
HAL Id: hal-01257304
https://hal.archives-ouvertes.fr/hal-01257304

Submitted on 20 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

In Search for a Program Generator to Implement
Generic Transformations for High-performance

Computing
Albert Cohen, Sébastien Donadio, María J. Garzarán, David Padua,

Christoph Herrmann

To cite this version:
Albert Cohen, Sébastien Donadio, María J. Garzarán, David Padua, Christoph Herrmann. In Search
for a Program Generator to Implement Generic Transformations for High-performance Computing.
1st MetaOCaml Workshop (associated with GPCE), 2004, Vancouver, British Columbia, Canada.
�hal-01257304�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49433991?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01257304
https://hal.archives-ouvertes.fr

In Search of a Program Generator to Implement Generic
Transformations for High-performance Computing

Albert Cohen 1 Sébastien Donadio 1 Maria-Jesus Garzaran 2

Christoph Herrmann 3 David Padua 2

1 ALCHEMY group, INRIA Futurs, Orsay, France
2 DCS, University of Illinois at Urbana-Champaign

3 FMI, University of Passau, Germany

ABSTRACT
The quality of compiler-optimized code for high-performance ap-
plications lags way behind what optimization and domain experts
can achieve by hand. This paper explores in-between solutions,
besides fully automatic and fully-manual code optimization. This
work discusses how generative approaches can help the design and
optimization of supercomputing applications. It outlines early re-
sults and research directions, using MetaOCaml for the design of
a generative tool-box to design portable optimized code. We also
identify some limitations of the MetaOCaml system. We finally
advocate for an offshoring approach to bring high-level and safe
metaprogramming to imperative languages.

1. INTRODUCTION AND MOTIVATION
High-performance computing seems to be turning into a mature
domain. Architecture designs, programming languages, compila-
tion and optimization techniques have lately been rather evolution-
ary. However, programmers for high-performance applications still
complain about the lack of efficiency of their machines — the ra-
tio of sustained to peak performance — and the poor performance
of their optimizing or parallelizing compiler [40]. Indeed, the path
from research prototypes to production-quality optimizers has been
more difficult than expected, and advanced loop-nest and interpro-
cedural optimizations are still performed manually by application
programmers. The main reasons are the following:

• driving and selecting profitable optimizations becomes more
and more difficult, due to the complexity and dynamic be-
havior of modern processors [24, 11, 30];

• domain-specific knowledge unavailable to the compiler can
be required to prove optimizations’ legality or profitability
[6, 26];

• hard-to-drive transformations are not available in compilers,
including transformations whose profitability is difficult to
assess or whose risk of degrading performance is high, e.g.,
speculative optimizations [2, 34];

• complex loop transformations do not compose well, due to
syntactical constraints and code size increase [10];

• some optimizations are in fact algorithm replacements, where
the selection of the most appropriate code may depend on the
architecture and input data [27].

Manual optimizations degrade portability: the performance of a C
or Fortran code on a given platform does not preclude its perfor-
mance on different architectures; not speaking about the use of low
level, machine specific extensions. Several works have successfully
addressed this issue, not by improving the compiler, but through
the design of application-specific program generators, a.k.a. active
libraries [39]. Such generators often rely on feedback-directed op-
timization to select the best generation strategy [35], but not ex-
clusively [42]. The most popular examples are ATLAS [40] for
dense matrix operations and FFTW [17] for the fast Fourier trans-
form. Such generators follow an iterative optimization scheme,
as depicted in Figure 1 in the case of ATLAS: an external con-
trol loop generates multiple versions of the optimized code, vary-
ing the optimization parameters, and an empirical search engine
drives the search for the best combination of parameters. Most pro-
gram transformations applied in these generators have been pre-
viously proposed for classical compiler frameworks, but existing
compilers fail to apply them for the abovementioned reasons. Con-
versely, optimizations often involve domain-specific knowledge,
from the specialization and interprocedural optimization of library
functions [13, 9] to application-specific optimizations like algo-
rithm selection [27]. Recently, the SPIRAL project [33] investi-
gated a domain-specific extension of such program generators, op-
erating on a domain-specific language of digital signal processing
formulas. This project is one step forward to bridge the gap be-
tween application-specific generators and generic compiler-based
approaches, and to improve the portability of application perfor-
mance.

Matrix product template ATLAS driver

optimization 1

optimization 2

optimization n

feedback

driver selects the best value

execute

generate and compile

Figure 1: Empirical search in ATLAS

In this context, iterative compiler optimization is gaining more and
more interest for its capability to drive complex transformations. It
uses the feedback from real executions of the optimized program
to explore the optimization search space using operations research
algorithms [24], machine learning [27], and empirical experience
[30]. In theory, iterative optimization could even be applied to
domain-specific and user-defined transformations, if a framework
for describing these transformations was available to application
programmers. This is one of the goals of telescoping languages [22,
9], a compiler approach to reduce the overhead of calling generic li-
brary functions and to enable aggressive interprocedural optimiza-
tions, by lifting the semantical information about these libraries to
the compiler. Beyond libraries, multiple alternative ideas have been
proposed for domain-specific optimizations [26]. All these works
highlight the increased need for researchers and developers in the
field of high-performance computing to metaprogram their opti-
mizations in a portable fashion.

In the multistage language and metaprogramming world, the most
popular optimizations are partial evaluation, specialization and sim-
plification. These transformations are useful to supercomputing ap-
plications but far from sufficient. As a matter of fact, research on
generative programming and multistage evaluation has not greatly
influenced the design of high-performance applications and com-
pilers, most of the abovementioned projects being ad-hoc string-
based program generators.

This paper discusses important issues raised by the application of
generative approaches for high-performance computing. It outlines
research directions and early results, using MetaOCaml for the de-
sign of a generative tool-box to design portable optimized code.
In this context, we also explore how static type checking restricts
the expressiveness of multistage evaluation. We finally present a
heterogeneous multistage approach for safe metaprogramming in
imperative languages.

2. GENERATIVE STRATEGIES FOR LOOP
TRANSFORMATIONS

The main program transformations for high-performance target reg-
ular loop-oriented computations over arrays. Most transformations
have been defined for an imperative, intraprocedural setting. Al-
though more and more interprocedural program analyses are inte-
grated into some modern compilers, few advanced interprocedural
optimizations have been proposed. Advanced optimizations often
fail to be applied by the compiler, if at all implemented, and some
important optimizations would require too much domain specific
knowledge or miss important hidden information (in libraries or
input data structure) [9].

