
HAL Id: hal-01257308
https://hal.archives-ouvertes.fr/hal-01257308

Submitted on 17 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Instancewise Array Dependence Test for Recursive
Programs

Pierre Amiranoff, Albert Cohen, Paul Feautrier

To cite this version:
Pierre Amiranoff, Albert Cohen, Paul Feautrier. Instancewise Array Dependence Test for Recursive
Programs. Workshop on Compilers for Parallel Computers (CPC), 2003, Amsterdam, Netherlands.
�hal-01257308�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49434013?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01257308
https://hal.archives-ouvertes.fr

Instancewise Array Dependence Test for Recursive Programs

Pierre Amiranoff ∗† Albert Cohen ∗ Paul Feautrier ∗‡

∗A3 group, INRIA Rocquencourt
†CEDRIC laboratory, CNAM Paris

‡LIP, ÉNS Lyon

Abstract

Starting from a generalization of induction variables,
we present a dependence test framework for recursive pro-
grams. For a restricted class of programs, a statically com-
putable function maps every run-time instance of a program
statement to the data-structure elements it accesses. State-
ment instances and data structure layouts are described
through formal language tools.

This framework is applied to the automatic detection of
data and control parallelism. We extend the concept of in-
stancewise data dependences to recursive programs and we
further investigate a dependence test for recursive programs
operating on arrays. This test is interpreted as a flow prob-
lem in a directed graph with weighted edges; and the prob-
lem is shown to be NP-complete. We provide an exponential
but efficient algorithm based on integer linear programming
and explore simple examples.

1. Introduction

Ourwork aims at the compile-time computation of array
access locations along any program execution, possibly re-
cursive. We will derive from this computation a method de-
voted to precise dependence test and aggressive paralleliza-
tion of recursive programs.

This paper focuses on the case of arrays, but ourmethod
and implementation extend to all “monoid-addressable”
data structures, e.g., lists, trees, combined arrays and trees,
etc. Its basis is the theory of regular languages and finite
state transducers. Static properties are evaluated at the level
of each run-time statement instance, and expressed by the
means of automata and transducers.

Research in the field of automatic parallelization of re-
cursive programs is still at its early stages. Compared to our
previous work [7, 4, 3], a much more efficient technique is
presented, implemented and experimented on several real-
istic examples. From the latter technique, we present the

first instancewise dependence test for a class of recursive
programs operating on multi-dimensional arrays. Most re-
lated works address the analysis of recursive programs with
pointers, but [12, 8] also deal with pointer arithmetic (and
thus, arrays). They rely on more classical data-flow frame-
works which blur the distinction between the multiple in-
stances of a statement. Therefore, our instancewise tech-
nique yields much less false dependences, at the cost of a
more constrained program model.

2. The Control Domain Model

Our basic principle is that the code operating on array
locations is purely functional: variables appearing in array
indices do not have any side-effects, i.e., they are fully char-
acterized by the sequence of variable definition statements
followed along an execution. Thus, instead of studying the
trace of all statements along an execution of the program,
we may limit the grain of the analysis to a sub-trace of the
“meaningful statements”. This model turns out to be more
tractable than static analysis frameworks focusing on full
execution traces.

As a general rule, static analysis brings only conservative
results concerning control flow and variable values. Thus,
we will not take conditional tests and loop bounds into ac-
count, and consider thatboth then and else branches
can be taken. However, thanks to the instancewise analy-
sis framework, we do not confuse the run-time properties of
two exclusive branches. In otherwords, we avoid the pitfall
of classical data-flow analyses which do not preserve the
context of static properties.

To implement this framework, we have built up a special
language named MOGUL, for MOnoid GUided Language.
According to our objective, the MOGUL syntax concen-
trates on variables that carry the values of array indices,
namedinduction variables(generalized from nested loops),
ignoring all other variables. Thus, the principal constraint
will concern operations over these induction variables.

let der = ... (* arrays’length - 1 *)
let ta = ref ...
let tb = ref ...;;

(* copy ta from x to r into tb at y *)

let rec copya y x r =
if x <= r
then begin

List.nth !tb y :=
!(List.nth !ta x);
copya (y+1) (x+1) r

end;;

let rec copyb y x r = ...;;

