z

x−·····− z
〈t〉

Table 1: Rules for the definition of PMEs.

A word m ∈ L? is said to be defined in R if m ∈ LR and is undefined otherwise. A letter l ∈ L is
new to R if l 6∈ AR. The language LR is downward closed w.r.t. the subword order ≺. The inclusion
LR ⊆ A?R and the identity AR = LR ∩ L hold. If R1 and R2 are two relations such that R1 ⊆ R2 then
the inclusions AR1 ⊆ AR2 and LR1 ⊆ LR2 hold. Let us define the particular sets of constraints/relations
we are interested in.

Definition 3 (PME). A partial monoidal equivalence (PME) over the alphabet L is a binary relation
∼ ⊆ L? × L? which is closed under the rules 〈ε, s, c, d, t〉 of Table 1.

We provide some derived rules which will be more suitable for proving properties of PMEs through-
out this article.

Proposition 4. PMEs are closed under rules 〈pl, pr, el, er〉:

kx−·····− y
x−·····− x

〈pl〉
x−·····− ky
y −·····− y

〈pr〉
x−·····− y yk −·····−m

xk −·····−m
〈el〉

x−·····− y m−·····− yk
m−·····− xk

〈er〉

Proof. For rule 〈pl〉 and then rule 〈pr〉, we provide the two deduction trees:

kx−·····− y

kx−·····− y
〈s〉

y −·····− kx
〈t〉

kx−·····− kx
〈d〉

x−·····− x

x−·····− ky
〈s〉

ky −·····− x
〈pl〉

y −·····− y

For rule 〈el〉 and then rule 〈er〉, we provide the two deduction trees:

yk −·····−m
〈pl〉

yk −·····− yk x−·····− y
〈c〉

xk −·····− yk yk −·····−m
〈t〉

xk −·····−m

x−·····− y

m−·····− yk
〈s〉

yk −·····−m
〈el〉

xk −·····−m
〈s〉

m−·····− xk

Remark that derived rule 〈pl〉 is applied in the left hand side deduction tree with parameter k equal
to the empty word ε. �

Rule 〈pl〉 (resp. 〈pr〉) is a left (resp. right) projection rule. Rules 〈el〉 and 〈er〉 express the capacity
to exchange related subwords inside the PME ∼, either on the left or on the right.

Proposition 5. Let ∼ be a PME over the alphabet L. The following identities hold:

L∼ = {x ∈ L? | x ∼ x} and A∼ = {l ∈ L | l ∼ l}

Proof. It is obvious that {x ∈ L? | x ∼ x} ⊆ L∼. For the converse, if xm ∼ n (resp. m ∼ xn) then
x ∼ x by rule 〈pl〉 (resp. rule 〈pr〉). Hence, L∼ ⊆ {x ∈ L? | x ∼ x}. As A∼ = L∼ ∩ L, we get
A∼ = {l ∈ L | l ∼ l}. �
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2.2 Sets of constraints and other properties of PMEs
Defined by closure under some deduction rules, the class of PMEs is thus closed under arbitrary
intersections. Thus, given a binary relation R between words described by a set of constraints, there
exists a least PME containing R, which will be denoted by either ∼R or R. We are especially interested
in PMEs generated by some finite or infinite set of constraints, and extensions of existing PMEs with
additional constraints.

Definition 6 (Generated PME). Let C be a set of constraints over the alphabet L.4 The PME
generated by C is the least PME containing C as a set of constraints. It is either denoted by ∼C or C,
depending whether we view it as a relation or a set of constraints. Hence, the denotations m ∼C n
and m−·····− n ∈ C are equivalent.

The operator C 7→ C is a closure operator on sets of constraints, i.e. it is extensive (C ⊆ C),
monotonic (C ⊆ D implies C ⊆ D) and idempotent (C ⊆ C).

Proposition 7 (Compactness). Let C be a (possibly infinite) set of constraints over the alphabet
L. Let m,n ∈ L? be such that m ∼C n holds. There exists a finite subset Cf ⊆ C such that m ∼Cf n
holds.

Proof. See Proposition 3.17 page 447 of [19]. �

The compactness property is not related to the particular nature of rules defining PMEs but solely
to the fact that the rules 〈ε, s, c, d, t〉 only have a finite number of premises.

Proposition 8. If C is a set of constraints over L then the identity AC = AC holds.

Proof. As C ⊆ C as set of constraints, we derive AC ⊆ AC . We now prove that AC ⊆ AC . Let ∼ be
defined by m ∼ n iff m,n ∈ A?C . Then, A∼ = AC , C ⊆ ∼ and it can be easily checked that ∼ is a PME.
Hence ∼C ⊆ ∼ and thus AC = A∼C ⊆ A∼ = AC . �

The identity LC = LC does not hold in general, but the inclusion LC ⊆ LC holds. However LC is
usually strictly included in LC .

Definition 9 (PME extension). Let ∼ be a PME and C be a set of constraints, both over L. We
denote by ∼+ C the extension of ∼ by the constraints of C which is ∼ ∪ C, the least PME containing
both ∼ and C.

If ∼ is a PME and C1 and C2 are two sets of constraints then the identities (∼ + C1) + C2 =
(∼+ C2) + C1 = ∼+ (C1 ∪ C2) hold. Moreover, for any m,n ∈ L?, the relation m ∼ n holds if and only
if the identity ∼ + {m −·····− n} = ∼ holds; in particular the identity ∼ + {ε −·····− ε} = ∼ holds because of
rule 〈ε〉.

2.3 Basic and simple PMEs
In Section 4, we will use PME extensions of the forms ∼+{ab−·····−m} or ∼+{am−·····−b} where a 6= b ∈ L\A∼
are two letters new to ∼, and also of the form ∼+{ε−·····−m}. As fully explained in upcoming Sections 4.2
and 6.4, these are the particular extensions that occur during proof-search using the semantic tableau
method for BBI. We call these extensions basic extensions.

4As C is also a relation, the alphabet of C is AC =
⋃
{Am ∪ An | m−·····− n ∈ C}, i.e. the set of letters which occur in at

least one of the constraints of C.
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Definition 10 (Basic extension). Given a PME ∼ over the alphabet L, a constraint is basic w.r.t.
∼ when it is of one of the three following forms:

1. ab−·····−m with m ∼ m and a 6= b ∈ L\A∼;
2. am−·····− b with m ∼ m and a 6= b ∈ L\A∼;
3. ε−·····−m with m ∼ m.

When x−·····− y is basic w.r.t. ∼, we say that ∼+ {x−·····− y} is a basic extension of the PME ∼.

Let (xi −·····− yi)i<k be a sequence of constraints with k ∈ N ∪ {∞} and Cp be the set of constraints
Cp = {xi −·····− yi | i < p} for p < k. We suppose that for any p < k, the constraint xp −·····− yp is basic with
respect to ∼Cp . If k < ∞ then the sequence (xi −·····− yi)i<k is called basic. This definition implies in
particular that the empty sequence of constraints is basic. If k = ∞ then the sequence (xi −·····− yi)i<∞
is called simple.

Definition 11 (Basic/Simple PME). A basic (resp. simple) PME5 is of the form ∼C where C =
{xi −·····− yi | i < k} and (xi −·····− yi)i<k is a basic (resp. simple) sequence of constraints.

We make the obvious following remark: according to those definitions, if ∼ is a basic PME and
∼+ {x−·····− y} is a basic extension of ∼ then ∼+ {x−·····− y} is a basic PME.

Using case 3 (with m = ε) of Definition 10, any (finite) basic sequence can be completed into an
(infinite) simple sequence by repeated use of the constraint ε −·····− ε. Since adding this constraint does
not change the corresponding PME (because of rule 〈ε〉), basic PMEs are also simple PMEs. Of course,
the converse is not true. Indeed, the alphabet of a basic PME is always finite whereas the alphabet of
a simple PME can be infinite. So the difference between basic and simple PMEs is that in the later
case, the underlying sequence can be infinite whereas it must be finite for basic PMEs.

2.4 PMEs and substitutions
In this section, we define the application of substitutions to constraints and show that the PME closure
operator C 7→ C commutes with substitutions.

Definition 12 (Substitution). Let L and K be two alphabets. A substitution σ is a total map from
letters to words σ : L −→ K?. We naturally extend a substitution σ in a total map from words to
words σ(·) : L? −→K? by σ(m) = σ(m1m2 . . .mk) = σ(m1)σ(m2) . . . σ(mk) and obtain a morphism
between (commutative) monoids. Given a set of constraints C over L, we also define the substituted
set of constraints σ(C) over K by

σ(C) = {σ(m)−·····− σ(n) | m−·····− n ∈ C}

A substitution of letters σ : L −→ L is a particular case of substitution where each image σ(a) is a
single letter word.

Theorem 13. For any substitution σ : L−→K? and any set of constraints C, the inclusion σ(C) ⊆ σ(C)
holds.

Proof. We define the binary relation ∼ by m ∼ n iff σ(m)−·····− σ(n) ∈ σ(C). Because the extension of σ
is a morphism of commutative monoids and σ(C) is a PME, it is easy to check that ∼ is also a PME.
From σ(C) ⊆ σ(C) we deduce C ⊆ ∼, hence we derive C = ∼C ⊆ ∼. Now let x −·····− y ∈ σ(C) and let us
prove x−·····− y ∈ σ(C). There exist a pair m−·····−n ∈ C such that x = σ(m) and y = σ(n). Since m−·····−n ∈ C,
we deduce m ∼ n and thus σ(m) −·····− σ(n) ∈ σ(C). Hence x −·····− y ∈ σ(C). The inclusion σ(C) ⊆ σ(C)
holds. �

5we make an important remark for those readers who did consult our earlier paper [19]. In that paper, we defined
BBI-elementary and BBI-simple PMEs. We point out that basic PMEs and BBI-elementary PMEs are not the same notions
and that the current Definition 11 of simple PME is different from the one of BBI-simple PME in [19] (Definitions 6.1
and 6.2 page 464). This does not affect the results in any way, it just reveals an unfortunate choice of terminology.
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Corollary 14. Let σ : L−→K? be a substitution and C be a set of constraints. For any m,n ∈ L? if
m ∼C n then σ(m) ∼σ(C) σ(n).

Proof. Given m,n ∈ L?, if m ∼C n then m −·····− n ∈ C then σ(m) −·····− σ(n) ∈ σ(C) (by definition of σ(C))
then σ(m)−·····− σ(n) ∈ σ(C) (by Theorem 13). Equivalently, we obtain σ(m) ∼σ(C) σ(n). �

3 Boolean BI and its labeled Kripke semantics
The language of the logic BBI is syntactically defined by the following grammar where Var is a countable
set of propositional variables:

Form : A,B ::= X | A ∧B | ¬A | I | A ∗B | A−∗B with X ∈ Var

Thus the denotation Form will be used to represent the set of formulae of BBI. We point out that
we only consider the Boolean connectives of negation ¬ and of conjonction ∧ since the other Boolean
connectives, either the constants ⊥, >, the disjonction ∨ or the implication → can be obtained by a
combination of ¬ and ∧. This nearly minimalist choice limits duplicated cases in many proofs of this
paper as well as in the formalized Coq proof presented in Section 7.

We introduce a Kripke interpretation of BBI formulae based on PMEs.
Definition 15. A BBI-frame is a triple (L,∼,) where L is an alphabet, ∼ is a PME over L, and 
is a forcing relation  ⊆ L∼ × Var which verifies the monotonicity property:

∀X ∈ Var, ∀m,n ∈ L∼, if m ∼ n and m  X then n  X

We extend the forcing relation to ∼ ⊆ L∼ × Form by induction on formulae:
m ∼ ¬A iff not m ∼ A
m ∼ A ∧B iff m ∼ A and m ∼ B
m ∼ I iff ε ∼ m
m ∼ A ∗B iff there exists x, y s.t. xy ∼ m and x ∼ A and y ∼ B
m ∼ A−∗B iff for any x, y if xm ∼ y and x ∼ A then y ∼ B

We may write  for ∼ when the relation ∼ is obvious from the context.

Proposition 16. The extended relation ∼ is monotonic.