In a compiler perspective, there seem to be two means to improve
the situation: either the programmer is given a way to teach the
compiler new analyses and optimizations, how to drive them, and
possibly when to apply them (overriding static analysis), or the pro-
grammer implements a generator for a class of programs to produce
the optimized code automatically [26]. Multistage evaluation is
primarily supporting the second direction and we will survey how
typical transformations can be revisited in a multistage setting.

Very close to our work, the TaskGraph active library [5] provides
multistage evaluation and loop transformation support for adap-
tive optimization of high performance codes (numerical and image
processing, in particular). We share similar goals with this work,
but we impose an additional constraint on the metaprogramming

that may occur during program generation: we aim for a purely
generative approach, where code is only produced through mul-
tistage evaluation (brackets, escape, run), whereas the TaskGraph
approach implements loop transformations as high-level transfor-
mations of an abstract code representation. As a consequence, the
TaskGraph library embeds a full restructuring compiler in the gen-
erator, where we only require back-end code generation. In addi-
tion, allowing code transformations in the metaprogram opens the
door to unpredictable failures to apply the optimizations, due to pat-
tern mismatches or syntactic limitations. This will even happen on
an abstract representation like the TaskGraph IR [5]. Avoiding this
unpredictability is a major reason for the programmer to choose to
generate the optimized code instead of relying on an external com-
piler, and we will thus stick with a purely generative framework in
the following.

let rec full_unroll lb ub body =
if lb>ub then .< () >.
else if lb=ub then body .< lb >.
else .< begin .~(.~(body .< lb >.);

full_unroll (lb+1) ub body) end >.

val full_unroll :
int -> int -> ((’a, int) code -> (’b, unit) code)
-> (’b, unit) code = <fun>

let a = Array.make 100 0

let body = fun i -> .< a.(.~i) <- .~i >.

full_unroll 0 3 body

.< begin a.(0) <- 0; begin a.(1) <- 1; begin a.(2) <- 2;
a.(3) <- 3 end; end; end >.

Figure 2: Full unrolling

2.1 Primitive Transformations
Let us consider a simple example: loop unrolling. Partial loop un-
rolling can be decomposed into a bound and stride recomputation
step and a body duplication step. The second step is called full
unrolling and is a straightforward application of multistage evalua-
tion. The code in Figure 2 is a recursive multistage implementation
of full loop unrolling; body is a function whose single argument is
value of the loop counter for the loop being unrolled, and lb and
ub are the loop bounds.1 To enable substitution with an arbitrary
expression, notice argument i is a code expression, not a plain inte-
ger. Although quite simple, implementing this transformation has
two important caveats.

1. Free variables in code expressions are utterly important for
code versioning, like for the specialization of i in this ex-
ample. In MetaOCaml, all free variables must eventually be
bound, e.g., as function arguments. Partial application han-
dles practical cases where several generation steps with mul-
tiple specializations are needed.

2. The arguments of full_unroll and its return value have a
different nature. It will not be easy to compose such a gener-
ation function with further transformation steps, unless sub-
sequent transformations leave the duplicated loop bodies in-
variant.

1Vertical bars on the left delimit values returned by the toplevel.

The second issue is a major difficulty since transformation com-
position is key to practical optimization strategies for high perfor-
mance. However, to achieve partial unrolling, we only have to con-
vert the original loop bounds into adjusted bounds with a strided
interval, then call full_unroll to perform the actual body dupli-
cation; see Figure 3.

let partial_unroll lb ub factor body =
let number = (ub-lb)/factor in
let bound = number*factor in
.<
begin
for ii = 0 to number-1 do
.~(full_unroll 0 (factor-1)

(fun i -> body .< ii*factor+lb + .~i >.))
done;
for i = bound+lb to ub do
.~(body .< i >.)

done
end

>.

val partial_unroll :
int -> int -> int -> ((’a, int) code -> (’a, unit) code)
-> (’a, unit) code = <fun>

let body = fun i -> .< a.(.~i) <- .~i >. in
partial_unroll 1 14 4 body

.< begin
for ii_2 = 0 to (3 - 1) do
begin begin
a.((ii_2 * 4) + 1) + 0 <- ((ii_2 * 4) + 1) + 0;
a.((ii_2 * 4) + 1) + 1 <- ((ii_2 * 4) + 1) + 1 end;
a.((ii_2 * 4) + 1) + 2 <- ((ii_2 * 4) + 1) + 2 end;
a.((ii_2 * 4) + 1) + 3 <- ((ii_2 * 4) + 1) + 3

done;
for i_1 = (12 + 1) to 14 do
a.((i_1) <- i_1

done end >.

Figure 3: Partial unrolling

In the supercomputing context, this simple example and function
inlining could be good advocates for multistage evaluation. How-
ever, neither inlining nor unrolling cause serious compilation prob-
lems today (beyond choosing when and how much to use them).

2.2 Complex Transformations
To experiment with a more realistic example, we reimplemented
part of the ATLAS code generator for the matrix-matrix product
[40, 42]. A pseudo-code for this generator is given in Figure 4; NB is
the tile size, MU and NU are the unroll factors for the scalar-promoted
block, latency is the number of iterations between the pipelined
multiplications and additions in the inner products, i1.(p) and
i2.(p) hold the automatically generated names for a large collec-
tion of scalar variables; the inner loops on m and n are fully unrolled
and operate on these scalar variables. In addition to loop unrolling,
three main transformations are involved.

Loop tiling. The outer loops of the matrix product are resched-
uled to compute the blocked product for better cache locality
[1]. This transformation is usually seen as a composition of
strip-mining (making two nested loops out of one) and loop
interchange.