(* merge the sub-arrays ta[p..q-1]
* and ta[q..der], both being sorted,
* into tb with r = current index of tb *)

let rec merge_ab p q r =
if p < q && q <= der
then begin

let elp = !(List.nth !ta p)
and elq = !(List.nth !ta q)
in

if elp < elq
then begin

List.nth !tb r := elp;
merge_ab (p+1) q (r+1)

end
else begin

List.nth !tb r := elq;
merge_ab p (q+1) (r+1)

end
end

else begin
if p < q
then

copya r p (q-1)
else

copya r q der
end;;

let rec merge_ba p q r = ...;;

let rec sort_ab p q r =
if p < r
then begin
if q <= (p+r)/2 (* dichotomy *)
then

sort_ab p (q+1) r
else begin

sort_ba p p (q-1);
sort_ba q q r;
merge_ab p q p

end
end

and sort_ba p q r = ...;;

copya 0 0 der;
sort_ab 0 0 der;;

monoid Monoid_int [1, -1 | congr];
structure Monoid_int A;
structure Monoid_int B;

function Copya (Monoid_int X, Monoid_int Y) {
if test {
B[X] = A[Y];
Copya (X.1, Y.1);

}
}

function Copyb (Monoid_int X, Monoid_int Y) { ... }

function Merge_ab (Monoid_int P, Monoid_int Q, Monoid_int R) {
if test
if test {

B[R] = A[P];
Merge_ab (P.1, Q, R.1);

}
else {

B[R] = A[Q];
Merge_ab (P, Q.1, R.1);

}
else
if test

Copya (R,P);
else

Copya (R,Q);
}

function Merge_ba (Monoid_int P, Monoid_int Q, Monoid_int R) { ... }

function Sort_ab (Monoid_int P, Monoid_int Q, Monoid_int R) {
d if test
f if test
B Sort_ab (P, Q.1, R);
e else {
C Sort_ba (P, P, Q.-1);
D Sort_ba (Q, Q, R);
E Merge_ab (P, Q, P);

}
}

function Sort_ba (Monoid_int P, Monoid_int Q, Monoid_int R) { ... }

function Main () {
A Sort_ab (@, @, Der);

}

Figure 1. Program To & fro

2.1. Presentation of the Running Examples

We took our choice of two running examples to clearly
expose our framework. We give both the OCaml and
MOGUL versions, labeling statements if necessary.

Figure 1 presents theTo & fro example, a version of
the recursive merge-sort algorithm, working alternatively

over two arrays during the fusion phase, the first phase im-
plementing a classical divide-and-conquerdichotomy. The
recursive function Merge ab (respectively Merge ba)
merges and sorts two halves of arrayA into array B (respec-
tively of array B into array A). ParametersP andQ indicate
the current elements of the sub-arrays, the third parameter
indicates the next place to write into the sorted array. The

let ta = Array.make 6 1;;

let rec pascaline l =
if l < 6
then

let x = ref ta.(0)
and y = ref 0
in
begin

for i = 1 to (l-1) do
y := ta.(i);
ta.(i) <- !x + !y;
x := !y;

done;
pascaline (l+1)

end;;

pascaline 0;;

monoid Monoid_int [1, -1 | congr];
structure Monoid_int A;

function Pascaline (Monoid_int L) {
if test {
for (Monoid_int I = 1; test; .1) {

joker = A[I];
A[I] = joker;
joker = joker;

}
Pascaline (L.1);

}
}

function Main () {
Pascaline (@);

}

Figure 2. Program Pascaline

bound for the last element does not appear since it is used
only in test conditions. The dichotomy requires a recursive
incrementation of the indexQ: this is dictated by the pro-
gram model, as we will see below. The same artifice is in
use forSort ab andSort ba functions.

Figure 2 shows thePascaline example, a program to
evaluate the binomial coefficients (a line of Pascal’s trian-
gle). It exhibits both a loop statement and a recursive call.

2.2. Interprocedural Control Flow Graph

We represent the execution of recursive programs with
control flow graphs enriched with a stack. Its role is to track
the succession of procedure calls and returns.