Proof. Monotonicity holds when for any F ∈ BI (resp. F ∈ Form) and any m,n ∈ L∼, the condition
(m ∼ n ∧ m ∼ F ) ⇒ n ∼ F holds. It is standard to prove monotonicity by induction on the
formula F . When F is a logical variable, the monotonicity condition holds as a direct consequence of
Definition 15. For the additive operator ∧, the induction step is trivial. For the Boolean negation ¬,
the induction step involves the use of rule 〈s〉. For the multiplicative operators I and ∗, the induction
step involves the use of rule 〈t〉. For operator −∗, the induction step involves the use of the (derived)
rule 〈el〉. �

Definition 17 (Validity). A formula F ∈ Form is valid in the BBI-frame (L,∼,) if for everym ∈ L∼
the relation m ∼ F holds.

Fact 18 (Soundness/completeness of PMEs). A BBI-formula F is valid in every partial monoidal
Kripke structure if and only if it is valid in every BBI-frame.

Proof. A proof of this result is given in [19], see Theorems 3.12 and 3.13 pages 445–446. The main
idea is the following: given a PME ∼ over L?, the restriction of ∼ to L∼ is an equivalence relation
and the quotient L∼/∼ has the structure of a partial commutative monoid. Up to isomorphism, any
partial commutative monoid can be obtained as such a quotient (for a well chosen alphabet L). �

According to this theorem, we can define universal validity and counter-models for BBI. A BBI
counter-model for F ∈ Form is a tuple (L,∼,,m) where (L,∼,) is a BBI-frame, m ∈ L∼ and
m 1∼ F . F is universally valid when it has no BBI counter-model.
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T¬A : m ∈ X
({FA : m}, ∅)

〈T¬〉 F¬A : m ∈ X
({TA : m}, ∅)

〈F¬〉

TA ∧B : m ∈ X
({TA : m,TB : m}, ∅)

〈T∧〉 FA ∧B : m ∈ X
({FA : m}, ∅) | ({FB : m}, ∅)

〈F∧〉

TI : m ∈ X
(∅, {ε−·····−m})

〈TI〉

TA ∗B : m ∈ X and a 6= b ∈ L\AC
({TA : a,TB : b}, {ab−·····−m})

〈T∗〉
FA ∗B : m ∈ X and xy ∼C m
({FA : x}, ∅) | ({FB : y}, ∅)

〈F∗〉

TA−∗B : m ∈ X and xm ∼C y
({FA : x}, ∅) | ({TB : y}, ∅)

〈T−∗〉
FA−∗B : m ∈ X and a 6= b ∈ L\AC

({TA : a,FB : b}, {am−·····− b})
〈F−∗〉

Table 2: The list of branch expansion rules for the BBI-tableau system.

4 Labeled Tableaux for Boolean BI
We present a labeled tableau proof system for BBI and review some ground properties of tableaux.
In Section 5, we will give a proof of its soundness (i.e. any formula which has a closed tableau is
universally valid) and in Section 6, a proof of its completeness (i.e. any formula that has no closed
tableau has a counter-model).

For all the discussions in the present and future sections, we fix an infinite and countable alphabet
L = {c0, c1, c2, . . .} which is ordered by the injective sequence (ci)i∈N. Hence L is bĳectively enumerated
by this sequence. Labels will be words in the set L?.

4.1 Semantic tableaux with constraints for BBI
The tableaux we consider contain both statements and constraints. For a greater simplicity of nota-
tions, we separate these two kinds of entities.

Definition 19. A tableau statement is a triple (S, A,m) ∈ {T,F} × Form × L? written SA : m. A
constrained set of statements (CSS in short) is a pair (X , C) where X is a set of tableau statements
and C is a set of constraints such that for every statement SA : m ∈ X , the relation m ∼C m holds. A
CSS (X , C) is finite if both X and C are finite sets. The binary relation of inclusion 4 between CSS
defined by

(X , C) 4 (X ′, C′) iff X ⊆ X ′ and C ⊆ C′

is an order relation. We denote (Xf , Cf ) 4f (X , C) when (Xf , Cf ) 4 (X , C) holds and (Xf , Cf ) is finite.

Proposition 20. For any CSS (Xf , C) where Xf is finite, there exists Cf ⊆ C such that Cf is finite
and (Xf , Cf ) is a CSS.

Proof. By induction on the number of statements in Xf using the compactness property for PMEs
(Proposition 7). �

Let us start with an informal discussion of the tableau system which is centered around the notion
of branch expansion. The rules of Table 2 describe the atomic steps of the branch expansion process
by which BBI-tableaux are built. They have the following form:

cond(X , C)
(X1, C1) | · · · | (Xk, Ck)
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The CSS (X , C) represents a tableau branch and (X1, C1), . . . , (Xk, Ck) encode how the branch (X , C)
should be expanded provided the rule can be applied.6 The premise cond(X , C) is a condition expressing
when the rule can be applied. Each rule generates instances depending on different parameters such
as A,B ∈ Form, a, b ∈ L and x, y,m ∈ L?. Notice that X and C are not parameters: they are binders
for the predicate cond(X , C) and do not occur in X1, C1, . . . ,Xk, Ck.

When an instance of a rule is such that the condition cond(X , C) is fulfilled, we say that this
instance is fireable for (X , C). A rule instance fireable for the branch (X , C) can be applied to it and
in this case, the branch (X , C) is replaced by k new branches (X ∪ X1, C ∪ C1), . . . , (X ∪ Xk, C ∪ Ck) in
the tableau. We say that the rule instance is fired and that the new branches (X ∪ Xi, C ∪ Ci) are the
expansions of (X , C). We see that the branch on which a rule instance is fired is indeed expanded, i.e.
the information contained in the branch grows according to the inclusion order 4, but this expansion
is not necessarily strict on the obtained branches. We now give a formal definition of our BBI-tableaux
implemented by lists of branches.

Definition 21 (BBI-tableau). Let (X0, C0) be a CSS. A BBI-tableau for (X0, C0) is a (finite) list of
CSS which are called the branches of the tableau, built inductively according the following rules:

1. the one branch list [(X0, C0)] is a BBI-tableau for (X0, C0);

2. if the list Tl ++ [(X , C)] ++ Tr is a BBI-tableau for (X0, C0) and

cond(X , C)
(X1, C1) | · · · | (Xk, Ck)

is a fireable instance7 of some rule of Table 2, then the list

Tl ++ [(X ∪ X1, C ∪ C1); . . . ; (X ∪ Xk, C ∪ Ck)] ++ Tr

is a BBI-tableau for (X0, C0).

A BBI-tableau is a list of CSS which is a BBI-tableau for some CSS (X0, C0).

A quick look at the rules of Table 2 should convice the reader of the obvious fact that the branch
expansion process preserves lists of finite CSS. With a finner study of those rules, we will show that
expansion also preserves basic PMEs (see Proposition 33).

Proposition 22. Any expansion of a CSS (resp. finite CSS) is a CSS (resp. finite CSS).

Proof. Direct application of Proposition 4: using rules 〈pl〉 (resp. 〈pl〉 and 〈pr〉), we observe that the
extension ∼+ {ab−·····−m} (resp. ∼+ {am−·····− b}) contains the two constraints a−·····− a and b−·····− b. �

Proposition 23 (Monotonicity). If [(X1, C1); . . . ; (Xk, Ck)] is a BBI-tableau for (X0, C0) then the
inclusion (X0, C0) 4 (Xi, Ci) holds for any i ∈ [1, k].

Proof. By induction on the process (i.e. the sequence of fired instances) that builds the tableau for
(X0, C0). Left to the reader. �

Proposition 24 (Composition). If Tl ++ [(X , C)] ++ Tr is a BBI-tableau for (X0, C0) and T is a
BBI-tableau for (X , C) then Tl ++ T ++ Tr is a BBI-tableau for (X0, C0).

Proof. By induction, simply replay the process that built T inside the list context Tl++(·)++Tr. Left
to the reader. �

6In the specific rules of Table 2, the value of k is either 1 or 2.
7i.e. an instance for which the condition cond(X , C) is fulfilled.
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Definition 25 (Closure conditions). A CSS (X , C) is closed if at least one of the two following
conditions is fulfilled:

1. TA : m ∈ X , FA : n ∈ X and m ∼C n hold for some A ∈ Form and some m,n ∈ L?;

2. FI : m ∈ X and ε ∼C m hold for some m ∈ L?.

A CSS is open if it is not closed. A BBI-tableau is closed if all its branches are closed.

Proposition 26. The closures conditions of Definition 25 are monotonic, i.e. for any two CSS (X , C)
and (X ′, C′) such that X ⊆ X ′ and C ⊆ C′ both hold, if (X , C) is closed then (X ′, C′) is closed.

Proof. The inclusion C ⊆ C′ is equivalent to ∼C ⊆ ∼C′ . �

Proposition 27. Every (infinite) closed CSS contains a finite and closed sub-CSS.

Proof. We consider the two cases for closure of a CSS and we extract a finite and closed sub-CSS using
compactness Proposition 7:

1. if TA : m ∈ X , FA : n ∈ X and m ∼C n hold for some A ∈ Form, m,n ∈ L?, then by compactness,
let Cf be a finite subset of C such that m ∼Cf n. Let Xf = {TA : m,FA : n}. Then we have
(Xf , Cf ) 4f (X , C) and (Xf , Cf ) is a closed CSS;

2. if FI : m and ε ∼C m hold for some m ∈ L?, then by compactness, let Cf be a finite subset of C
such that ε ∼Cf m. Let Xf = {FI : m}. Then we have (Xf , Cf ) 4f (X , C) and (Xf , Cf ) is a closed
CSS.

�

Definition 28 (CSS substitutions). Let σ : L −→ K? be a substitution. If SA : m is a tableau
statement then we define σ(SA : m) = SA : σ(m). The substitution σ extends to (X , C) by

(σ(X ), σ(C)) = ({SA : σ(m) | SA : m ∈ X}, {σ(m)−·····− σ(n) | m−·····− n ∈ C})

If T is a list of CSS (typically a tableau) we write σ(T ) for σ(T ) = map σ T , i.e.

σ
(
[(X1, C1); . . . ; (Xk, Ck)]

)
= [(σ(X1), σ(C1)); . . . ; (σ(Xk), σ(Ck))]

Proposition 29. Let σ : L−→K? be a substitution. The following properties hold:

1. if (X , C) is a CSS then (σ(X ), σ(C)) is a CSS;

2. if (Xf , Cf ) is a finite CSS then (σ(Xf ), σ(Cf )) is a finite CSS;

3. if (X , C) 4 (X ′, C′) then (σ(X ), σ(C)) 4 (σ(X ′), σ(C′));

4. if (X , C) is a closed CSS then (σ(X ), σ(C)) is a closed CSS.

Proof. Immediate consequences of Corollary 14. �

4.2 Properties of BBI-tableau expansion
BBI-tableaux are stable under a substitution σ : L −→ L of letters provided σ satisfy two properties
that are bit weaker than its injectivity.

Theorem 30. Let (X , C) be a CSS and σ : L−→L be a substitution of letters such that σ is injective
on L\AC and the inclusion σ−1(σ(AC)) ⊆ AC holds. If T is a BBI-tableau for (X , C) then σ(T ) is a
BBI-tableau for (σ(X ), σ(C)).
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Proof. By induction of the process that builds the tableau for (X , C), see Appendix A. �

We now introduce an important result on the monotonicity of closed BBI-tableaux and give a brief
overview of its proof; the detailed proof is complicated by the fact that some of the new labels need
to be renamed to avoid conflicts.

Theorem 31. Let (X1, C1) and (X2, C2) be two finite CSS such that X1 ⊆ X2 and C1 ⊆ C2 both hold.
If (X1, C1) has a closed BBI-tableau then (X2, C2) has a closed BBI-tableau.

Proof. See Appendix A. The basic idea is to replay the rules that built the tableau for (X1, C1) on
(X2, C2). But since some letters in C2 might be new to C1, we have to be careful not using them in
the instances of rules that require new letters, i.e. rules 〈T∗〉 and 〈F−∗〉. For this proof, it is critically
important that L contains an infinite set of letters; the result itself would be invalid in case L was
finite. �

Corollary 32. Let a, b ∈ L and G ∈ Form be a BBI-formula. The following properties are equivalent:

1. the finite CSS ({FG : a}, {a−·····− a}) has a closed BBI-tableau;

2. the finite CSS ({FG : a}, {ε−·····− ε, a−·····− b}) has a closed BBI-tableau;

3. the finite CSS ({FG : a}, {a−·····− b}) has a closed BBI-tableau.