None of these transformations makes much use of multistage
evaluation. It is possible to implement bound and stride oper-
ations and loop generation for strip-mining in the same way

(* executed by the generator *)

h := 0;
for m=0 to MU-1 do
for n=0 to NU-1 do
i1.(h) = m;
i2.(h) = n;
h := !h+1

done
done

(* Template of the generated code *)

for ii=0 to N-1 step NB do
for jj=0 to M-1 step NB do
for i=ii to ii+NB-NU step NU do
for j=jj to jj+NB-MU step MU do

(* Two fully unrolled loops *)

for m=0 to MU-1 do
for n=0 to NU-1 do
c_m_n := c.(i+m).(j+n)

done
done;
for k=0 to NB-1 do

(* All fully unrolled loops *)

for m=0 to MU-1 do
a_m := a.(i+m).(k)

done;
for n=0 to NU-1 do
b_n := b.(k).(j+n)

done;
for m=0 to latency-1 do
t_i1.(m)_i2.(m) := !a_i1.(m) * !b_i2.(m)

done;
for m=0 to MU*NU-latency-1 do
c_i1.(m)_i2.(m) := !c_i1.(m)_i2.(m)

+ !t_i1.(m)_i2.(m);
n := m + latency;
t_i1.(n)_i2.(n) := !a_i1.(n) * !b_i2.(n)

done;
for m=MU*NU-latency to MU*NU-1 do
c_i1.(m)_i2.(m) := !c_i1.(m)_i2.(m)

+ !t_i1.(m)_i2.(m)
done

done;
(* Two fully unrolled loops *)

for m=0 to MU-1 do
for n=0 to NU-1 do
c.(i+m).(j+n) <- !c_m_n

done
done

done
(* Postlude... *)

done
(* Postlude... *)

done
(* Postlude... *)

done
(* Postlude... *)

Figure 4: Simplified matrix product template

as for partial unrolling, but this does not compose with loop
interchange at the code expression level. Instead, we had to
write an ad-hoc generator for the tiled template of the matrix
product. We still get all the benefits of using MetaOCaml in-
stead of strings or a syntax tree (as in ATLAS), but we do not
enable any code reuse for further applications of loop tiling
on other loop nests.

Scalar promotion. After a second tiling step, the innermost loops
are fully unrolled (this is also called unroll and jam [1]) and
array accesses in the large resulting blocks are promoted to
scalars to enable register reuse (the whole transformation is
called register tiling [1]).

This transformation should definitely fit a generative frame-
work since it falls back to straightforward code substitution.

However, one may not explicitely craft new variable names
in MetaOCaml, since identifiers in let or fun bindings are
not first-class citizens: let . name = ... is not a valid
syntax. We know two methods to round this limitation. The
first method assumes dynamic single assignment arrays [14].
Such arrays can be replaced by fresh scalar variables, whose
names are automatically generated by the MetaOCaml sys-
tem, following a monadic continuation-passing style [23].
The interested reader should refer to the latter paper for de-
tails. This approach has the advantage of directly generating
efficient scalar code (unboxed), but it has most of the cons of
programming with monads and explicit continuations, an un-
natural style for programmers of high-performance numeri-
cal applications.

We studied another approach that does not assume the array
is accessed in a single assignment manner [14], i.e., when an
individual array element may be overwriten multiple times.
The most natural solution is to use code expressions of ref-
erences of the scalar type, and splicing the appropriate code
expression in place of the original accesses to the array be-
ing scalar-promoted. This solution leads to efficient code,
if the OCaml compiler unboxes the scalar references. This
approach will be developed further in the paper.

Because none of these solutions is perfectly satisfactory, we
will investigate how an offshoring approach — the safe gen-
eration of C code from MetaOCaml — can help.

Instruction scheduling. To better hide memory and floating point
operation latencies, some instructions in the innermost loops
are rescheduled in the loop body and possibly delayed or ad-
vanced by a few iterations.2

Instruction scheduling and software pipelining may not im-
mediately seem as good cases for generative languages, but
it actually fits in a typical scheduling strategy where instruc-
tions are extracted from a priority list and generated in order.
It is even possible to write a generic list-scheduling algo-
rithm [12] on a dependence graph of code expressions and to
extend it to modulo-scheduling [28].

An important issue is code readability and debugging. Although
static checking is a great tool for developing robust metaprograms,
writing a generative template for the tiled, unrolled, scalar pro-
moted and pipelined matrix-matrix product was often a trial and
error game. Mixing functions on code expressions, escapes and
partial application makes the code hard to follow, especially to su-
percomputing experts.

We did not investigate interprocedural optimizations beyond clas-
sical applications of generative languages, specialization, cloning
and inlining (more complex transformations may even combine
loop and function transformations [9]). We believe that addressing
the issues raised by ATLAS will contribute to support such trans-
formations as well.

We did not study the legality of the code transformations either.
This issue is of course important, although not as critical as in a
stand-alone compiler where the decision of considering a program
transformation has to be fully automatic. If we were to check for
array or scalar dependences [1] or to evaluate the global impact

2This optimization improves the effects of the scheduling heuristic
in the backend compiler.

of data layout transformations, the OCaml type system would be
insufficient. Coupling a multistage generator with a static analysis
framework seems an interesting research direction.

2.3 Prototyping Scalar Promotion
In this section, we use the meta-programming facilities of MetaO-
Caml to express the computation-expensive kernel of the program
in a style in which array accesses are replaced by references to sin-
gle variables. We expect that an advanced native-code compiler for
MetaOCaml will use processor registers for the reference variables.
The names for the reference variables are constructed internally by
the MetaOCaml system (version 3.07) and are accessed through a
list of code expressions, using the same indices as the original ar-
ray.

We use the following three combinators:

• withArray takes the length of an array which should be
turned into a collection of reference variables and a function
which maps a list of these variables to a piece of code. This
list can be taken as an environment. We refer to the variables
by indexing this list, since their names (if printed) are not
given by the MetaOCaml system before run time.

• dynFor creates a for-loop environment in which loops can
have a stride greater than 1; it is based on OCaml while-
loops. dynFor takes the lower bound, upper bound, stride
and a function which abstracts the loop body in the iteration
variable. All arguments of dynFor have to be code parts,
since they depend on dynamic values.

• staticFor expresses loops of stride one which are to be
fully unrolled in the program. staticFor takes a static lower
and upper bound and a function for the loop body which
maps the (static) index to the code part of the loop body.

Figure 5 shows the scalar-promoted loop program for the matrix
multiplication without the body of the loop nest. The static argu-
ments are the unrolling factors mu and nu, and the software pipeline
latency. The dynamic arguments are listed in a lambda abstrac-
tion inside the code part which is nested in the innermost environ-
ment of the withArray applications. For each of the arrays a, b,
t and c we apply the withArray combinator and define functions
aa, bb, tt and cc which translate each access to an array into the
access to the appropriate register.