Figure 3 presents the control flow graph forTo & fro,
simplified for readability (we omitted the body of functions
Merge ab andMerge ba).

return 4return 3

Sort_ab
(@, @, der)

Sort_abSort_ba

Merge_ab Merge_ba

p < r p < r

return 1return 2

Merge_ba
(p, q, p)

Sort_ab
(q, q, r)

Merge_ab
(p, q, p)

Sort_ba
(q, q, r)

q < (p+r)/2 q < (p+r)/2

Sort_abSort_baSort_ba
(p, (q+1) r)

Sort_ab

Push D

 D
Push F

 F

Pop F

Pop D

Pop C

 Push E
Pop I

Pop E

Pop H Pop G

fe

d
a

 Push C
C

 Push G
G

 Push A
A

Push B

 B
Push H

 H

Pop B
b c

Pop A

E
 Push I

I

(p, p, q−1) (p, p, q−1) (p, (q+1) r)

Figure 3. Control flow graph of To & fro

Different Kinds of Statements. MOGUL statements are
split into terminal and compound statements. Notice that
procedure returns figure among terminal statements; they
are implicitly present in the source program in the form of
body closing brackets. Compound statements are the con-
ditional, for loop, procedure call, and sequence of sev-
eral statements. We will see below that execution of any
of these compound statements begins by defininginduction
variables.

Execution Trace. Naming each statement with a distinct
label allows unambiguous denotation of any execution of
the program with an execution trace. From the context-free
grammar given by the MOGUL syntax, we may derive for
any MOGUL program a corresponding context-free trace
grammar, and the interprocedural control flow graphcan
be viewed as the graph of a pushdown automaton accepting
the trace language.

A trace prefixdenotes the part of a complete trace rela-
tive to an unachieved execution. Aninstanceis a particular
execution of a statement during a given execution of the
program, it is associated with a uniquetrace prefix.

2.3. Control Words

The basic principle is as following: a partial or com-
plete execution trace is structured as a nest of “blocks”,
each terminal or compound statement being such a block.
Executing any statement (even a terminal one) will be inter-
preted as calling a function with dynamic stack allocation
followed by deallocation when completed. In the special
case of loops, each iteration is nested in the previous one
and all are closed back at the loop completion.

Following this principle, we will consider the extended
stackwhich carries the sequence of all labels representative
of those statements that have been “opened” since the be-
ginning of execution and not “closed” yet. The word stored

in the extendedstack is calledcontrol word. Combining this
extended stack with the interprocedural control flow graph
yields a pushdown automaton accepting the trace language.
The stack language of a pushdown automaton is a rational
language [11], hence the control words language is rational.

Example. Figure 4 shows a completetrace. Above the
simplified version, we present a full version, i.e., enriched
with the indicationof statementclosures (overlined). Below
this trace, several associated control words are presented.
We may deduce them from the full version trace, by con-
sidering that a pairof side by side corresponding labels, the
first simple and the other overlined, annihilate each other
from control words, according to the Dick languages reduc-
tion.

Control Automaton. We show on the running example
how to construct a finite state automaton that recognizes the
control words language.

Sort_ab
(@, @, der)

A

Merge_ab Merge_ba

 p < r

sequence 1

Merge_ab
(p, q, p)

Sort_ba Sort_ba
(q, q, r)

sequence 2

Merge_ba
(p, q, p)

Sort_abSort_ab
(q, q, r)

E I

q < (p+r)/2

d

 q < (p+r)/2

a

e

(p, (q+1) r)

f c

Sort_ba
(p, (q+1) r)

b

B F

H

Sort_ab

G C

D

Sort_ba

p < r

Sort_ab

(p, p, q−1) (p, p, q−1)

Figure 5. Control Automaton of To & fro

The control automaton is derived from the control flow
graph: in the latter, a sequence of successive statements
takes form as successive edges, while in the control automa-
ton each of these statements is linked by an edge from the
commonenclosing statement, see Figure 5. All states are fi-
nal. Since return nodes are useful only for execution traces
but out of interest for dependence analysis, we will simply
ignore them. Note that control automaton makes no distinc-
tion between the sequence (;) and the conditional.

2.4. Instances

Among all possible executions of the program (accord-
ing to inputdataand test results), it is easy to see thatagiven

control word may be the abstraction of many trace prefixes,
possibly an infinite number. As an example, considera trace
prefix containing the trace of a conditional statement com-
pleted during the instance it represents, the control word
has “forgotten” which branch has been executed. In this
context, an instance is the equivalence class of all partial
executions (trace prefixes) that generate the same control
word.

Nevertheless, if we limit our instance domain to a par-
ticular execution of the program, it’s easy to prove that no
more that one trace prefix can be associated with a given
control word. In that sense, a control word is representative
of a unique instance during an execution.

3. Induction Variables and Binding Functions

Traditionally, addresses in a mono-dimensional array
can be expressed via an integer index, and in a multi-
dimensional one via a vector of integer indices. We limit
ourselves to arrays indexed through affine expressions of
some specific variables, from now onwards referred asin-
duction variables.