Proof. Let us prove (1 ⇒ 2). Let us suppose that ({FG : a}, {a −·····− a}) has a closed tableau. Using
rule 〈pl〉, we easily check that the inclusion {a −·····− a} ⊆ {ε−·····− ε, a−·····− b} holds. By Theorem 31, ({FG :
a}, {ε−·····− ε, a−·····− b}) has a closed tableau.

To prove (2⇒ 3), we use Theorem 31 remarking that {ε−·····− ε, a−·····− b} ⊆ {a−·····− b} because of rule 〈ε〉.
Let us first prove (3⇒ 1). So let us suppose that T is a closed tableau for ({FG : a}, {a−·····−b}). Then

let us consider σ = id[b/a] that maps b to a and preserves every other letter in L. Using Theorem 30
(with C = {a−·····− b}), we deduce that σ(T ) is a tableau for ({FG : a}, {a−·····− a}) of which every branch is
closed by Proposition 29. �

Proposition 33. Let (X0, C0) be a finite CSS such that ∼C0 is a basic PME. Let T be a BBI-tableau
for (X0, C0). For any branch (X , C) of T , ∼C is a basic PME.

Proof. It is sufficient to show that the branch expansion process preserves basic PMEs. The constraints
part of CSS is strictly expanded only in the case of rules TI, T∗ and F−∗. The constraints which are
added are ε −·····−m, ab −·····−m and am −·····− b respectively which exactly (and purposely) correspond to the
three cases of Definition 10. �

Fact 34. The current definition of BBI-tableau and the definition of TBBI-tableau of [19] characterize
the same notion of provability: given a BBI-formula G and a 6= b ∈ L, there exists a closed BBI-tableau
for the CSS ({FG : a}, {a −·····− b}) if and only if there exists a closed TBBI-tableau for the one-branch
and two-node tree [a−·····− b,FG : a].

We don’t give a formal proof of this result because it would require us to reintroduce the TBBI-
tableau system already defined in [19]. Moreover, the argument would be a bit tedious and would
likely hide the fundamental correspondence between those two systems. Indeed, tableaux are just
traces that keep track of some information about the (inductive) branch expansion process that builds
the tableau, i.e. when and how each fireable rule instance is applied. A tableau generally contains
enough information to determine how its branches can be further expanded, but not necessarily how
they were expanded so far. The equivalence between the BBI-tableau system and the TBBI-tableau
system lies in the fact that, despite different representations of tableau and tableau branches, both
systems define the same branch expansion process and have the same closure conditions on branches.
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But in our current definition of BBI-tableaux, we don’t keep track of how the tableau was built whereas
we did keep this information in the definition of TBBI-tableaux [19]. This choice is directed by the
use we intend for tableaux. Here, we focus on the completeness result and so we consider a tableau
representation allowing the manipulation of limits (infinite branches, see Section 6.3), whereas in [19]
we focused heavily on tableau proof transformations for which the ability of the reader to view and
replay the branch expansion process was our primary concern.

5 Soundness of the BBI-tableau system
The soundness proof displayed here uses the same argumentation as the one we provided in [19]. But
since tableaux are implemented a bit differently, the proofs are not strictly identical. It is decomposed
in two parts. We define the notion of realizability, which is for a given tableau, the fact that one of
its branches has a model. We then prove that closed tableaux are not realizable and that the branch
expansion process preserves realizability.

We consider BBI-tableaux over the alphabet L and BBI-frames over the alphabet K where L and K
have no relation a priori. So in statements like SF : m or in constraints likem−·····−n, the wordsm,n belong
to L? whereas the relation q ∼ F or q 1∼ F in the frame (K,∼,) involves the word q belonging to
K?. Recall that a substitution ρ : L−→K? is extended into a morphism of (commutative) monoids by
ρ(m) = ρ(m1m2 . . .mk) = ρ(m1)ρ(m2) . . . ρ(mk) when m = m1m2 . . .mk is a k letter word. We use
substitutions here to make the correspondence between the syntatic world of tableau statements and
constraints (over the alphabet L) and the semantic world of BBI-frames (over another alphabet K).

Definition 35 (Model/satisfaction). Given a tuple K = (K,∼,, ρ) where (K,∼,) is a BBI-
frame and ρ : L−→K? is a substitution, we say that the statement TA : m (resp. FA : m) is satisfied
in K if ρ(m) ∈ L∼ and ρ(m)  A (resp. ρ(m) 1 A). We say that the constraint m −·····− n is satisfied in
K if ρ(m) ∼ ρ(n). We say that a CSS (X , C) is satisfied in K = (K,∼,, ρ) if all the statements in X
and all the constraints in C are satisfied in K. Alternatively, we say that K is a model of (X , C).

Proposition 36. If a CSS (X , C) is satisfied in K = (K,∼,, ρ) and m,n ∈ L? verify m ∼C n then
ρ(m) ∼ ρ(n).

Proof. Since all the constraints of C are satisfied in K, we deduce ρ(C) ⊆ ∼, and thus we deduce
∼ρ(C) ⊆ ∼. By Corollary 14, from m ∼C n, we deduce ρ(m) ∼ρ(C) ρ(n) and thus ρ(m) ∼ ρ(n). �

Proposition 37. Let (X , C) be a CSS. Let (K,∼,) be a BBI-frame and ρ, ρ′ : L −→K? be substi-
tutions such that ρ(a) = ρ′(a) for every letter a ∈ AC . Then (X , C) is satisfied in (K,∼,, ρ) if and
only if it is satisfied in (K,∼,, ρ′).

Proof. Left to the reader. �

Definition 38 (Realizability). A BBI-tableau T is realizable if at least one of the branches of T has
a model.

Proposition 39. Closed BBI-tableaux are not realizable.

Proof. We prove that a closed branch (X , C) cannot be satisfied in any (K,∼,, ρ). Let us suppose
the contrary and proceed by case analysis on the closure condition:

1. if TA : m ∈ X , FA : n ∈ X and m ∼C n then, as (X , C) is satisfied in K, we have ρ(m) ∼ ρ(n)
by Proposition 36. Moreover, both TA : m and FA : n are satisfied in K and thus ρ(m)  A
and ρ(n) 1 A. As ρ(m) ∼ ρ(n), we obtain a contradiction using the monotonicity of  (see
Proposition 16);
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2. if FI : m ∈ X and ε ∼C m then, as (X , C) is satisfied in K, we have ε = ρ(ε) ∼ ρ(m) by
Proposition 36 and also ρ(m) 1 I. But then, we should have ε � ρ(m). Thus we obtain a
contradiction.

So we obtain a contradiction in any case. A closed branch cannot be satisfied. Thus closed BBI-tableaux
are not realizable. �

Lemma 40. BBI-tableau expansion preserves realizability.

Proof. Let T be a realizable BBI-tableau and let K = (K,∼,, ρ) be such that at least one branch of
T is satisfied in K. We consider the expansion of one of the branches of T by one of the fireable rule
instances of the BBI-tableau system of Table 2, obtaining the tableau T ′. If the expanded branch is
not among the ones satisfied in K then the satisfied branches are kept unchanged by the application of
the rule and the obtained tableau T ′ still contains a branch satisfied in K. Hence T ′ is still realizable.

So we consider the case when the branch (X , C) which is expanded is among the satisfied ones. We
proceed by case analysis depending on the rule applied:

T¬A : m ∈ X is satisfied in K and thus ρ(m) ∈ L∼ and ρ(m)  ¬A. Thus ρ(m) 1 A and FA : m is
satisfied in K. So the expanded branch (X ∪ {FA : m}, C ∪ ∅) of T ′ is satisfied in K;

F¬A : m Similar to case T¬;

TA ∧B : m ∈ X is satisfied in K hence ρ(m) ∈ L∼ and ρ(m)  A∧B. Then ρ(m)  A and ρ(m)  B
hence TA : m and TB : m are satisfied in K. So the expanded branch (X ∪ {TA : m,TB : m}, C)
of T ′ is satisfied in K;

FA ∧B : m ∈ X is satisfied in K hence ρ(m) ∈ L∼ and either ρ(m) 1 A or ρ(m) 1 B. Hence either
FA : m or FB : m is satisfied in K. So at least one of the two expanded branches of T ′ (namely
(X ∪ {TA : m}, C) or (X ∪ {TB : m}, C)) is satisfied in K;

TI : m ∈ X is satisfied in K hence ρ(m) ∈ L∼ and ρ(m)  I. Thus ε ∼ ρ(m). As ρ(ε) = ε, we
obtain ρ(ε) ∼ ρ(m) and thus the constraint ε −·····− m is satisfied in K. So the expanded branch
(X , C ∪ {ε−·····−m}) of T ′ is satisfied in K;

TA ∗B : m ∈ X is satisfied in K hence ρ(m) ∈ L∼ and ρ(m)  A ∗ B. So there exists x, y ∈ L∼
such that xy ∼ ρ(m), x  A and y  B. We define ρ′ = ρ[a 7→ x, b 7→ y] (possible because
a 6= b). Then for any m,n ∈ L? s.t. m ∼C n we have m,n ∈ A?C and thus ρ′(m) = ρ(m) and
ρ′(n) = ρ(n) (ρ and ρ′ are identical maps when restricted to AC because a, b 6∈ AC). Thus by
Proposition 37, (X , C) is satisfied in K′ = (K,∼,, ρ′). Moreover, ab −·····− m is satisfied in K′
(because ρ′(ab) = xy, ρ′(m) = ρ(m) and xy ∼ ρ(m)), TA : a is satisfied (because ρ′(a) = x
and x  A), and TB : b is satisfied (because ρ′(b) = y and y  B). So the expanded branch
(X ∪ {TA : a,TB : b}, C ∪ {ab−·····−m}) of T ′ is satisfied in K′;

FA ∗B : m ∈ X is satisfied in K hence ρ(m) ∈ L∼ and ρ(m) 1 A ∗B. (X , C) is expanded into two
branches (X ∪ {FA : x}, C) and (X ∪ {FB : y}, C) with x, y s.t. xy ∼C m. Then ρ(x)ρ(y) ∼ ρ(m)
holds by Proposition 36, and thus the inclusion {ρ(x), ρ(y)} ⊆ L∼ holds. So either ρ(x) 1 A or
ρ(y) 1 B. Thus at least one of the two expanded branches of T ′ is satisfied in K;

TA−∗B : m ∈ X Similar to case F∗;

FA−∗B : m ∈ X Similar to case T∗.

In any case, there exists K′ and a branch of T ′ satisfied in K′, so T ′ is realizable. �

Theorem 41 (Soundness of the BBI-tableau system). Given a ∈ L andG ∈ Form, if there exists
a closed BBI-tableau for ({FG : a}, {a−·····− a}) then G is a (universally) valid BBI formula.
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Proof. Let us suppose that there exists a closed BBI-tableau for ({FG : a}, {a−·····−a}). Let us now suppose
that G has a counter-model (K,∼,,m), i.e. m ∈ L∼ and m 1 G. Then the CSS ({FG : a}, {a−·····− a})
is satisfied in (K,∼,, ρ) where ρ = x 7→ m (in particular ρ(a) = m). Hence, the BBI-tableau
[({FG : a}, {a −·····− a})] is realizable and as a consequence, any BBI-tableau for ({FG : a}, {a −·····− a}) is
realizable by Lemma 40. By Proposition 39, no BBI-tableau for ({FG : a}, {a−·····− a}) can be closed. We
obtain a contradiction. Hence G has no counter-model. �

6 Completeness of the BBI-tableau system
In this section, we give the full proof of strong completeness of the BBI-tableau system, expressed in
Theorem 56. We define the notion of Hintikka CSS and show how to extract a Herbrand counter-
model from a Hintikka CSS. Then using fair strategies and oracles based on proof-search, we show
how to extend any finite CSS into a Hintikka CSS. The constraints that generate the counter-model
extracted from such a Hintikka CSS originate from proof-search and are thus of a specific form that
we characterize as simple. The strong completeness theorem ends this section.