The loop nest body is depicted in Figure 6. It consists of three
parts. In the first part values of the result array c are loaded in the
register set accessed by cc. The second part updates the values in
these registers. In the third part, the values are stored back in the
array. The second part consists of a dynamic loop on k, whose
body consists of sequences of statements, which are expressed here
in terms of our combinator staticFor. First, elements from the
arrays a and b are loaded into the registers. The temporary register
set accessed by tt is filled with initial products, then expresses the
pipelining effect by concurrently being involved in multiplication
and addition, and at last, when all products have been computed, is
flushed by adding the pending values to the register set accessed by
cc.

2.4 Composition of Transformations

let matmult mu nu latency =
let i1 = Array.make (mu*nu) 0
and i2 = Array.make (mu*nu) 0
and h = ref 0 in
for m=0 to mu-1 do

for n=0 to nu-1 do
i1.(!h) <- m;
i2.(!h) <- n;
h := !h+1

done
done;
withArray mu (fun aregs -> let aa i = nth aregs i in
withArray nu (fun bregs -> let bb i = nth bregs i in
withArray (mu*nu) (fun tregs ->

let tt i j = nth tregs (i*nu+j) in
withArray (mu*nu) (fun cregs ->

let cc i j = nth cregs (i*nu+j) in
.< fun a b c nn mm nb ->
.~(dynFor .<0>. .<nn-1>. .<nb>. .<fun ii ->
.~(dynFor .<0>. .<mm-1>. .<nb>. .<fun jj ->
.~(dynFor .<ii>. .<ii+nb-nu>. .<nu>. .<fun i ->
.~(dynFor .<jj>. .<jj+nb-mu>. .<mu>. .<fun j ->

LOOP NEST BODY
>.) >.) >.) >.) >.))))

Figure 5: Scalar promotion — loop template

.~(staticFor 0 (mu-1) (fun m ->
staticFor 0 (nu-1) (fun n ->
.< .~(cc m n) := c.(i+m).(j+n) >.)));

for k=0 to nb-1 do
.~(staticFor 0 (mu-1) (fun m ->

.< .~(aa m) := a.(i+m).(k) >.));
.~(staticFor 0 (nu-1) (fun n ->

.< .~(bb n) := b.(k).(j+n) >.));
.~(staticFor 0 (latency-1) (fun m ->

.< .~(tt (i1.(m)) (i2.(m)))
:= !(.~(aa (i1.(m))))
* !(.~(bb (i2.(m)))) >.));

.~(staticFor 0 (mu*nu-latency-1) (fun m -> let n = m+latency in
.< begin

.~(cc (i1.(m)) (i2.(m)))
:= !(.~(cc (i1.(m)) (i2.(m))))
+ !(.~(tt (i1.(m)) (i2.(m))));

.~(tt (i1.(n)) (i2.(n)))
:= !(.~(aa (i1.(n))))
* !(.~(bb (i2.(n))))

end >.));
.~(staticFor (mu*nu-latency) (mu*nu-1) (fun m ->

.< .~(cc (i1.(m)) (i2.(m)))
:= !(.~(cc (i1.(m)) (i2.(m))))
+ !(.~(tt (i1.(m)) (i2.(m)))) >.))

done;
.~(staticFor 0 (mu-1) (fun m ->

staticFor 0 (nu-1) (fun n ->
.< c.(i+m).(j+n) <- !(.~(cc m n)) >.)))

Figure 6: Scalar promotion — loop body

Figure 7 describes a real optimization sequence for the galgel SPEC
CPU2000 FP benchmark [36] (borrowed from [30]). This sequence
of 23 transformations on the same program region (a complex loop
nest) was manually applied, following an optimization method-
ology for feedback-directed optimization [30]. The experimental
platform is an HP AlphaServer ES45, 1 GHz Alpha 21264C EV68
with 8 MB L2 cache. Each analysis and transformation phase is
depicted as a gray box, showing the time difference when execut-
ing the full benchmark (in seconds, a negative number is a perfor-
mance improvement); the base execution time for each benchmark
is 171 s. This sequence, although particularly complex, is repre-
sentative of real optimizations performed by some (rare) compilers
[20] and some (courageous) programmers [30]. Beyond composi-

tionality, this example also shows how important are extensibility
(provisions for implementing new transformations) and debugging
support (static and/or generation-time and/or dynamic).

Figure 8 shows a practical example where 4 classical loop transfor-
mations convert the two simple loop nests above into the bloated
code fragment below (partially shown): loop interchange, double
loop fusion and software pipelining or shifting [1]. Multistage eval-
uation may clearly help the programmer to write a template for the
code below, lifting several parameters and generation phases to au-
tomatically customize the code for a target architecture. Unfortu-
nately, this template would not feature much code reuse for other
loop optimizations.

Original nests.

for j = 1 to n do
for i = 1 to m do
a.(i) <- a.(i) + b.(i).(j) * c.(j)

done
done;
for k = 1 to m do
for l = 1 to n do
d.(k) <- d.(k) + e.(l).(k) * c.(l)

done
done

After 4 loop transformations.

let mn = min(m-4, n) in
for x = 1 to mn do
a.(1) <- a.(1) + b.(1).(x) * c.(x);
a.(2) <- a.(2) + b.(2).(x) * c.(x);
a.(3) <- a.(3) + b.(3).(x) * c.(x);
a.(4) <- a.(4) + b.(4).(x) * c.(x);
for y = 1 to mn do
a.(y+4) <- a.(y+4) + b.(y+4).(x) * c.(x);
d.(x) <- d.(x) + e.(y).(x) * c.(y)

done;
d.(x) <- d.(x) + e.(mn-3).(x) * c.(mn-3);
d.(x) <- d.(x) + e.(mn-2).(x) * c.(mn-2);
d.(x) <- d.(x) + e.(mn-1).(x) * c.(mn-1);
d.(x) <- d.(x) + e.(mn).(x) * c.(mn);
for y = mn+1 to m-4 do
a.(y+4) <- a.(y+4) + b.(y+4).(x) * c.(x);
d.(y) <- d.(y) + e.(y).(x) * c.(y)

done;
d.(m-3) <- d.(m-3) + e.(mn-3).(x) * c.(mn-3);
d.(m-2) <- d.(m-2) + e.(mn-2).(x) * c.(mn-2);
d.(m-1) <- d.(m-1) + e.(mn-1).(x) * c.(mn-1);
d.(m) <- d.(m) + e.(mn).(x) * c.(mn)

done;
for x = mn+1 to n do
for y = 1 to m-4 do
...