3.1. Definition and Office

For each induction variable, a binding functionmaps
each instance, i.e., each control word, to each value of this
inductionvariable. Of course, the result makes sense only if
the induction variable is syntactically alive at this instance.
In To & fro, inductionvariables are the formal parameters
of all functions. In Pascaline, the loop index is also an
induction variable. As mentioned earlier, MOGUL syntax
only allows definition of induction variables at the begin-
ning of a block.

Since the control word loses the trail of any operation
executed during a completed statement, the exigency of ex-
actness in references computation dictates that a statement
execution has no side effects upon induction variables de-
fined outside of that statement. The environment is thus
characterizedby the extendedstack, and inductionvariables
are managed in single-assignment, quite similarly to a pure
functional language.

Another constraint concerns the type of operations over
the induction variables. Indeed, a modification of one in-
duction variable has to be modeled as a transition in a trans-
ducer.

3.2. Operations Over the Induction Variables

Two types of operations are allowed overinduction vari-
ables. Let us index respectively by 1 and 2 the values before
and after the operations.

AdfBdfBdeCabFacGGHH IIcaFbaCDabFacGGHHIIcaFbaDEEedBfdBfdA Full trace
AdfBdfBdeCabFacG H I DabFacG H I E Simplified trace
AdfBdfBdeCabFac I Control word
AdfBdfBde D ”
AdfBdfBde DabFac I ”
AdfBdfB E ”

Figure 4. A trace and some associated control words

• Givena inductionvariablei, the operationmay initial-
ize the value ofi to a constant:i2 = k.

• Given two induction variablesi andj (possibly iden-
tical), we may definei with the value of j plus an
increment: i2 = j1 + k.

Of course, depending on the statement, several induction
variables may be defined simultaneously according to these
rules. For our both running examples, it’s immediate that
the required exigencies are satisfied.

3.3. Binding Transducer

The representation of binding functions is called the
product transducer. The latter is built as follows: except
for the initial state, we duplicate the control automaton so
thateach inductionvariable is assigned its own copy of each
control automaton state. Each state is a “meeting point”
for the values of a given induction variable, for any con-
trol word at this program point. In addition, each statement
label is paired with its induction variable definitions, in or-
der to map control words to the value of every induction
variable. Indeed, each transition is labeled with a pair of a
statement label and a constant, we call such pairsbilabels,
see Figure 6. If the induction variableq inherits its value
from p at the entrance of statements, asq = p + k, then
the product transducerhas an edge from the node dedicated
to p befores to the one dedicated toq afters.

The case of constant assignmentx = k is specific: we
consider an additional induction variable namedz whose
value is always0. When x is defined tok at the opening
of statements, the node dedicated to induction variablex
after s is the arrival state of an edge coming from the node
dedicated toz just before execution ofs, with the bilabel
(s|k).

We may suppress from the tranducer any subgraph re-
ferring to an induction variable that is not alive at the cor-
responding program points, or — in the case ofz — not
useful for computation. Remaining nodes are final.

Figure 6 presents the product transducer forPasca-
line, much simplerthanTo & fro’s one. Notice the loop
iteration (g) is described by a loop edge. Moreover, the case

of the initialization of induction variable I at loop entry G

is interesting: it is captured by a “transversal” edge from a
state associated with the additional induction variablez to
a state associated withI.

A | @
A | @

B | @

C | @

D | @ E | @

F | 1

g | @

H | @
I | @

G | @

g | 1

H | @
I | @

J | @J | @

B | @

C | @

E | @
D | @

F | @

G | @

Pascaline

 Z

 I I

 L I

L I

 Z Z L

 L

 L

 L Z

 Z

LL

 L

Pascaline(@)

Sequence 1

Sequence 2

joker = A[I] A[I] = joker joker = joker

Sequence 2

joker = A[I] A[I] = joker joker = joker

L < n

Pascaline

L < n

Sequence 1

 For I For I Pascaline (L.1)Pascaline (L.1)

Figure 6. Product Transducer of Pascaline

Building the product transducer is linear in the number
of statements and alsolinear in the number of induction
variables. Surprisingly, the previously available algorithm
was exponential in the worst case [3]: it relied on Gaus-
sian elimination on the non-commutative semi-ring of reg-
ularexpressions.

4. Instancewise Dependence Test

Let us now apply the instancewise information captured
by the binding transducer to dependence test and paral-
lelization. In this part, the analysis must be applied sep-
arately to each array, but we will omit the array name to
simplify notations.