This (new) proof is somewhat inspired by ideas developped in the reference textbook [12] in the
completeness proof of the tableau method for first-order logic.

6.1 Hintikka CSS and BBI counter-models
Hintikka sets [16] are saturated syntactic objects from which it is possible to extract (counter-)models.
We define the notion of Hintikka CSS corresponding to the labeled Kripke semantics of BBI.

Definition 42 (Hintikka CSS). A Hintikka CSS is a CSS (X , C) such that for any A,B ∈ Form and
any m,n ∈ L?:

1. not both TA : m ∈ X , FA : n ∈ X and m ∼C n;

2. if T¬A : m ∈ X then FA : m ∈ X ;

3. if F¬A : m ∈ X then TA : m ∈ X ;

4. if TA ∧B : m ∈ X then {TA : m,TB : m} ⊆ X ;

5. if FA ∧B : m ∈ X then {FA : m,FB : m} ∩ X 6= ∅;

6. if TI : m ∈ X then ε ∼C m;

7. not both FI : m ∈ X and ε ∼C m;

8. if TA ∗B : m ∈ X then ∃x, y ∈ L?, xy ∼C m ∧ {TA : x,TB : y} ⊆ X ;

9. if FA ∗B : m ∈ X then ∀x, y ∈ L?, xy ∼C m⇒ {FA : x,FB : y} ∩ X 6= ∅;

10. if TA−∗B : m ∈ X then ∀x, y ∈ L?, xm ∼C y ⇒ {FA : x,TB : y} ∩ X 6= ∅;

11. if FA−∗B : m ∈ X then ∃x, y ∈ L?, xm ∼C y ∧ {TA : x,FB : y} ⊆ X .

Condition 1 and 7 say that the CSS (X , C) is open: these are consistency conditions. The other
conditions express a saturation of (X , C) by the equivalences defining the Kripke semantics. It is easy
to build a Hintikka CSS from a tuple K = (K,∼,, ρ): simply chose X as the set of statements that
are satisfied in K and then (X ,∼) is a Hintikka CSS. What we are interested in here is the other way
around: extract a (counter-)model out of a Hintikka CSS.
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Lemma 43 (Herbrand model). Let (X , C) be a Hintikka CSS. The tuple (L,∼C ,, x 7→ x) is a
model of the CSS (X , C) when  is defined for m ∈ LC and Z ∈ Var by:

m  Z iff TZ : n ∈ X for some n such that n ∼C m

Proof. By definition, all the constraints in C are satisfied in the PME ∼C . First remark that when
SA : m ∈ X , we have m ∼C m because (X , C) is a CSS, and thus m ∈ LC . Let us prove TA : m ∈ X ⇒
m  A and FA : m ∈ X ⇒ m 1 A by mutual induction on the formula A ∈ Form and by case analysis
on SA : m

TZ : m ∈ X by definition of , since m ∼C m (because (X , C) is a CSS) and TZ : m ∈ X , we have
m  Z;

FZ : m ∈ X let us suppose m  Z. Then, by definition of , we would obtain n such that n ∼C m
and TZ : n ∈ X . We would thus have simultaneously TZ : n ∈ X , FZ : m ∈ X and n ∼C m.
Since (X , C) is a Hintikka CSS, by condition 1 of Definition 42, we obtain a contradiction. Thus
m 1 Z;

T¬A : m ∈ X by condition 2 of Definition 42, we obtain FA : m ∈ X , and thus by induction,
m 1 A, hence m  ¬A;

F¬A : m ∈ X by condition 3 of Definition 42, we obtain TA : m ∈ X , and thus by induction,
m  A, hence m 1 ¬A;

TA ∧B : m ∈ X by condition 4 of Definition 42, we have TA : m,TB : m ∈ X and by induction,
m  A and m  B. Hence, m  A ∧B;

FA ∧B : m ∈ X by condition 5 of Definition 42, either FA : m ∈ X or FB : m ∈ X . So by
induction, either m 1 A or m 1 B. Then m 1 A ∧B;

TI : m ∈ X by condition 6 of Definition 42, we have ε ∼C m. By definition of , we obtain m  I;

FI : m ∈ X by condition 7 of Definition 42, ε �C m and thus m 1 I;

TA ∗B : m ∈ X by condition 8 of Definition 42, there exist x, y ∈ L? such that xy ∼C m and
TA : x,TB : y ∈ X . So by induction, we obtain x  A and y  B. Then m  A ∗B;

FA ∗B : m ∈ X by condition 9 of Definition 42, for every x, y ∈ L? such that xy ∼C m, we have
either FA : x ∈ X or FB : y ∈ X . Hence, by induction, either x 1 A or y 1 B for every x, y such
that xy ∼C m. We conclude m 1 A ∗B;

TA−∗B : m ∈ X similar to FA ∗B : m but use condition 10 of Definition 42;

FA−∗B : m ∈ X similar to TA ∗B : m but use condition 11 of Definition 42.

So by induction on F , every statement SF : m ∈ X is satisfied in (L,∼C ,, x 7→ x). �

Hence, the BBI-frame (L,∼C ,) extracted from a Hintikka CSS is a model of this CSS. Hintikka
CSS are syntactic representations of (counter-)models of BBI formulae.

Corollary 44. Let (X , C) be a Hintikka CSS, G ∈ Form and m ∈ L? be such that FG : m ∈ X . Then
(L,∼C ,,m) is a counter-model of G.

Proof. By Lemma 43, since FG : m ∈ X , the statement FG : m is satisfied in the tuple (L,∼C ,, x 7→ x)
and we deduce m ∈ LC and m 1 G. �
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6.2 Fair strategy, oracles and consistency
We now prove that any finite CSS having no closed tableau can be extended into a Hintikka CSS.
Using a fair strategy and an oracle that contains all finite and consistent CSS, we build a sequence of
CSS which saturates the initial CSS into a Hintikka CSS. The consistency criterion is a syntactic one:
having no closed tableau.

Definition 45 (Fair strategy). A fair strategy is a sequence (SiFi : mi)i∈N of tableau statements
such that any tableau statement (in {T,F}×Form×L?) occurs infinitely many times in this sequence,
i.e. {i ∈ N | SiFi : mi ≡ SF : m} is infinite for any SF : m ∈ {T,F} × Form× L?.

Proposition 46. There exists a fair strategy.8

Proof. Let X = {T,F} × Form × L?. As L = {c0, c1, c2, . . .} is countable and Var is countable, then
so are Form and L?. Hence X is a countable set as a product of countable sets. So N × X is also
countable and there exists a surjective function ϕ : N−→N×X. Let p : N×X −→X be the canonical
projection defined by p(i, x) = x. Then let us define u : N −→ X by u = p ◦ ϕ and let us prove
that u is a fair strategy. It is sufficient to show that u−1({x}) is infinite for any x ∈ X. Let x ∈ X.
Then u−1({x}) = ϕ−1(p−1({x})). But p−1({x}) = {(i, x) | i ∈ N} hence p−1({x}) is infinite. As ϕ is
surjective, ϕ−1(p−1({x})) is also infinite. �

Definition 47 (Oracle). An oracle is a set of CSS which is 4-downward closed, of finite character,
open and saturated. These characteristic properties of oracles are defined for any set P of CSS by

• P is 4-downward closed if (X , C) ∈ P holds whenever both (X , C) 4 (X ′, C′) and (X ′, C′) ∈ P
hold;

• P is of finite character if (X , C) ∈ P holds whenever (Xf , Cf ) ∈ P holds for every (Xf , Cf ) 4f
(X , C);9

• P is open if (X , C) is open for every (X , C) ∈ P;

• P is saturated if for any (X , C) ∈ P and any instance of a rule of Table 2 fireable on (X , C), at
least one of its expansions (X ∪ Xi, C ∪ Ci) belongs to P.

We point out that in the terminology of Fitting [12], a set of branches which is open and saturated
is called an “alternate consistency property.”

Definition 48 (Consistency and finite consistency). Let (X , C) be a CSS. If (X , C) is a finite
CSS, we say that (X , C) is consistent if it has no closed BBI-tableau. If (X , C) is a CSS, we say that
(X , C) is finitely consistent if every finite sub-CSS of (X , C) is consistent.

Proposition 49. Consistency is a 4-downward closed property, i.e. if (X1, C1) 4 (X2, C2) are two
finite CSS and (X2, C2) is consistent then (X1, C1) is consistent.

Proof. This proposition is a specialization of Theorem 31 (if C1 ⊆ C2 then C1 ⊆ C2). �

Corollary 50. A finite CSS is consistent if and only if it is finitely consistent.

Proof. Immediate consequence of Proposition 49. �

We now introduce and prove the main lemma of this paper: the set of finitely consistent CSS is an
oracle. In Section 6.3, it will allow us to saturate any finite and consistent CSS into a Hintikka CSS.

8Remark: provided L and Var can be effectively enumerated, then we can obtain a recursive fair strategy: there is
no need for the axiom of choice or any of its weaker forms here. See the Coq proof comments in Section 7.

9i.e. (X , C) belongs to P as soon as all its finite approximations belong to P.
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Lemma 51. The set of finitely consistent CSS is an oracle which contains any (finite) consistent CSS.

Proof. Let P the set of finitely consistent CSS. By Corollary 50, for any finite CSS (Xf , Cf ), we have
(Xf , Cf ) ∈ P if and only if (Xf , Cf ) is consistent.

Let us prove that P is 4-downward closed. Indeed, if (X , C) 4 (X ′, C′) and (X ′, C′) ∈ P hold,
then, given any (Xf , Cf ) 4f (X , C), we derive (Xf , Cf ) 4f (X ′, C′) and thus (Xf , Cf ) is consistent. As
a consequence, we deduce (X , C) ∈ P.

Let us show that P is of finite character. Let (X , C) be a CSS such that (Xf , Cf ) ∈ P holds for any
(Xf , Cf ) 4f (X , C). Let (Xf , Cf ) be such that (Xf , Cf ) 4f (X , C). Then (Xf , Cf ) is a finite CSS that
belongs to P, hence it is consistent by Corollary 50. Thus we have proved (X , C) ∈ P.

We now prove that P is open. Let (X , C) be a closed CSS. Let us prove (X , C) 6∈ P. By Proposi-
tion 27, there exists (Xf , Cf ) 4f (X , C) such that (Xf , Cf ) is a closed CSS. Then [(Xf , Cf )] is a closed
tableau for (Xf , Cf ). Hence (Xf , Cf ) is not consistent and we deduce (X , C) 6∈ P.