Figure 8: Composition of polyhedral transformations

The previous study makes clear that the lack of reusability lim-
its the applicability of multistage evaluation for implementing ad-
vanced program transformations. Indeed, successful generative ap-
proaches should not only enable application programmers to im-
plement a generator for one single program. In practice, code reuse
and portability can be achieved using an abstract intermediate rep-
resentation, from higher order skeletons — see e.g. [18, 19] — to
more expressive domain-specific languages — see e.g. [37, 33] and
the survey by Consel in [26].

Code expressions are rather constrained in terms of reusability,
since code expressions produced by a program generator may not
evolve beyond the predefined set of arguments of a function or the

A 2 : + 2 4 s

A 1 : - 1 4 s A 5 : - 6 s

A 4 : - 5 s

A 3 : - 2 4 s
F u s i o n

S c a l a r
P r o m o t i o nI n t e r c h a n g e

S t r i p - M i n i n g

S t r i p - M i n i n g
S h i f t i n gI n s t r u c t i o n

S p l i t i n g F i s s i o n S t r i p - M i n i n g

F i s s i o n
F i s s i o n
F u s i o n

F u s i o n

S h i f t i n g A r r a y C o p y
P r o p a g a t i o n

S c a l a r
P r o m o t i o n
F u s i o n
F u s i o nS t r i p - M i n i n g

H o i s t i n g R e g i s t e r
P r o m o t i o n

U n r o l l
a n d J a m

F u s i o n
F u s i o n

F u s i o n

L 1

L 1 - L 2 L 2

Figure 7: Optimizing galgel (base 171 s)

predefined escape points in the expression, as shown on the loop
unrolling example. Any code fragment within a code expression
is an invariant for further generation steps. As a result, many opti-
mizations built of sequences of simpler transformations cannot be
implemented as a composition of generators.

Let us study this limitation on loop unrolling again. Since par-
tial loop unrolling can be decomposed into strip-mining and full
unrolling of the inner strip-mined loop, we may implement the
strip-mine generator shown in Figure 9, hoping that some com-
position mechanism will allow us to define partial unrolling from
strip_mine and full_unroll. Unfortunately, this does not work
as smoothly because full_unroll does not operate on a closed
code expression but on a pair of integer arguments (the bounds)
and a function on code expressions (the body).

let strip_mine lb ub factor body =
let number = (ub-lb)/factor in
.<
begin
for ii = 0 to number-1 do
for i = 0 to factor-1 do
.~(body .< ii*factor+lb+i >.)

done
done;
for i = number*factor+lb to ub do
.~(body .< i >.)

done
end

>.

val strip_mine :
int -> int -> int -> ((’a, int) code -> (’a, ’b) code)
-> (’a, unit) code = <fun>

let body = fun i -> .< a.(.~i) <- .~i >. in
strip_mine 1 14 4 body

.< begin
for ii_8 = 0 to (3 - 1) do
for i_9 = 0 to (4 - 1) do
a.(((ii_8 * 4) + 1) + i_9) <- ((ii_8 * 4) + 1) + i_9

done
done;
for i_7 = (12 + 1) to 14 do
a.(i_7) <- i_7

done end >.

Figure 9: Strip-mining

Now, combinators strip_mine and partial_unroll look very
similar: let aside the recursive implementation of full_unroll,
partial unrolling seems almost like a lifted version of strip-mining
where the code expression has been extended from the loop body
to the whole inner loop. Based on these similarities, it is indeed
possible to reuse some code, by factoring the common template of
strip_mine and partial_unroll. This is the purpose of the gen-
eralized strip-mining generator in Figure 10.3 Thanks to the new

3Kindly provided by one of the reviewers of the original submitted

g_strip_mine generator, it is easy to implement both the plain
strip-mining and partial unrolling, by composition; see Figure 10
again. Here composition works thanks to code reuse opportunities;
indeed, we did not overcome the fundamental asymmetry between
the structured arguments of generator functions and the code ex-
pressions they produce.

let g_strip_mine gloop lb ub factor body =
let number = (ub-lb)/factor in
.<
begin
for ii = 0 to number-1 do
.~(gloop 0 (factor-1)

(fun i-> (body .< ii*factor+lb+ .~i >.)))
done;
for i = number*factor+lb to ub do
.~(body .< i >.)

done
end

>.

let g_loop_gen lw ub body =
.< for i = lw to ub do .~(body .< i >.) done >.

(* Plain strip-mining *)
g_strip_mine g_loop_gen 1 14 4 body

(* Partial unrolling *)
g_strip_mine full_unroll 1 14 4 body

Figure 10: Factoring strip-mining and unrolling

Of course, an obvious circumvention to enable a compositional ap-
proach is to make the generators work on a suitable intermediate
representation. The difference is then very thin compared with im-
plementing the transformations in a compiler framework. Yet one
may expect much benefits from the static checking and from an ab-
stract view of the invariant code parts seen as polymorphic code
expressions. For example, building an abstract intermediate repre-
sentation for loop transformations is easy: the invariant pieces of
code can be represented as code expressions, and the rest can be
captured as trees of loop triplets.

After carrying these preliminary experiments, we do not believe
a compositional approach based on multistage evaluation and ab-
stract intermediate representations would be followed by applica-
tion programmers. Indeed, the effort to master the language may
not be worth the additional safety and abstraction. In addition,
given the complexity and variety of program transformations for
high-performance computing, most of the classical development
errors will not even be avoided by such an approach (e.g., loop
bounds or initialization inconsistencies). The next section further
illustrate why better compositionality is needed to bring enough
code reuse for the practical application of generative techniques to
the design and optimization of supercomputing applications.

paper.