4.1. Exploitation of the Binding Information

We focus on two forms of automatic parallelization:

• scheduling of instructions and procedure calls within a
program block;

• discovery of procedure calls that may safely be made
asynchronous, enabling parallel executionof the callee
with the following code in the caller.

Recursive programming blurs the distinction between
data and control parallelism, since any data-parallel loop
may be rewritten as a procedure with asynchronous recur-
sive calls — with a low sequential overhead. These two
forms of parallelization are based on a restricted type of
block-related dependence information, thesynthetic depen-
dence graph[7]: considering an instruction s preceding an
instruction s′ in the same program block,1 there is a syn-
thetic dependence froms to s′ if and only if two instances
spawned bys ands′ access the same memory location. Ifs
and s′ are not synthetically dependent, they may be safely
reordered or executed asynchronouslywithin the enclosing
block.2 Formally, the synthetic dependence relation, de-
noted by∆ is, whereΣ∗ is the control words free monoid:

s∆s′ ⇐⇒ ∃u, v, v′ ∈ Σ∗ : B(usv) = B(us′v′). (1)

The set of instances spawned by statements will be
called the cone from summits. The partial order between
instancess and s′ defined in (1) is thecone-to-cone order
≪s,s′ .

An example will be presented in Section 5.

4.2. The Dual Dependence Test Transducer

Figure 7 supports the following presentation. Thecon-
flict transductionκ = B−1 ◦ B maps each instance to each
of the instances which potentially access the same refer-
ences. Because the intermediate monoid isZn, κ is not a
rational transduction. Instead, we stick to transductioncom-
positions where the intermediate monoid is free: the Elgot
and Mezei theorem [6, 1] shows that such a composition
yields a rational transduction, and provides a quadratic al-
gorithm to build the resulting transducer.

The dependence transductionδs,s′ = κ∩ ≪s,s′ extracts
from κ cone-to-cone ordered couples of control words, i.e.,
it describes the instancewise dependence relation between
control words according to the binding functionB and the
cone-to-cone order≪s,s′ . Dependence transductions and
synthetic dependences are linked through the following re-
sult:

δs,s′ 6= ∅ ⇐⇒ s∆s′. (2)

1By definition, s and s′ cannot label exclusive branches of a condi-
tional.

2A block closing implicitly corresponds to a synchronization, waiting
for completion of every statement in the block.

τ ∗
s,s′

Word
Address

B

τs,s′

B

≪s,s′ Word
ControlControl

Word

Figure 7. Dual Dependence Test Transducer

To decide emptiness ofδs,s′ is equivalent to test whether
the dependence test transductionτs,s′ = κ◦ ≪s,s′ is dis-
joint from the identity transduction=. Like κ, τs,s′

is not a rational transduction. Therefore, this way of
describing dependences does not lead to a computable
method. Let us define thedual dependence test transduc-
tion τ∗

s,s′ = B◦ ≪s,s′ ◦B−1; τ∗
s,s′ is rational since the in-

termediate language during both compositions is the control
words free monoidΣ∗. Figure 7 shows that the formerδs,s′

emptiness problem of boils down to the disjointness ofτ∗
s,s′

and the identity transduction =.
Building the dual dependence test transducer involves

two compositions with transducers of the same order of
magnitude in states and edges number, i.e., in the total num-
berof statements. Its complexity is thus cubic in the number
of statements. This sometimes leads to huge intermediate
transducers with more than 10000 states and edges. For-
tunately, these transducers are very redundant and a mini-
mization procedure (including determinization) succeedsin
achieving a simplification by a factor of 100 or more, lead-
ing to less than 10 states and edges in many cases. Improv-
ing the composition algorithm in order to limit the size of
intermediate structures is a very promising topic, but the
small size of the result is already sufficient to apply a some-
what more complex dependence test, as we will see in the
next section.

4.3. Algorithm for Existence Test

Considering ad-dimensional array, we have just shown
that dependence between two statementss and s′ is equiv-
alent to the existence of ad-dimensional vectorv such that
vτ∗

s,s′v (without taking loop bounds and conditionals into
account).

From a transducer implementing τ∗
s,s′ , let us build a di-

rected graphGs,s′ whose vertices and edges are the states
and the transitions of the transducer, respectively, labeling
each edge with the difference between the transition’s out-
put and input vectors. E.g., a transition labeled−1|2 yields

an edge labeled3. Initial and final states in the transducer
are calledinitial andfinal verticesin Gs,s′ .