We finish by the proof that P is saturated. Let us fix a CSS (X , C) ∈ P. We consider each possible
instance of a tableau expansion rule of Table 2 fireable for (X , C):

T¬A : m ∈ X We show that (X ∪{FA : m}, C) belongs to P. Thus, let us consider (Xf , Cf ) 4f (X ∪
{FA : m}, C) and let us show that (Xf , Cf ) is consistent. Since (X , C) is a CSS and T¬A : m ∈ X ,
we have m ∼C m. By compactness, there exists a finite subset C0 ⊆ C such that m ∼C0 m. Let
X ′f = (Xf \{FA : m}) ∪ {T¬A : m} and C′f = Cf ∪ C0. Then (X ′f , C′f ) is a finite CSS and the
inclusion (X ′f , C′f ) 4f (X , C) holds. From (X , C) ∈ P, we deduce that (X ′f , C′f ) is consistent. Since
T¬A : m ∈ X ′f , the list [(X ′f∪{FA : m}, C′f )] is a tableau for (X ′f , C′f ). Hence, if (X ′f∪{FA : m}, C′f )
has a closed tableau T , by Proposition 24, T would also be a closed tableau for (X ′f , C′f ) which
would contradict the consistency of (X ′f , C′f ). As consequence, (X ′f ∪{FA : m}, C′f ) cannot have a
closed tableau and is thus consistent. From (Xf , Cf ) 4 (X ′f ∪ {FA : m}, C′f ) and Proposition 49,
we deduce the consistency (Xf , Cf );

F¬A : m ∈ X Similar to case T¬;

TA ∧B : m ∈ X Similar to case T¬;

FA ∧B : m ∈ X Let us suppose by absurd that neither (X ∪ {FA : m}, C) ∈ P nor (X ∪ {FB :
m}, C) ∈ P hold. Then there exists (XAf , CAf ) 4f (X ∪ {FA : m}, C) and (XBf , CBf ) 4f (X ∪ {FB :
m}, C) such that both (XAf , CAf ) and (XBf , CBf ) are inconsistent. By compactness, there also exists
a finite subset C0 ⊆ C such thatm ∼C0 m. Let X ′f = XAf \{FA : m}∪XBf \{FB : m}∪{FA ∧B : m}
and C′f = CAf ∪ CBf ∪ C0. (X ′f , C′f ) is obviously a finite CSS. Since FA ∧B : m ∈ X ′f holds, the
list [(X ′f ∪ {FA : m}, C′f ); (X ′f ∪ {FB : m}, C′f )] is a tableau for (X ′f , C′f ). Since (XAf , CAf ) 4
(X ′f ∪ {FA : m}, C′f ) and (XBf , CBf ) 4 (X ′f ∪ {FB : m}, C′f ), by Proposition 49, the finite CSS
(X ′f ∪ {FA : m}, C′f ) and (X ′f ∪ {FB : m}, C′f ) are both inconsistent. Let TA (resp. TB) be a
closed tableau for (X ′f ∪ {FA : m}, C′f ) (resp. (X ′f ∪ {FB : m}, C′f )). By two applications of
Proposition 24, TA ++ TB is a tableau for (X ′f , C′f ) which is closed because both TA and TB
are closed. Hence (X ′f , C′f ) is inconsistent. But we easily check that (X ′f , C′f ) 4f (X , C), which
contradicts (X , C) ∈ P;

TI : m ∈ X We show that (X , C ∪ {ε −·····− m}) belongs to P. Thus, let us consider (Xf , Cf ) 4f
(X , C ∪ {ε−·····−m}) and let us show that (Xf , Cf ) is consistent. Since (X , C) is a CSS and Xf ⊆ X
then (Xf , C) is also a CSS. By Proposition 20, there exists a finite subset C0 ⊆ C such that (Xf , C0)
is a (finite) CSS. From TI : m ∈ X , we deduce m ∼C m. Thus, by Proposition 7, let C1 be a
finite subset of C such that m ∼C1 m. Let X ′f = Xf ∪ {TI : m} and C′f = Cf \{ε −·····−m} ∪ C0 ∪ C1.
Then (X ′f , C′f ) is a finite CSS and (X ′f , C′f ) 4f (X , C). From (X , C) ∈ P, we deduce that (X ′f , C′f )
is consistent. Since TI : m ∈ X ′f , the list [(X ′f , C′f ∪ {ε−·····−m})] is a tableau for (X ′f , C′f ). Hence, if
(X ′f , C′f ∪{ε−·····−m}) has a closed tableau T , by Proposition 24, T would also be a closed tableau for
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(X ′f , C′f ) which would contradict the consistency of (X ′f , C′f ). As consequence, (X ′f , C′f ∪ {ε−·····−m})
cannot have a closed tableau and is thus consistent. From (Xf , Cf ) 4 (X ′f , C′f ∪ {ε −·····− m}) and
Proposition 49, we deduce that (Xf , Cf ) is consistent;

TA ∗B : m ∈ X with a 6= b ∈ L\AC . We show that (X ∪ {TA : a,TB : b}, C ∪ {ab −·····−m}) belongs
to P. Thus, let us consider (Xf , Cf ) 4f (X ∪ {TA : a,TB : b}, C ∪ {ab −·····− m}) and show that
(Xf , Cf ) is consistent. Let X ′f = Xf \{TA : a,TB : b} ∪ {TA ∗B : m}. Since X ′f ⊆ X , then
(X ′f , C) is a CSS where X ′f is finite and by Proposition 20, there exists a finite subset C0 ⊆ C
such that (X ′f , C0) is a (finite) CSS. Let C′f = Cf \{ab −·····−m} ∪ C0. Then (X ′f , C′f ) is also a finite
CSS. We observe that (X ′f , C′f ) 4f (X , C) ∈ P and we deduce that (X ′f , C′f ) is consistent. Because
TA ∗B : m ∈ X ′f and AC′

f
⊆ AC , it is easy to check that [(X ′f ∪ {TA : a,TB : b}, C′f ∪ {ab−·····−m})]

is a tableau for (X ′f , C′f ). Hence by Proposition 24, (X ′f ∪ {TA : a,TB : b}, C′f ∪ {ab−·····−m}) cannot
have a closed tableau; otherwise we would obtain a closed tableau for (X ′f , C′f ). Thus the CSS
(X ′f∪{TA : a,TB : b}, C′f∪{ab−·····−m}) is consistent. From the inclusions Xf ⊆ X ′f∪{TA : a,TB : b}
and Cf ⊆ C′f ∪ {ab−·····−m}, we deduce that (Xf , Cf ) is consistent by Proposition 49;

FA ∗B : m ∈ X with x, y ∈ L? such that xy ∼C m holds. Let us suppose by absurd that neither
(X ∪{FA : x}, C) ∈ P nor (X ∪{FB : y}, C) ∈ P hold. Then there exists (XAf , CAf ) 4f (X ∪{FA :
x}, C) and (XBf , CBf ) 4f (X ∪ {FB : y}, C) such that (XAf , CAf ) and (XBf , CBf ) are two inconsistent
finite CSS. By compactness (Proposition 7), there also exists a finite subset C0 ⊆ C such that
xy ∼C0 m. Let X ′f = XAf \{FA : x}∪XBf \{FB : y}∪{FA ∗B : m} and C′f = CAf ∪CBf ∪C0. (X ′f , C′f )
is obviously a finite CSS. Since FA ∗B : m ∈ X ′f and xy ∼C′

f
m both hold, the list [(X ′f ∪ {FA :

x}, C′f ); (X ′f ∪ {FB : y}, C′f )] is a tableau for (X ′f , C′f ). Since (XAf , CAf ) 4 (X ′f ∪ {FA : x}, C′f )
and (XBf , CBf ) 4 (X ′f ∪ {FB : y}, C′f ), by Proposition 49, the finite CSS (X ′f ∪ {FA : x}, C′f ) and
(X ′f ∪ {FB : y}, C′f ) are both inconsistent. Let TA (resp. TB) be a closed tableau for (X ′f ∪ {FA :
x}, C′f ) (resp. (X ′f ∪ {FB : y}, C′f )). By two applications of Proposition 24, TA ++ TB is a tableau
for (X ′f , C′f ) which is closed because both TA and TB are closed. Hence (X ′f , C′f ) is inconsistent.
But we easily check that (X ′f , C′f ) 4f (X , C), which contradicts (X , C) ∈ P;

TA−∗B : m ∈ X Similar to case F∗;

FA−∗B : m ∈ X Similar to case T∗.

Hence P is saturated by all fireable rule instances. �

6.3 Obtaining a Hintikka CSS by saturation
We now build a Hintikka CSS using the combination of a fair strategy (Proposition 46) denoted
(SiFi : mi)i∈N, which ensures that each choice of statement will eventually be tested in the future and an
oracle P containing any finite consistent CSS (Lemma 51), which ensures that the choices made preserve
consistency. We will see in Proposition 54 that this combination ensures saturation/maximality by
all possible consistent choices. However, unlike the case of classical or intuitionistic logic, maximaly
consistent sets are not enough to obtain counter-models in the case of BBI. This is the reason of some
tweaks in the coming construction.

Let us proceed in the formal proof. Recall that the infinite sequence (ci)i∈N is a bĳective enumer-
ation of the alphabet L = {c0, c1, . . .}. We start with a finite CSS (X0, C0) and n0 ∈ N for which we
make the three following hypotheses:

0. ε−·····− ε ∈ C0;

1. (X0, C0) has no closed BBI-tableau;

2. the inclusion AC0 ⊆ {c0, c1, . . . , cn0−1} holds.
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We simultaneously and recursively build two sequences (Xi)16i and (xi −·····− yi)16i. Denoting Ci =
C0 ∪ {x1 −·····− y1, . . . , xi −·····− yi}, the values Xi+1 and xi+1 −·····− yi+1 are determined recursively as follows:10

• if (Xi ∪ {SiFi : mi}, Ci) 6∈ P then we define Xi+1 = Xi and xi+1 −·····− yi+1 = ε−·····− ε;

• if (Xi∪{SiFi : mi}, Ci) ∈ P then we define Xi+1 = Xi∪{SiFi : mi}∪Xe where Xe and xi+1−·····−yi+1
are computed according to the following table:

Si Fi Xe xi+1−·····− yi+1

T I ∅ ε−·····−mi

T A ∗B {TA : a,TB : b} ab−·····−mi

F A−∗B {TA : a,FB : b} ami−·····− b
otherwise ∅ ε−·····− ε

with
{
a = cn0+2i
b = cn0+2i+1

Informally, the CSS (Xi, Ci) is augmented with SF : m only when this choice is proposed by our
strategy (i.e. SF : m ≡ SiFi : mi) and only when this choice is consistent according to our oracle P
(i.e. (Xi ∪ {SiFi : mi}, Ci) ∈ P). Moreover (and this is a tweak specific to BBI), in the cases of the
shapes TI, T∗ and F−∗, we force further consistent constraints expansion with a controlled choice for
a and b ensuring freshness.

Proposition 52. For any i ∈ N, the following properties hold:

0. ε−·····− ε ∈ Ci;

1. (Xi, Ci) ∈ P;

2. ACi ⊆ {c0, c1, . . . , cn0+2i−1};

3. Xi ⊆ Xi+1 and Ci ⊆ Ci+1;

4. the constraint xi+1 −·····− yi+1 is basic w.r.t. ∼Ci .

Proof. Since ε−·····− ε ∈ C0 holds by Hypothesis 0, Property 0 is obvious from the definition of Ci. We first
prove Properties 1 and 2 by recursion on i. For the ground case i = 0, Property 1, since (X0, C0) has
no closed tableau, it is consistent and thus we have (X0, C0) ∈ P. Property 2 is Hypothesis 2. For the
recursive step i+ 1, we examine each case for Property 1 and 2:

• if (Xi ∪ {SiFi : mi}, Ci) 6∈ P then Xi+1 = Xi and Ci+1 = Ci ∪ {ε −·····− ε} = Ci. Thus (Xi+1, Ci+1) =
(Xi, Ci) ∈ P holds. Moreover ACi+1 = ACi ⊆ {c0, c1, . . . , cn0+2i−1} ⊆ {c0, c1, . . . , cn0+2i+1};
• if (Xi ∪ {SiFi : mi}, Ci) ∈ P and SiFi : mi ≡ TI : mi then Xi+1 = Xi ∪ {TI : mi} and Ci+1 =
Ci ∪ {ε −·····− mi}. By saturation of P for rule 〈TI〉, from TI : mi ∈ Xi+1 and (Xi+1, Ci) ∈ P
we deduce (Xi+1, Ci+1) = (Xi+1, Ci ∪ {ε −·····− mi}) ∈ P. The elements of P are CSS and thus
(Xi ∪ {TI : mi}, Ci) is one. So the relation mi ∼Ci mi holds, thus mi ∈ A?Ci and we deduce
ACi+1 = ACi ⊆ {c0, c1, . . . , cn0+2i+1};
• if (Xi∪{SiFi : mi}, Ci) ∈ P and SiFi : mi ≡ TA ∗B : mi. We have Xi+1 = Xi∪{TA ∗B : mi,TA :
a,TB : b} and Ci+1 = Ci ∪ {ab−·····−mi} with a = cn0+2i and b = cn0+2i+1. Since a 6= b ∈ L\ACi and
(Xi ∪ {TA ∗B : mi}, Ci) ∈ P, by saturation of P for rule 〈T∗〉, we deduce that (Xi+1, Ci+1) ∈ P.
Also mi ∈ A?Ci and hence ACi+1 = ACi ∪ {a, b} ⊆ {c0, c1, . . . , cn0+2i+1};

• for the case where SiFi : mi ≡ FA−∗B : mi, similar arguments can be developed except using
saturation of P by rule 〈F−∗〉;

10We point out that to compute the values of Xi+1 and xi+1−·····− yi+1, we need to decide whether (Xi ∪{SiFi : mi}, Ci)
belongs to P or not. Although this point is painless in a classical setting like the classical set theory we use here, this
point is problematic in an intuitionistic setting, especially when P is not computably decidable (which is precisely the
case here [5, 20]). To build this sequence within Coq, we have to assume the excluded middle axiom and apply it to P.
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• in all other cases with (Xi ∪ {SiFi : mi}, Ci) ∈ P we have Xi+1 = Xi ∪ {SiFi : mi} and Ci+1 =
Ci∪{ε−·····−ε} = Ci. Hence we easily obtain (Xi+1, Ci+1) ∈ P and ACi+1 = ACi ⊆ {c0, c1, . . . , cn0+2i+1}.