2.5 Alternative Ideas
The polytope model has been proposed to represent loop nests and
loop transformations in a unified fashion [16, 41, 21]. Although
constrained by regularity assumptions on control structures, it is
applicable to many loop nests [4] in scientific applications and cap-
tures loop-specific information as systems of affine inequalities.
Recent advances in polyhedral code generation [3] and a new ap-
proach to enable compositional transformations [10] fit very well
with our search for a generative and compositional optimization
framework.

Fortunately, there exists a powerful OCaml interface [7] to the two
most effective libraries to operate on polyhedra [15, 29, 32]. To-
gether with multistage evaluation, it seems very easy and efficient
to design a polyhedral code generator and to couple it with lower-
level back-end optimizations, including scalar promotion and in-
struction scheduling. The use of the OCaml language should also
facilitate the implementation of the symbolic legality-checking and
profitability analyses involved in polyhedral techniques.

Besides the polytope model, alternative ways to achieve better com-
positionality may incur some “re-escaping” mechanism to perform
further substitutions into closed code expressions. This may take
the form of an extension of OCaml’s pattern-matching construct,
operating on elements of the OCaml grammar. Such an extension
should not compromise the static checking properties of MetaO-
Caml, as long as type-invariant substitutions are performed, and
some subtyping and specialization should also be possible. Unfor-
tunately, this mechanism would not help overcoming the incom-
patibility between static checking and the multistage generation of
new variable names, as required by scalar promotion (see the AT-
LAS template in Figure 4).

Of course, the ability to post-process generated code with pattern-
based substitution is both a powerful tool... and a major infringe-
ment to the MetaOCaml design [8]. Although transformations op-
erating at a more abstract level — like the polyhedral one — is un-
doubtedly more elegant, it is unlikely that a general-purpose user-
extensible transformation framework will emerge anytime soon.
Allowing some user control on the generated code is thus a prag-
matic solution to consider.

3. SAFE METAPROGRAMMING IN C
There exist several two-stage evaluation extensions of the C lan-
guage, from the standard C preprocessor to C++ template metapro-
gramming [38, 5], and to the ‘C project [31] based on a fast run-
time code generation framework. None of these tools provide the
higher order functions on code expressions, cross-stage persistence
and static checking features of MetaOCaml.

It seems possible to design a multistage C extension with most of
these features, probably with strong restrictions on the language
constructs allowed at the higher stages, but that would be a long-
standing effort. In addition, OCaml is a language of choice to de-
velop language processors. Using MetaOCaml as a generator for C
programs seems more pragmatic, at least as a research demonstra-
tor:

• this may either involve an OCaml to C translator, taking ben-
efit of the imperative features of OCaml to ease the genera-
tion of efficient C code;

• or one may design a small preprocessor to embed C code

fragments into the lower stages of a MetaOCaml program,
relying on code generation primitives to assemble these frag-
ments.

We advocate for the second direction, because it avoids transform-
ing generated code, following the generative programming guide-
lines, and because it provides full C expressiveness with no hidden
overhead. The rest of this section outlines interesting issues and
presents simple solutions to this offshoring extension of MetaO-
Caml; it does not describe a realistic implementation and does not
even aim at fully safe C code generation (yet).

3.1 Safe Generation of C code in OCaml
Our goal is to design a set of C code generation primitives such
that an OCaml program calling these primitives may only generate
syntactically sound and type-safe C code. We are not aware of
any attempt to achieve this goal. Of course, from such generation
primitives, it would be natural to design a preprocessor converting
embedded C syntax into the proper OCaml declarations and calls.

Our current solution partially achieves this goal and imperfectly
handles function declarations and calls. Practically, we mirror the
C grammar productions as polymorphic generator functions oper-
ating on specific polyvariant types to represent meaningful C frag-
ments. Each C variable is embedded into an OCaml pair of a string
(its name) and a dummy value matching the type of the C variable,
and these variables can only be declared through the explicit usage
of OCaml variables. Figure 11 shows the main types and genera-
tion primitives (for intraprocedural constructs only) and Figure 12
shows a code generation example.

By design, the grammar productions guarantee syntax correctness.
It is more challenging to deal with the scope of the C variable dec-
larations and enforcing type-safety. We choose to represent a C
block (the only placeholder for variable declarations) as a func-
tion on an environment. Interestingly, environments both record
the code being generated and serve to delay the evaluation of the
generation primitives until after the production of the surrounding
C block syntax. This continuation passing style is the key to the
embedding of C scoping and typing rules into the OCaml ones.

For example, an integer variable x is simultaneously declared to
OCaml and generated to C code when evaluating

let x = gen_int_decl env "x".

Generated C code is appended to the environment env. Further
assignments to x may call gen_assign directly and read references
to x must first turn it into an “lvalue” through the lvrv function.

3.2 Generating New Names
Following this scheme, it is easy to support the generation of new
names, without explicit usage of monads and continuation-passing
style [23], and avoiding the possible overhead of the solution pro-
posed in Section 2.3. Figure 13 shows a class to operate on scalar-
promoted arrays with generation-time array bound checking. Of
course, this checking cannot be done statically in general (although
specific cases could be handled, with the proper encoding in the
OCaml type system): scalar promoting an array with out-of-bound
accesses yields out-of-bound exceptions.

For example, a scalar-promoted array a is simultaneously declared
to OCaml and generated to C code when evaluating let a = new

type environment = {
mutable txt:string; (* C text being produced *)

mutable cnt:int; (* Private counter for alpha-renaming *)

ind:string (* Pretty printing (indentation) *)

}
(* Some syntactic elements of C *)

type ’a c_rvalue = RValue of string * ’a
type ’a c_lvalue = LValue of string * ’a
type ’a c_loop = Cloop of (’a c_rvalue) * (bool c_rvalue)

* (’a c_rvalue) * (environment -> unit)

let get_nam var = match var with LValue (n, _) -> n
let get_def var = match var with LValue (_, d) -> d
let get_txt exp = match exp with RValue (t, _) -> t
let get_val exp = match exp with RValue (_, v) -> v
let get_init var = match var with Cloop (n, _, _, _) -> n
let get_cond var = match var with Cloop (_, c, _, _) -> c
let get_iter var = match var with Cloop (_, _, i, _) -> i
let get_body var = match var with Cloop (_, _, _, b) -> b