Dependence betweens and s′ is now equivalent to the
following decision problem: “is there a zero-weight path
between the initial and final vertices inGs,s′?”

Decidability. Let us examine first the case of arrays of di-
mension1. From Gs,s′ , we may build a push-downautoma-
ton with empty alphabet and one stack symbol (one-counter
automaton) where0 in the counter is realized by the empty
stack. Testing whether the language recognized by a push-
down automaton is empty is a well-known decidable prob-
lem.

Concerning multi-dimensional arrays, note that compu-
tations over dimensions are independent from each other.
So, its suffices to test emptiness of the intersection of each
dimension languages.

A Flow Algorithm. This zero-weight path problem —
though quite natural and similar to the flow problem —
could not be found in the literature. It has been proved NP-
complete, even in the acyclic case, through a simple reduc-
tion from the bipartition problem. Nevertheless, this prob-
lem is known to admit a ratherefficient pseudo-polynomial
solution, i.e., there is a polynomial algorithm when the inte-
gers involved are small. This is the case in practical graphs
Gs,s′ , since the labels are of the same orderas the induction
variable strides in the source program. We are thus encour-
aged in the search of an exact solution to the dependence
problem.

Ourproposed solution is not pseudo-polynomial yet, but
seems very applicable to practical graphs. It relies on a
two-stepencoding into integerlinearprogramming. The ex-
ample in Figure 8 illustrates the formal presentation. Each
edgee in Gs,s′ = (V, E) is associated with a variableke.
We assume, without loss of generality, thatGs,s′ has only
one initial (resp. final) vertex with no incoming (resp. out-
going) edges (this condition is easily achieved with two ad-
ditional vertices and zero-labeled edges).

First of all, suppose thatGs,s′ is acyclic. Calling O the
set of outgoing edges of the initial vertex andI the set of
incoming edges of the final vertex, add constraints

∑

e∈O

ke = 1 and
∑

e∈I

ke = 1. (3)

Then, calling Ov and Iv, respectively, the sets of outgoing
and incoming edges of any non-initial and non-final vertex
v, add constraint

∑

e∈Ov

ke =
∑

e∈Iv

ke. (4)

The two previous constraints are analogous to the Kirch-
hoff law in electrical engineering. It is easy to show that

any solution(ke)e∈E satisfying these constraints describes
a path between the initial and the final vertices: each edgee
haske occurrences in this path (0 or 1 because the graph is
acyclic). Finally, calling (wi

e)1≤i≤d the d-dimensional inte-
ger vector labeling edgee, addd constraints to enforce the
zero-weight property.

∀i, 1 ≤ i ≤ d :
∑

e∈E

wi
eke = 0. (5)

By construction, there is a dependence betweens and s′ if
and only if the system of affine equalitiesSs,s′ = (3, 4, 5)
has a solution. We have just converted our flow problem
into another, well known, NP-complete problem. Fortu-
nately, system(3, 4) is easy to solve using Gaussian elimi-
nation, since every minor of the constraint matrix is either
singularorunimodular. Thus, the full systemSs,s′ can effi-
ciently be addressedusing integerlinearprogramming tech-
niques: traditional pivoting of the simplex method [13] ap-
plies to the unimodular part of the matrix, possibly with
additional Gomory cuts [13] to handle the remaining con-
straints associated with (5).

Now consider the case of a cyclic graphGs,s′ . The path
constraint is not anymore enforced by(3, 4): there may ex-
ist an isolated circuit disconnected from the main path be-
tween the initial and final vertices. Indeed, a circuit may
only exist in a path if it is reachable from the initial ver-
tex. In other words, performing a topological sort ofGs,s′ ,
a backward edge targeting vertexv may be taken only if a
forward edge targetingv is also taken. If we denoteFv and
Bv the sets of forward and backward edges ofv, respec-
tively, this fact leads to a disjunction of affine constraints as
follows:

∑

e∈Bv

ke = 0 ∨
∑

e∈Fv

ke ≥ 1.

In the worst case, each vertexv (targeted with backward
edges) generates two additional constraints and, leading to
an exponential number of systems. Feasibility of at least
one of these systems is sufficient to show thats and s′ are
dependent. But an arbitrary association of such constraints
yields no solution in general, because circuits are often se-
quenced on a single path ornested together inGs,s′ ; e.g., a
loop nest always leads to a linearnumberof systems.