Property 3 is obvious because Xi+1 is obtained by extension of Xi, and Ci ⊆ Ci+1 follows from the
definition of Ci. For Property 4, it is sufficient to observe that since a = cn0+2i and b = cn0+2i+1,
hence we have a 6= b ∈ L\ACi by Property 2 (remember that the enumeration of L is bĳective). Then
constraint xi+1−·····− yi+1 is of one of the forms of Definition 10: ab−·····−mi, ami−·····− b, ε−·····−mi or ε−·····− ε. When
xi+1−·····−yi+1 ∈ {ab−·····−mi, ami−·····−b, ε−·····−mi}, we can check thatmi ∼Ci mi because (Xi∪{SiFi : mi}, Ci) ∈ P
is a CSS. The identity xi+1 −·····− yi+1 = ε −·····− ε comes as a particular case of Definition 10 item 3 with
m = ε. Hence the constraint xi+1 −·····− yi+1 is basic w.r.t. ∼Ci . �

We now consider the limit (X , C) of the sequence (Xi, Ci)i∈N defined by:

X =
⋃
i∈N
Xi and C =

⋃
i∈N
Ci = C0 ∪ {xi −·····− yi | 1 6 i}

We point out that we took care of building C as the elements of an infinite sequence of basic
constraints rather than as the limit of a sequence of basic PMEs, which simplifies the proof of the fact
that ∼C is a simple PME.

Proposition 53. If ∼C0 a is basic PME then ∼C is a simple PME.

Proof. Let C0 = {u1 −·····− v1, . . . , uq −·····− vq} where u1 −·····− v1, . . . , uq −·····− vq is a basic sequence of constraints.
Then u1 −·····− v1, . . . , uq −·····− vq, x1 −·····− y1, x2 −·····− y2, . . . is a simple sequence of constraints and C = {u1 −·····−
v1, . . . , uq −·····− vq, x1 −·····− y1, x2 −·····− y2, . . .}. Thus ∼C is simple. �

Proposition 54 (Maximal consistency). (X , C) ∈ P and is a maximaly consistent CSS, i.e. for
any SF : m, if (X ∪ {SF : m}, C) ∈ P then SF : m ∈ X .

Proof. First we show that (X , C) is a CSS. Let SF : m ∈ X . We have to show that m ∼C m. There
exists i such that SF : m ∈ Xi. Since (Xi, Ci) ∈ P is a CSS, we have m ∼Ci m. Since Ci ⊆ C we obtain
m ∼C m.

Let us now use the fact that P is of finite character to prove (X , C) ∈ P. Let (Xf , Cf ) 4f (X , C)
be a finite CSS. We show that (Xf , Cf ) ∈ P. As both Xf and Cf are finite sets, there exists a natural
number j ∈ N such that Xf ⊆ Xj and Cf ⊆ Cj (remember that the sequences (Xi)i∈N and (Ci)i∈N are
increasing w.r.t. subset inclusion). Hence, as (Xj , Cj) ∈ P by Proposition 52 and P is 4-downward
closed, we deduce (Xf , Cf ) ∈ P. So every finite sub-CSS of (X , C) belongs to P. As P is of finite
character, we deduce (X , C) ∈ P.

Let SF : m be such that (X ∪ {SF : m}, C) ∈ P. So (X ∪ {SF : m}, C) is a CSS and thus m ∼C m.
By compactness, there exists a finite subset Cf ⊆ C such that m ∼Cf m. Then, as Cf is finite, there
exists j ∈ N such that Cf ⊆ Cj . By fairness, as SF : m occurs infinitely many times in the sequence
(SiFi : mi)i∈N, there exists l > j such that SlFl : ml ≡ SF : m. As l > j, we have Cl ⊇ Cj ⊇ Cf and
thus m ∼Cl m. Then (Xl ∪ {SF : m}, Cl) is a CSS and (Xl ∪ {SF : m}, Cl) 4 (X ∪ {SF : m}, C). Then,
as P is 4-downward closed, we deduce that (Xl ∪ {SlFl : ml}, Cl) ∈ P holds. Hence, by definition of
Xl+1, we have SF : m ≡ SlFl : ml ∈ Xl+1 and thus SF : m ∈ X . �

Lemma 55 (Hintikka CSS). The limit CSS (X , C) is a Hintikka CSS such that (X0, C0) 4 (X , C).

Proof. By definition of (X , C), we obviously have (X0, C0) 4 (X , C). By Proposition 54, we have
(X , C) ∈ P where P is an oracle. We consider the different conditions of Definition 42:

1. Condition 1 holds because P only contains open CSS, hence (X , C) is an open CSS;
2. if T¬A : m ∈ X then (X ∪ {FA : m}, C) ∈ P because P is saturated by rule 〈T¬〉. Hence by

Proposition 54, we obtain FA : m ∈ X ;
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3. similar to Condition 2 but with rule 〈F¬〉;
4. if TA ∧B : m ∈ X then (X ∪ {TA : m,TB : m}, C) ∈ P because P is saturated by rule 〈T∧〉.

Since P is 4-downward closed, both (X ∪ {TA : m}, C) ∈ P and (X ∪ {TB : m}, C) ∈ P hold. By
Proposition 54, we obtain TA : m ∈ X and TB : m ∈ X ;

5. if FA ∧B : m ∈ X then either (X ∪ {FA : m}, C) ∈ P or (X ∪ {FB : m}, C) ∈ P because P is
saturated by rule 〈F∧〉. By Proposition 54, either FA : m ∈ X or FB : m ∈ X ;

6. if TI : m ∈ X . By definition of X , there exists i ∈ N such that TI : m ∈ Xi. By fairness, there
exists j > i such that TI : m ≡ SjFj : mj . As j > i and since the sequence (Xi)i∈N is increasing,
we obtain TI : m ∈ Xj . Then ε −·····−mj ∈ Cj+1 by definition of Cj+1. As m = mj and Cj ⊆ C, we
obtain ε−·····−m ∈ Cj+1 ⊆ C and thus ε ∼C m holds;

7. Condition 7 holds because (X , C) ∈ P is an open CSS;
8. suppose TA ∗B : m ∈ X . By definition of X , there exists i such that TA ∗B : m ∈ Xi.

By fairness, there exists j > i such that TA ∗B : m ≡ SjFj : mj . From i 6 j, we deduce
TA ∗B : m ∈ Xj . Let x = cn0+2j and y = cn0+2j+1. Then x, y ∈ L ⊂ L?, and by definition of
Xj+1 and xj+1 −·····− yj+1 we have TA : x ∈ Xj+1, TB : y ∈ Xj+1 and xy −·····−m ∈ Cj+1. We conclude
that both xy ∼C m and {TA : x,TB : y} ⊆ X hold;

9. suppose FA ∗B : m ∈ X . Let x, y such that xy ∼C m. Since P is saturated by rule 〈F∗〉, either
(X ∪ {FA : x}, C) ∈ P or (X ∪ {FB : y}, C) ∈ P. Hence by Proposition 54, either FA : x ∈ X or
FB : y ∈ X ;

10. similar to Condition 9 but with rule 〈T−∗〉;
11. similar to Condition 8.

Hence, we have checked all the conditions of Definition 42. �

6.4 Strong completeness of the BBI-tableau system
We finish with the strong completeness theorem that states than whenever a formula has no closed
BBI-tableau, then we can build a counter-model based on a simple PME.

Theorem 56 (Strong completeness of the BBI-tableau system). Let a ∈ L and G ∈ Form be
a BBI-formula. If ({FG : a}, {a −·····− a}) has no closed BBI-tableau then G has a counter-model of the
form (L,∼,, a) where ∼ is a simple PME over L.

Proof. Since L = {c0, c1, c2, . . .} is enumerated by the bĳective sequence (ci)i∈N, let us first find i ∈ N
such that a = ci. Let us define b = ci+1. Then we have a 6= b ∈ L. Since ({FG : a}, {a −·····− a}) has no
closed tableau, from Corollary 32, we know that ({FG : a}, {ε−·····− ε, a−·····− b}) has no closed tableau either.
Let us define n0 = i + 2, X0 = {FG : a} and C0 = {ε −·····− ε, a −·····− b}. Since the sequence of constraints
ε−·····− ε, a−·····− b is basic then ∼C0 is basic PME. The values (X0, C0) satisfy the three hypotheses required
in Section 6.3. Thus we obtain the limit Hintikka CSS (X , C) of Proposition 53 and Lemma 55 which
satisfies FG : a ∈ X0 ⊆ X and C0 ⊆ C. From the inclusion FG : a ∈ X , we deduce that the tuple
(L,∼C ,, a) is a counter-model of G by Corollary 44. By Proposition 53, since ∼C0 is a basic PME
then ∼C is a simple PME. �

The completeness proof we provide here is to our knowledge, the first published proof of the
completeness of the labeled tableau method for partial monoidal Boolean BI. We point out that this
proof can easily be adapted to intuitionistic BI, substituting partial monoidals equivalences (PME) with
partial monoidal orders (PMO) [19] for the labeled semantics of intuitionistic BI; we did precisely this
at the level of the formal Coq proof, see Section 7. However, Daniel Mery’s thesis [22] already contains
a proof of the completeness of the labeled tableaux method for intuitionistic BI. It should be noted
that this later proof depends on the fact that the models generated during proof-search are finite. In
particular, the saturation technique employed there relies on the possibility to finitely enumerate at
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each step the statements which should be added to the list of statements to be explored in the future.
In the case of partial monoidal BBI, the models which are generated by proof-search (basic PMEs) can
be infinite, even after a finite number of proof-search steps. That is why we could not simply adapt
the proof of [22] and we choose to restart with ideas from [12].

7 Some remarks about the formal Coq proof
The Coq code corresponding to the proofs developed in this paper is distributed under a free software
license at the following web address: http://www.loria.fr/~larchey/BBI.11 The practical instruc-
tions to type-check/compile the code are fully described there. It was our intent that the informal
proof and the formal proof share the same plan and the same concepts. As a witness of this closeness,
we provide a map between the definitions and propositions of this paper with their corresponding Coq
identifiers in Appendix B. From now on, we will essentially focus on what we consider to be the most
notable differences between the informal proof and the formal proof.

To summarize, the main differences between the two proofs are the consequence of the divergence
between the meta-level logics used in each case. We develop the informal proofs of this paper in
Classical Set Theory whereas the formal Coq proofs are implemented in a variant of Intuitionistic
Type Theory called the Calculus of Inductive Constructions [9, 25], with a “minimized” (but we think
unavoidable) use of the axiom of excluded middle.

Hence, for instance, there is no primitive notion of sets/subsets within Coq. We represent sets
like the alphabet L or the set of logical formulæ Form by types. We represent subsets like AC , X ,
C or ∼C by unary predicates. The use we make of sets/subsets here is compatible with this natural
choice; for instance, we do not need to combine subsets of sets of different types. Of course, we loose
extensionality: two logically equivalent predicates are not necessarily provably equal in Coq. But we
can prove that every proposition on predicate we use “commutes” with extensionality. We could have
assumed predicate extensionality as an added axiom but it is not necessary to do so. The downside
is that we have to systematically prove that the functions or propositions with define commute with
predicate extensionality.

Another point worth mentioning is the use of classical reasoning, i.e. the axiom of excluded-middle.
The calculus of inductive constructions is an intuitionistic logic at its core whereas set theory is
generally assumed classical. Indeed, classical reasonning occurs in the informal proofs of both the
soundness and the completeness of BBI. We think that due to the undecidability of BBI [5, 20], it
is not possible to give a constructive proof of soundness/completeness of BBI, but this might depend
on how the results are expressed. For instance, if you express completeness by “every BBI-formula
has either a closed BBI-tableau or a simple counter-model,” then meta-level normalization combined
with an intuitionistic Coq proof would provide a decision algorithm for BBI, something that cannot
exist. But if you express completeness by “a BBI-formula is semantically valid if and only if it has
a closed BBI-tableau,” then the impossibility of a constructive proof is not obvious anymore. These
two formulations of completeness are classically equivalent but are not necessarily intuitionistically
equivalent for an undecidable logic like BBI.