(* Support function: turns an lvalue into an rvalue *)

let lvrv var = RValue (get_nam var, get_def var)
(* Support function: build a loop object *)

let create_loop (init : ’a c_rvalue) (cond : bool c_rvalue)
(iterator : ’a c_rvalue) block =
Cloop (init, cond, iterator, block)

(* Output the declaration of <nam> to <env> *)

let gen_int_decl env nam =
let var = nam ˆ "_" ˆ (string_of_int env.cnt) in
let txt = sprintf "int %s;\n" var in
env.txt <- env.txt ˆ env.ind ˆ txt;
env.cnt <- env.cnt + 1;
LValue (var, 0)

(* Output an instruction built of expression <exp> to <env> *)

let gen_inst env exp =
let txt = sprintf "%s;\n" (get_txt exp) in
env.txt <- env.txt ˆ env.ind ˆ txt

(* Output a block to <enclosing>

Notice <block> is a function on environments, this allows

to defer the evaluation of the generators in the block *)

let gen_block e block =
let env = {txt=e.ind ˆ "{\n"; cnt=0; ind=e.ind ˆ " "} in
block env;
env.txt <- env.txt ˆ e.ind ˆ "}\n\n";
e.txt <- e.txt ˆ env.txt

(* The following productions are self-explanatory *)

let gen_loop env loop =
env.txt <- env.ind ˆ "for (" ˆ (get_txt (get_init loop))
ˆ "; " ˆ (get_txt (get_cond loop)) ˆ "; "
ˆ (get_txt (get_iter loop)) ˆ ")\n";

gen_block env (get_body loop)
let gen_if_then_else env (cond : bool c_rvalue) b_then b_else =
env.txt <- env.txt ˆ "if (" ˆ (get_txt cond) ˆ ")\n";
gen_block env b_then;
env.txt <- env.txt ˆ "else\n";
gen_block env b_else

let gen_int_cst (cst : int) =
let txt = sprintf "%d" cst in RValue (txt, cst)

let gen_assign (var : ’a c_lvalue) (exp : ’a c_rvalue) =
let txt = sprintf "%s = %s" (get_nam var) (get_txt exp)
in RValue (txt, exp)

let gen_lt (op1 : ’a c_rvalue) (op2 : ’a c_rvalue) =
let txt = sprintf "(%s < %s)" (get_txt op1) (get_txt op2)
in RValue (txt, true)

let gen_add (op1 : ’a c_rvalue) (op2 : ’a c_rvalue) =
let txt = sprintf "(%s + %s)" (get_txt op1) (get_txt op2)
in RValue (txt, (get_val op1) + (get_val op2))

Figure 11: Some generation primitives for C

sp_int_array "a" 10, and it may further be referenced through
the method idx.

3.3 Interprocedural Extensions

let global = {txt=""; cnt=0; ind=""}

let generated_block =
let block env =
let x = gen_int_decl env "x"
and y = gen_int_decl env "y" in
gen_loop env

(create_loop (gen_assign x (gen_int_cst 1))
(gen_lt (lvrv x) (gen_int_cst 10))
(gen_assign x (gen_add (lvrv x) (gen_int_cst 1)))
(fun env ->
gen_loop env
(create_loop (gen_assign y (gen_int_cst 2))

(gen_lt (lvrv y) (gen_int_cst 20))
(gen_assign y (gen_add (lvrv y) (gen_int_cst 2)))
(fun env ->

let z = gen_int_decl env "z" in
gen_inst env
(gen_assign z (gen_int_cst 5))))));

gen_inst env
(gen_assign y (gen_add (lvrv x) (gen_int_cst 3)));

gen_if_then_else env (gen_lt (gen_int_cst 2) (lvrv x))
(fun env -> gen_inst env (gen_assign x (gen_int_cst 5))
(fun env -> gen_inst env (gen_assign x (gen_int_cst 3))

in gen_block global block

let _ =
print_string global.txt

{
int x_0;
int y_2;
for (x_0 = 1; (x_0 < 10); x_0 = (x_0 + 1))
{
for (y_2 = 2; (y_2 < 10); y_2 = (y_2 + 2))
{
int z_0;
z_0 = 5;

}
}
y_2 = (x_0 + 3);
if ((2 < x_0))
{
x_0 = 5;

}
else
{
x_0 = 3;

}
}

Figure 12: Example of C generation

class sp_int_array = fun nam siz ini env ->
let _ = for i = 0 to siz-1 do

env.txt <- env.txt ˆ (sprintf "int %s_%d;\n" nam i)
done in

object
val name = nam
val size = siz
method idx x =
if (0 <= x & x < siz)
let var = sprintf "%s_%d" name x in

LValue (var, 0)
else
failwith "Illegal reference to " ˆ nam ˆ "[" ˆ x ˆ "]"

end

Figure 13: Support for scalar-promotion

Currently, support for function declarations and calls is rather awk-
ward. Like for scalar types, specific generator functions for each
function type must be implemented. Three OCaml functions are
needed per C function type: one for the function prototype, one

for the declaration and one for the call. These generators operate
on a polyvariant ‘c_function type and enforce the proper pro-
totype/declaration/call ordering of the C language (assuming the
generation of a single-file program). It is still unclear whether
more polymorphism can be achieved, possibly requiring one triple
of generators for each given number of arguments only.

The next step is of course to write the preprocessor for OCaml-
embedded C code, to reduce the burden of writing code like the
block generator in Figure 12.

3.4 Application to ATLAS
Figure 14 highlights the most significant parts of the implemen-
tation of a generator template for the matrix-matrix product. In
this simple implementation, instruction scheduling is done by hand
through an explicit split into three separate unrolled loops. Also,
empirical search strategies to drive the optimization (e.g., simulated
annealing) are not included.

(* ... *)

let q = new sp_int_array "q" 20 env
and r = new sp_int_array "r" 20 env
and t = new sp_int_array_array "t" 20 20 env

(* ... *)

in let block_mab1 env it =
gen_block env
(fun e -> gen_inst e (gen_assign (t#idx i1.(it) i2.(it))

(gen_mul (lvrv (q#idx i1.(it))) (lvrv (r#idx i2.(it))))))

(* ... *)

in let multiply env =
for m = 0 to mu-1 do
for n = 0 to nu-1 do

i1.(!h) <- m;
i2.(!h) <- n;
h := !h + 1

done
done;
.! full_unroll 0 (latency - 1)
(fun i -> .< block_mab1 env .~i >.);

.! full_unroll 0 (mu * nu - latency - 1)
(fun i -> .< block_mab2 env .~i >.);

.! full_unroll (mu * nu - latency) (mu * nu - 1)
(fun i -> .< block_mab3 env .~i >.)