Implementation and furtherstudy of the algorithm com-
plexity are left for future work, but current results show th at
practical solutions to ourdependence test problem do exist.

S1 has no solution butS2 has an infinite number of so-
lutions, the shortest (in terms of the associated path) being
k9 = 0, k1 = k2 = k4 = k5 = k6 = k7 = k8 = 1 and
k3 = 3.

−2

k5

2

k3

k6

0

k2

−2

k4

0

0

k9

k1

−1

−1

k7

0

k8

Gs,s′

S1 =

k1 = 1

k8 + k9 = 1

k1 + k6 = k2 + k7

k2 = k4

k4 = k5

k5 = k6 + k9

k7 = k8

k3 = 0

−k1 − 2k2 + 2k3 − 2k5 − k7 = 0

S2 =

k1 = 1

k8 + k9 = 1

k1 + k6 = k2 + k7

k2 = k4

k4 = k5

k5 = k6 + k9

k7 = k8

k2 ≥ 1

−k1 − 2k2 + 2k3 − 2k5 − k7 = 0

Figure 8. Encoding into systems of affine inequalities

5. Implementation and Experiments

We realized in OCaml a complete implementation of the
procedure that takes a MOGULprogramsource in inputand
returns the dual dependence test transduceraccording to the
choice of data structure andcone summits.

In order to easily pass from any automaton or transducer
to anotherone of eithertype, we have implementeda library
of generic tools, parameterized by the types of state labels
and transition labels. Graphs of automata and transducers
are designed through thedotsoftware [9]. Thanks to several
steps of minimization, trimming and ad-hoc reduction, the
dual dependence test transducergraphappearedvery simple
for the programs we tested, and answer to the dependence
test might be found directly while examining it.

Experiments with the To & fro Program. Function
Sort ab is recalled in Figure 10.

Applying the dependence test algorithm on the dual de-
pendence test transducersτ∗

C,E and τ∗
D,E yields two syn-

thetic dependences, as expected intuitively. Figure 9 is the
result of our implementation for τ∗

C,E . Since all states, in-
cluding the initial one, are final, dependence test answer is
obviously “yes”.

0

1

1 | 1

2

0 | 1

0 | 1

1 | 0

0 | 1

1 | 11 | 0
1 | 0

Figure 9. Test Transducer for τ∗
C,E .

However, considering the dual dependence test trans-
ducerτ∗

C,D, the algorithm should not be able to find a zero-

weight path between the initial and final nodes onGC,D,
since the recursive calls toSort ba affect disjoint parts of
the arrays (separated by the induction variableQ). Unfor-
tunately, GC,D doeshold such a zero-weight path, because
the conditional expression enforcing the separation (p < r)
has not been taken into account, thus responsible for the
false dependenceC∆D.

This remaining false dependence forbids the paralleliza-
tion of function Sort ab. Of course, our technique is fully
successful on other interesting recursive programs, but this
disappointing result is a motivation to further explore the
direct handling of conditional expressions and loop bounds
into the binding function. Updating the dependence test to
the resulting multi-counter transducers (a.k.a. Minsky ma-
chines) will be difficult: the dependence test problem be-
comes undecidable. But several solutions are at hand, based
on decidable sub-classes [2, 5].

Figure 11 shows the “corrected” synthetic dependence
graph of function Sort ab. Using thespawn/sync asyn-
chronous function call from the Cilk parallelization tool
[10], one may automatically deduce the parallel program
in Figure 12.

Beyond theTo & fro program. Figure 13 shows some
facts about the recursive programs we implemented in
MOGUL. Since our last publication in the field [3], we dis-
covered many recursive algorithms suitable for implemen-
tation in MOGUL and instancewise dependence analysis.
Therefore, it seems that the program model encompasses
many implementations of practical algorithms despite its se-
vere constraints.

6. Conclusion and Perspectives

We introduced by examples a language dedicated to a
class of recursive programs. This enabled us to extract
from them the instancewise mapping between run-time in-
stances and array elements. This analysis is exploited for
an instancewise dependence test that can handle multi-
dimensional arrays. This problem was previously consid-

Code name OCaml lines Array references Labels Loops Function calls Product transducer nodes
Pascaline 21 2 15 1 2 42
Matrix-multiply 17 5 15 1 3 45
n-Queens 46 2 22 2 2 79
To & fro 115 12 82 0 19 416
Merge sort+terminal bubble sort 78 14 71 2 14 602
Sort 3 colors 80 4 49 0 11 162