As a consequence, we were forced to use the axiom of excluded middle for our formal proofs of
soundness and completeness of BBI. Anyway, for what it is worth, we tried to minimize the use of
this axiom and in fact, very few Coq files depend on it: bbi_oracle.v, bbi_realizability.v and
bbi_sound_and_complete.v.

For the axiom of choice which is usually assumed in classical set theory, we did not use it at all, both
in the informal and formal proof. The simple counter-model of Section 6.3 is built using a deterministic
process so we did not need to use König’s lemma or Zorn’s lemma. We mention that the use of the
axiom of choice might be hidden in set theory when you pickup a crude definition of infinity like “not

11We also mention the formal proof we have developed for (partial monoidal) intuitionistic BI accessible at
http://www.loria.fr/~larchey/BI. Both proofs share the same plan but some semantic concepts slightly differ of
course.
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being finite.” In the formal proof, we use a more refined notion of infinity for subsets of N: “being
unbounded.” With this notion, we can certify that the axiom of choice can be avoided completely as is
done in the formal Coq proof. The price for such an avoidance is that we have to effectively enumerate
some types and provide some witnesses of unboundedness for infinite subsets of N.

We have a remark concerning our implementation of words, constraints and PMEs. In the informal
proof, words are considered as unordered lists (or multisets) of letters, implying the commutativity of
composition. We feel that multisets are a sufficiently widely used and understood notion to take them
for granted. In Coq, though not impossible, the use of multisets can be complicated by the fact that it
is not an inductive datatype: it is a quotient type. Quotients are not generally available in the calculus
of constructions. Assuming them as an axiom could even lead to logical contradictions [8]. Instead of
trying to build a notion of quotient general enough for the simple purpose of building words/multisets
on an arbitrary alphabet L, we choose to keep words as (ordered) lists of letters, which is of course an
inductive datatype. To recover the needed commutativity on the side of the models of BBI, we simply
add the following 〈comm〉 rule to the rules for PMEs of Table 1:

xy −·····− xy
xy −·····− yx 〈comm〉

This rules ensures that letters can be permuted in words and constraints provided we work inside a
PME ∼, i.e. we obtain a congruence result such as: let x and x′ (resp. y and y′) be two lists of letters
equivalent up to permutation of letters; if x ∼ y holds then x′ ∼ y′ holds.

We finish our remarks with the two peripheral results that were not formalized in Coq; they are
not assumed, they are just ignored as useless to obtain the formalized proof of strong completeness:

• on one hand, the equivalence of partial monoidal Kripke semantics and PME Kripke semantics of
BBI expressed in Fact 18. We think a formalization will not really be difficult but would probably
involve the computation of a quotient partial monoid;

• on the other hand, the equivalence between the TBBI-tableau system defined in [19] and the
BBI-tableau system defined in the current paper, as expressed in Fact 34. We view this result as
easy to formalize but the main annoyance will certainly derive from the following observation:
we deal with two notions of tableaux that differ only slightly in their respective implementations
and this implies duplicating Coq code as well Coq identifiers.

8 Conclusion and perspectives
In this paper, we provide a detailed standalone proof of the strong completeness of a labeled tableaux
system for partial monoidal Boolean BI. We give an account of our full formalization in Coq of this
informal proof. We have already adapted our formal proof to intuitionistic BI. We think that our
framework, either informal or formal, is general enough to be adapted to various extensions of either
BI or BBI, like for instance in the case of Dynamic BI [10].

This strong completeness result implies that it is possible analyze the semantic properties of BBI
through the study of the particular constraints generated by tableau proof-search, i.e. basic and simple
PMEs. In a future study, we will show that simple PMEs are cancellative, i.e. they satisfy the following
rule:

kx−·····− ky
x−·····− y 〈cancel〉

meaning that the corresponding quotient partial monoid is cancellative. Unfortunately, we have not
found a short inductive proof of this fact12 to be included in this paper and the proof we have is rather
involved and justifies an independent development.

12because the extension ε−·····−m does not always preserve cancellativity.
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As a consequence of the cancellativity of simple PMEs, we will obtain a proof of completeness of BBI-
tableaux w.r.t. the class of abstract separation algebras which are partial cancellative commutative
monoids. BBI-tableaux would then be suitable as a sound and complete semi-decision method for
Abstract Separation Logic [7].

Solving basic PMEs, i.e. computing a representation of ∼C from a representation of a basic sequence
of constraints C, is of fundamental importance in the semi-automated process of tableau construction
and is thus a strong motivation to study the specific properties of these basic PMEs.

We aim to show how to solve the semantic constraints generated during proof-search and thus
be able to decide whether a branch can be expanded and in such a case how it can be expanded by
computing the predicate cond(·, ·): given a branch (X , C) where ∼C is a basic PME, regarding the
expansion of that branch, we need to evaluate relations like m ∼C n or ε ∼C m to determine if the
branch is closed or not, and to compute values x, y such that xy ∼C m or xm ∼C y to determine the
fireable instances of the rules of the tableau system. We also need to introduce new letters a 6= b ∈ L\AC
but this does not require a computation of ∼C , only a (much simpler) computation of AC .

Then, we reasonably hope to design an effective method for deciding the constraints that are
generated during proof-search, method which could then be used in proof-assistants for example. The
design of such tools that help at proving general BBI-formulæ has been a long-term goal in the field
of verification of properties specified in separation logic and is beginning to emerge with for instance
a prover like BBeye [24] which is based on backward proof-search in a nested sequent calculus.
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A The monotonicity of closed BBI-tableaux
In this section, we develop the main arguments for the proof of Theorem 31.

Fact 57. Let (X , C) and (X ,D) be two CSS such that C ⊆ D and AC = AD hold. If an instance of a
rule of Table 2 is fireable for (X , C) then the same instance (of the same rule) is fireable for (X ,D).

Proof. The conditions of rules 〈T¬,F¬,T∧,F∧,TI〉 only depend on X (not on C, D) so the result is
trivial in that case. For rules 〈T∗,F−∗〉, the part of the condition that depends on C (resp. D) is
a 6= b ∈ L\AC (resp. a 6= b ∈ L\AD). Since AC = AD the two conditions are obviously equivalent.1 For
rule 〈F∗〉, the part of the condition that depends on C (resp. D) is xy ∼C m (resp. xy ∼D m). Since
∼C ⊆ ∼D, if the condition holds for C then it holds for D. The case of rule 〈T−∗〉 is similar. �

Let us denote T < T ′ when T is of the form T = [(X 0
1 , C0

1), . . . , (X 0
k , C0

k)], T ′ is of the form
T = [(X 0

1 , C1
1), . . . , (X 0

k , C1
k)] and the relations C0

i ⊆ C1
i and AC0

i
= AC1

i
hold for any i ∈ {1, . . . , k}.

Lemma 58. Let (X , C) and (X ,D) be two CSS such that the relations C ⊆ D and AC = AD both hold.
We can transform any BBI-tableau T for (X , C) into a BBI-tableau T ′ for (X ,D) such that T < T ′
holds.

Proof. We proceed by induction on the process that builds the tableau T :

• in the ground case, T is the tableau [(X , C)]. Then T ′ = [(X ,D)] is a tableau for (X ,D) with
T < T ′;
• otherwise, there exists a tableau T 0 = T 0

l ++ [(X 0
q , C0

q )] ++ T 0
r for (X , C), an instance of a rule of

Table 2
cond( · , · )

(X1, C1) | · · · | (Xk, Ck)

fireable for (X 0
q , C0

q ) with

T = T 0
l ++ [(X 0

q ∪ X1, C0
q ∪ C1); . . . ; (X 0

q ∪ Xk, C0
q ∪ Ck)] ++ T 0

r

Since T was built inductively from T 0, we can apply the induction hypothesis to the tableau T 0

and we can build a tableau T 1 = T 1
l ++[(X 0

q , C1
q )]++T 1

r for (X ,D) such that T 0
l < T 1

l , T 0
r < T 1

r ,
C0
q ⊆ C1

q and AC0
q

= AC1
q
. From the Fact 57, we deduce that the same rule instance is fireable for

(X 0
q , C1

q ). As a consequence

T ′ = T 1
l ++ [(X 0

q ∪ X1, C1
q ∪ C1); . . . ; (X 0

q ∪ Xk, C1
q ∪ Ck)] ++ T 1

r

is a tableau for (X ,D). We show that T < T ′. We already have T 0
l < T 1

l and T 0
r < T 1

r . From
C0
p ⊆ C1

p we deduce C0
p ∪ Ci ⊆ C1

p ∪ Ci and since AC0
p

= AC1
p
, we derive that C0

p ∪Ci and C1
p ∪Ci have

the same alphabet. Hence the relation T < T ′ holds.

Hence we proved the result by replaying the process that built the tableau T . �

Fact 59. Let (X , C) be a CSS and σ : L−→ L be a substitution of letters such that σ is injective on
L\AC and the inclusion σ−1(σ(AC)) ⊆ AC holds. If the rule instance

cond( · , · )
(X1, C1) | · · · | (Xk, Ck)

1Remark that the weaker condition AC ⊆ AD would not be sufficient because the variables a and b introduced in
rules 〈T∗〉 and 〈F−∗〉 would not necessarily be new in this case.
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is fireable for (X , C) then there exists a(nother) instance of the same rule of the form

cond′( · , · )
(σ(X1), σ(C1)) | · · · | (σ(Xk), σ(Ck))

which is fireable for (σ(X ), σ(C)).

Proof. We proceed by case analysis. We treat the case of rule 〈T∗〉 as an example. So let us consider
the following instance

TA ∗B : m ∈ (·) and a 6= b ∈ L\A(·)

({TA : a,TB : b}, {ab−·····−m})
〈T∗〉

with parameters A, B, m, a and b.2 This instance is fireable for (X , C) if and only if both TA ∗B :
m ∈ X and a 6= b ∈ L\AC hold. We consider the instance of the same rule with parameters A, B,
σ(m), σ(a) and σ(b):

TA ∗B : σ(m) ∈ (·) and σ(a) 6= σ(b) ∈ L\A(·)

({TA : σ(a),TB : σ(b)}, {σ(a)σ(b)−·····− σ(m)})
〈T∗〉

This instance is fireable for (σ(X ), σ(C)) if and only if both TA ∗B : σ(m) ∈ σ(X ) and σ(a) 6= σ(b) ∈
L\Aσ(C) hold. It is clear that if TA ∗B : m ∈ X holds then TA ∗B : σ(m) ∈ σ(X ) holds. Since
σ is a substitution of letters, we have Aσ(C) = σ(AC). Since σ is injective on L\AC , from a 6= b we
deduce σ(a) 6= σ(b). Moreover, since the inclusion σ−1(σ(AC)) ⊆ AC holds, from a, b 6∈ AC we deduce
σ(a), σ(b) 6∈ σ(AC) = Aσ(C). Hence if the first instance of 〈T∗〉 is fireable for (X , C) then the second
instance of 〈T∗〉 is fireable for (σ(X ), σ(C)). �

Theorem 60. Let (X0, C0) be a CSS and σ : L−→L be a substitution of letters such that σ is injective
on L\AC0 and the inclusion σ−1(σ(AC0)) ⊆ AC0 holds. If T is a BBI-tableau for (X0, C0) then σ(T ) is
a BBI-tableau for (σ(X0), σ(C0)).