Figure 13. Examples of applicable recursive programs

function Sort_ab (...) {
d if test
f if test
B Sort_ab (P, Q.1, R);
e else {
C Sort_ba (P, P, Q.-1);
D Sort_ba (Q, Q, R);
E Merge_ab (P, Q, P);

}
}

Figure 10. Function Sort ab

d
f

B
e

D
E

C

∆∆

Figure 11. Synthetic dependence graph

function Sort_ab (...) {
d if test
f if test {
B spawn Sort_ab (P, Q.1, R);

sync;
e } else {
C spawn Sort_ba (P, P, Q.-1);
D spawn Sort_ba (Q, Q, R);

sync;
E spawn Merge_ab (P, Q, P);

sync;
}

}

Figure 12. Parallel version of Sort ab

ered undecidable in the general case [3]. An efficient al-
gorithm has been presented: the binding function compu-
tation phase is polynomial and the dependence test itself
has a “reasonable” exponential complexity (it belongs to a
“good” class of integer linearprogramming).

However, much work is underway to make this tech-
nique practical. First of all, we are aware that many useful
algorithms are not compatible with the induction variable
constraints. In addition, recall that conditional expressions
and loop bounds have not been taken into account, leading
to several examples with false dependences. Generaliza-
tion and/or graceful degradations of the framework should
thus be developed. We are currently investigating both ap-

proaches.

Acknowledgments. We would like to thank Véronique
Donzeau-Gouge and Catherine Dubois for their important
contributions to the semantical foundation of the control
word and induction variable concepts. The dependence test
complexity has been studied with the help of Guillaume
Huard who designed a simple reduction from the bipartion
problem.

References

[1] J. Berstel. Transductions and Context-Free Lan-
guages. Teubner, Stuttgart, Germany, 1979.

[2] B. Boigelot and P. Wolper. Symbolic verification
with periodic sets. In Proc. of the 6thconference on
Computer-Aided Verification, number 818 in LNCS,
pages 55–76. Springer-Verlag, 1994.

[3] A. Cohen. Program Analysis and Transformation:
from the Polytope Model to Formal Languages. PhD
thesis, Université de Versailles, France, Dec. 1999.
http://www-rocq.inria.fr/˜acohen/publications/thesis.ps.gz.

[4] A. Cohen and J.-F. Collard. Instance-wise reach-
ing definition analysis for recursive programs using
context-free transductions. InParallel Architectures
and Compilation Techniques, pages 332–340, Paris,
France, Oct. 1998. IEEE ComputerSociety Press.

[5] H. Comon and Y. Jurski. Multiple counters automata,
safety analysis and presburger arithmetic. In A. Hu
and M. Vardi, editors, Proc. Computer Aided Verifica-
tion, volume 1427 ofLNCS, pages 268–279, Vancou-
ver, British Columbia, Canada, 1998. Springer-Verlag.

[6] C. C. Elgot and J. E. Mezei. On relations defined by
generalized finite automata.IBM Journal of Research
and Development, pages 45–68, 1965.

[7] P. Feautrier. A parallelization framework forrecursiv e
tree programs. In EuroPar’98, LNCS, Southampton,
UK, Sept. 1998. Springer-Verlag.

[8] M. Gupta, S. Mukhopadhyay, and N. Sinha. Au-
tomatic parallelization of recursive procedures. In
Parallel Architectures and Compilation Techniques
(PACT’99), pages 139–148. IEEE Computer Society
Press, Oct. 1999.

[9] E. Koutsofios and S. North. Drawing graph withdot,
Feb. 2002.
http://www.research.att.com/sw/tools/graphviz/dotguide.pdf.

[10] K. H. R. M. Frigo, C. E. Leiserson. The implemen-
tation of the cilk-5 multithreaded language. In ACM
Symp. on Programming Language Design and Imple-
mentation (PLDI’98), pages 212–223, Montreal, Que-
bec, Canada, June 1998.

[11] G. Rozenberg and A. Salomaa, editors.Handbook of
Formal Languages, volume 1: Word Language Gram-
mar. Springer-Verlag, 1997.

[12] R. Rugina and M. Rinard. Automatic parallelization
of divide and conquer algorithms. In 7thACM Symp.
on Principles and Practice of Parallel Programming
(PPoPP’99), Atlanta, Georgia, USA, May 1999.

[13] A. Schrijver. Theory of Linear and Integer Program-
ming. John Wiley and Sons, Chichester, UK, 1986.