Proof. We proceed by induction on the process that builds the tableau T for (X0, C0):

• in the ground case, T is the tableau T = [(X0, C0)]. It is obvious that σ(T ) = [(σ(X0), σ(C0))] is
a tableau for (σ(X0), σ(C0));
• otherwise, there exists a tableau T0 = Tl ++ [(X , C)] ++ Tr for (X0, C0) and a rule instance

cond( · , · )
(X1, C1) | · · · | (Xk, Ck)

fireable for (X , C) such that T = Tl++[(X ∪X1, C ∪C1); . . . ; (X ∪Xk, C ∪Ck)]++Tr. By induction
hypothesis, σ(T0) is a tableau for (σ(X0), σ(C0)). We check that σ is injective on L\AC and that
the inclusion σ−1(σ(AC)) ⊆ AC holds. We derive both these properties from the inclusion C0 ⊆ C
obtained by Property 23; indeed (X , C) is a branch of T0 which is a tableau for (X0, C0). As a
consequence of Fact 59, there exists another instance of the same rule

cond′( · , · )
(σ(X1), σ(C1)) | · · · | (σ(Xk), σ(Ck))

2Recall that contrary to A, B, m... the markers (·) for the binders X and C are not parameters for the rules.
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which is fireable for (σ(X ), σ(C)). But σ(T0) = σ(Tl) ++ [(σ(X ), σ(C))] ++ σ(Tr) is a tableau for
(σ(X0), σ(C0)). So the list

σ(Tl) ++ [(σ(X ) ∪ σ(X1), σ(C) ∪ σ(C1)); . . . ; (σ(X ) ∪ σ(Xk), σ(C) ∪ σ(Ck))] ++ σ(Tr)

is a tableau for (σ(X0), σ(C0)). This list matches exactly σ(T ).

Hence we proved the result by replaying the process that builds the tableau replacing each rule instance
according to Fact 59. �

Corollary 61. Let σ : L−→L be an injective substitution of letters. If T is a BBI-tableau for (X , C)
then σ(T ) is a BBI-tableau for (σ(X ), σ(C)).

Proof. We remark that an injective substitution of letters is a fortiori injective on L\AC and satisfies the
identity σ−1(σ(X)) = X for any X ⊆ L. Hence the inclusion σ−1(σ(AC)) ⊆ AC holds and Theorem 60
can be applied. �

Fact 62. Let X , Xe, C and Ce be such that (X , C) and (X ∪Xe, C ∪ Ce) are two CSS. If an instance of
a rule of Table 2

cond( · , · )
(X1, C1) | · · · | (Xk, Ck)

is fireable for (X , C) and satisfies (AC1 ∪ · · · ∪ ACk) ∩ ACe ⊆ AC then the same instance (of the same
rule) is fireable for (X ∪ Xe, C ∪ Ce).

Proof. We proceed by case analysis. We treat the case of rule 〈T∗〉 as an example. So let us consider
the following instance

TA ∗B : m ∈ (·) and a 6= b ∈ L\A(·)

({TA : a,TB : b}, {ab−·····−m})
〈T∗〉

with parameters A, B, m, a and b, fireable for (X , C), i.e. both TA ∗B : m ∈ X and a 6= b ∈ L\AC
hold. By hypothesis we have the inclusion ({a, b} ∪ Am) ∩ ACe ⊆ AC . Thus, from a, b 6∈ AC we derive
a, b 6∈ ACe . Hence we have a, b 6∈ AC∪Ce . Since it is obvious that TA ∗B : m ∈ X ∪ Xe holds, we
conclude that this instance is also fireable for (X ∪ Xe, C ∪ Ce). �

Let T = [(X1, C1); . . . ; (Xk, Ck)] be a list of CSS. We write AT for the set of letters occuring in this
list, i.e. AT = AC1 ∪ · · · ∪ ACk and we write T ∪ (Xe, Ce) for the result of adding (Xe, Ce) to each CSS
in the list, i.e.

T ∪ (Xe, Ce) = [(X1 ∪ Xe, C1 ∪ Ce); . . . ; (Xk ∪ Xe, Ck ∪ Ce)]

Proposition 63. Let X0, Xe, C0 and Ce be such that (X0, C0) and (X0 ∪ Xe, C0 ∪ Ce) are two CSS. If
T is a BBI-tableau for (X0, C0) which verifies AT ∩ ACe ⊆ AC0 then T ∪ (Xe, Ce) is a BBI-tableau for
(X0 ∪ Xe, C0 ∪ Ce).

Proof. We proceed by induction on the process that builds the tableau T for (X0, C0):

• in the ground case, T is the tableau T = [(X0, C0)]. It is obvious that T ∪ (Xe, Ce) = [(X0 ∪
Xe, C0 ∪ Ce)] is a tableau for (X0 ∪ Xe, C0 ∪ Ce);

• otherwise, there exists a tableau T0 = Tl ++ [(X , C)] ++ Tr for (X0, C0) and a rule instance

cond( · , · )
(X1, C1) | · · · | (Xk, Ck)
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fireable for (X , C) such that T = Tl ++ [(X ∪ X1, C ∪ C1); . . . ; (X ∪ Xk, C ∪ Ck)] ++ Tr. We have
AT0 ∩ ACe ⊆ AT ∩ ACe ⊆ AC0 . Hence, by induction hypothesis, T0 ∪ (Xe, Ce) = Tl ∪ (Xe, Ce) ++
[(X ∪ Xe, C ∪ Ce)] ++ Tr ∪ (Xe, Ce) is a tableau for (X0 ∪ Xe, C0 ∪ Ce). Moreover, we have (AC1 ∪
· · · ∪ ACk) ∩ ACe ⊆ AT ∩ ACe ⊆ AC0 ⊆ AC by Proposition 23. As a consequence of Fact 62, the
same rule instance is fireable for (X ∪ Xe, C ∪ Ce). Hence the list of CSS

Tl ∪ (Xe, Ce) ++ [(X ∪ Xe ∪ X1, C ∪ Ce ∪ C1); . . . ; (X ∪ Xe ∪ Xk, C ∪ Ce ∪ Ck)] ++ Tr ∪ (Xe, Ce)

is a tableau for (X0 ∪ Xe, C0 ∪ Ce). This list matches exactly T ∪ (Xe, Ce).

Hence we proved the result by replaying exactly the process that built the tableau T . �

Lemma 64. Let (X0, C0) and (X1, C1) be two finite CSS such that (X0, C0) 4 (X1, C1). If (X0, C0) has
a closed BBI-tableau then (X1, C1) has a closed BBI-tableau.

Proof. Let us define Xe = X1 \X0 and Ce = C1 \C0. Since L = {c0, c1, . . .} and AC1 is finite, let us
choose n such that AC1 ⊆ {c0, . . . , cn−1}. We deduce AC0 ⊆ {c0, . . . , cn−1} and ACe ⊆ {c0, . . . , cn−1}.
We define the substitution of letters σ : L−→ L by

σ(ci) =
{
ci if ci ∈ AC0

ci+n if ci 6∈ AC0

From AC0 ⊆ {c0, . . . , cn−1} and the injectivity of the sequence (ci)i∈N, we deduce that σ is an injective
substitution of letters.3

Let T be a closed tableau for (X0, C0). By Corollary 61, we deduce that σ(T ) is a tableau for
(σ(X0), σ(C0)) = (X0, C0) (because σ is the identity on AC0). By Proposition 29, we know that all
the branches of σ(T ) are closed. Since σ is a substitution of letters we have Aσ(T ) = σ(AT ) ⊆
σ(L) = AC0 ∪ {cn, cn+1, . . .}. Thus we obtain Aσ(T ) ∩ ACe ⊆ Aσ(T ) ∩ {c0, . . . , cn−1} ⊆ AC0 . Thus by
Proposition 63, σ(T ) ∪ (Xe, Ce) is a tableau for (X0 ∪ Xe, C0 ∪ Ce). Moreover, by Proposition 26, since
all the branches of σ(T ) ∪ (Xe, Ce) are closed, then we have a closed tableau for (X1, C1). �

Theorem 65. Let (X1, C1) and (X2, C2) be two finite CSS such that X1 ⊆ X2 and C1 ⊆ C2 both hold.
If (X1, C1) has a closed BBI-tableau then (X2, C2) has a closed BBI-tableau.

Proof. Let us suppose that (X1, C1) has a closed tableau. Let D = C1∪C2. Then (X2,D) is a finite CSS
and the inclusion (X1, C1) 4 (X2,D) holds. By Lemma 64, we obtain a closed tableau T for (X2,D). It
is easy to check that D ⊆ C2 and AD = AC2 both hold. Then by Lemma 58, we obtain a tableau T ′ for
(X2, C2) such that T < T ′. Since all the branch of T are closed and T < T ′, then by Proposition 26,
all the branches of T ′ are closed. Hence, T ′ is a closed tableau for (X2, C2). �

3Remark that such an injective substitution does not necessarily exist when the set of letters L is finite.
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B Correspondence with Coq identifiers
We give a table of correspondence between the numbering of items (definitions, propositions, etc) in
this paper and the files and identifiers in the Coq code which is accessible under a free software license
at http://www.loria.fr/~larchey/BBI.
Numbering of item Coq file name Coq identifier
Definition 1 constraints.v constraint
Definition 2 constraints.v language alphabet
Table 1 pme.v c_sys_PME
Definition 3 pme.v is_pme
Proposition 4 pme.v pme_lft pme_rt pme_el pme_er
Proposition 5 pme.v language_pme pme_alphabet
Definition 6 pme.v pme
Proposition 7 pme.v pme_cpct
Proposition 8 pme.v alphabet_pme
Definition 9 predicate.v pme.v cup pme
Definition 10 bbi_basic.v bbi_basic
Definition 11 bbi_simple.v simple_pme
Definition 12 words.v pme.v subst_w subst_o subst_cst subst_dimage
Theorem 13 pme.v subst_dimage_pme_inc
Corollary 14 pme.v subst_pme_prop
Definition 15 kripke.v bbi_frame
Proposition 16 kripke.v forces_monotonic
Definition 17 kripke.v mdl_validity bbi_frame

bbi_sound_and_complete.v bbi_validity
Definition 19 css.v stm CSS CSS_leq CSS_leqf
Proposition 20 css.v CSS_compact
Table 2 bbi_expansion.v bbi_exp_rules bbi_expansion
Definition 21 tableaux.v bbi_tableaux.v tableau bbi_tab
Proposition 22 bbi_tableaux.v bbi_tab_finite_CSS
Proposition 23 bbi_tableaux.v bbi_tab_increase
Proposition 24 tableaux.v tableau_comp
Definition 25 bbi_closed_branch.v bbi_closed_branch
Proposition 26 bbi_closed_branch.v bbi_cb_inc
Proposition 27 bbi_closed_branch.v bbi_cb_finite
Definition 28 css.v subst_CSS
Proposition 29 css.v CSS_subst_stable CSS_subst_finite

bbi_closed_branch.v CSS_subst_inc bbi_cb_subst
Theorem 30 bbi_tableaux.v bbi_proof_subst
Theorem 31 bbi_tableaux.v bbi_has_closed_tableau_pme_monotonic
Corollary 32 bbi_tableaux.v bbi_has_proof_aa bbi_has_proof_ab
Definition 35 kripke.v mdl_stm mdl_cst mdl_CSS
Proposition 36 kripke.v mdl_cst_meq
Proposition 37 kripke.v meq_mdl_eq
Definition 38 bbi_realizability.v realizable
Proposition 39 bbi_realizability.v realizable_not_closed
Lemma 40 bbi_realizability.v realizable_stable
Theorem 41 bbi_sound_and_complete.v bbi_tab_soundness
Definition 42 bbi_hintikka.v Hintikka
Lemma 43 bbi_hintikka.v Hintikka_model
Corollary 44 bbi_sound_and_complete.v Hintikka_counter_model
Definition 45 maps.v bbi_strategy.v i_surjective fair_strategy
Proposition 46 bbi_strategy.v fair_strategy_exists
Definition 47 bbi_oracle.v oracle_* oracle
Definition 48 bbi_oracle.v CSS_consistent CSS_fconsistent
Proposition 49 bbi_oracle.v CSS_consistent_closed
Corollary 50 bbi_oracle.v finite_consistency_prop
Lemma 51 bbi_oracle.v oracle_exists
Proposition 52 bbi_limit.v C_prop0 XC_prop1 C_prop2 X_prop3

C_prop3 ce_basic
Proposition 53 bbi_limit.v lC_simple
Proposition 54 bbi_limit.v lXC_max
Lemma 55 bbi_limit.v lXC_Hintikka
Theorem 56 bbi_sound_and_complete.v bbi_tab_strong_completeness

30