(* ... *)

Figure 14: Revisited matrix product template

4. CONCLUSION AND PERSPECTIVES
We revisited some classical optimizations in the domain of high-
performance computing, discussing the benefits and caveats of mul-
tistage evaluation. Since most advanced transformations are cur-
rently applied manually by domain and optimization experts, the
potential benefit of generative approaches is very high. Indeed, sev-
eral projects have followed ad-hoc string-based generation strate-
gies to build adaptive libraries with self-tuned computation kernels.
We took one of these projects as a running example. We show
that MetaOCaml is suitable to implement this kind of application-
specific generators, taking full advantage of its static checking prop-
erties. But our results also show that severe reusability and com-
positionality issues arise for complex optimizations, when multiple
transformation steps are applied to a given code fragment. In addi-
tion, we believe that static type checking in MetaOCaml — in the
current state of the system — complicates and somewhat restricts

the usage of important optimizations like the scalar promotion of
arrays.

Let us summarize our first results. Although multistage evaluation
can be used in a simple and effective way to implement program
generators for portable high-performance computing applications,
it does not relieve the programmer from reimplementing the main
generator parts for each target application. The only way to im-
prove code reuse in the generator is to base its design on a custom
intermediate representation, which may be almost as convoluted for
application programmers as designing their own compiler.

In the second part of the paper, we addressed the execution over-
head of writing high-performance applications in OCaml. We de-
scribed a heterogeneous multistage approach to bring safe metapro-
gramming to C programs. By embedding all declarations of C vari-
ables into OCaml ones, it is possible to constrain the generator to
produce syntactically correct and type-safe C code. Our first pro-
totype shows that this approach can be combined with a front-end
generator in MetaOCaml, enabling the design of a robust and ele-
gant generator of safe optimized C code fully in MetaOCaml. Such
an heterogeneous approach also lifts the name-generation restric-
tion, but delays some safety checks to the generation of the C pro-
gram.

In the future, we plan to use MetaOCaml as an experimental frame-
work to evaluate multistage evaluation and possibly extend it to bet-
ter support our adaptive optimization needs. We also wish to further
investigate the potential of the heterogeneous MetaOCaml/C gen-
erator, combining it with a preprocessor to embed actual C code in
MetaOCaml. In parallel, this work will help us design a metapro-
gramming layer on top of LLVM [25], a robust and extensible
framework for lifelong program analysis and transformation.

Acknowledgments
This work is supported by exchange programs between the French
CNRS, the University of Illinois, and the German DAAD. We wish
to thank Paul Feautrier, Vikram Adve, Marc Snir, Changhao Jiang,
Patrick Meredith, Xiaoming Li, Chris Lengauer and Walid Taha.

5. REFERENCES
[1] R. Allen and K. Kennedy. Optimizing Compilers for Modern

Architectures. Morgan and Kaufman, 2002.

[2] D. I. August, D. A. Connors, S. A. Mahlke, J. W. Sias, K. M. Crozier,
B.-C. Cheng, P. R. Eaton, Q. B. Olaniran, and W.-M. Hwu. Integrated
predicated and speculative execution in the IMPACT EPIC
architecture. In Proceedings of the 25th Intl. Symp. on Computer
Architecture, July 1998.

[3] C. Bastoul. Efficient code generation for automatic parallelization
and optimization. In ISPDC’2 IEEE International Symposium on
Parallel and Distributed Computing, Ljubjana, Slovenia, Oct. 2003.

[4] C. Bastoul, A. Cohen, S. Girbal, S. Sharma, and O. Temam. Putting
polyhedral loop transformations to work. In Workshop on Languages
and Compilers for Parallel Computing (LCPC’03), LNCS, College
Station, Texas, Oct. 2003.

[5] O. Beckmann, A. Houghton, P. H. J. Kelly, and M. Mellor. Run-time
code generation in c++ as a foundation for domain-specific
optimisation. In Proceedings of the 2003 Dagstuhl Workshop on
Domain-Specific Program Generation, 2003.

[6] A. J. C. Bik, M. Girkar, P. M. Grey, and X. Tian. Automatic
intra-register vectorization for the intel architecture. Int. J. of Parallel
Programming, 30(2):65–98, 2002.

[7] P. Boulet and X. Redon. SPPoC: Symbolic parameterized polyhedral
calculator. http://www.lifl.fr/west/sppoc.

[8] C. Calcagno, W. Taha, L. Huang, and X. Leroy. Implementing
multi-stage languages using asts, gensym, and reflection. In ACM
SIGPLAN/SIGSOFT Intl. Conf. Generative Programming and
Component Engineering (GPCE’03), pages 57–76, 2003.

[9] A. Chauhan and K. Kennedy. Optimizing strategies for telescoping
languages: procedure strength reduction and procedure vectorization.
In ACM Int. Conf. on Supercomputing (ICS’04), pages 92–101, June
2001.

[10] A. Cohen, S. Girbal, and O. Temam. A polyhedral approach to ease
the composition of program transformations. In EuroPar’04, LNCS,
Pisa, Italy, Aug. 2004. Springer-Verlag.

[11] K. D. Cooper, D. Subramanian, and L. Torczon. Adaptive optimizing
compilers for the 21st century. J. of Supercomputing, 2002.

[12] A. Darte, Y. Robert, and F. Vivien. Scheduling and Automatic
Parallelization. Birkhaüser, Boston, 2000.

[13] L. De Rose and D. Padua. Techniques for the translation of matlab
programs into fortran 90. ACM Trans. on Programming Languages
and Systems, 21(2):286–323, 1999.

[14] P. Feautrier. Array expansion. In ACM Int. Conf. on Supercomputing,
pages 429–441, St. Malo, France, July 1988.

[15] P. Feautrier. Parametric integer programming. RAIRO Recherche
Opérationnelle, 22:243–268, Sept. 1988.

[16] P. Feautrier. Some efficient solutions to the affine scheduling
problem, part II, multidimensional time. Int. J. of Parallel
Programming, 21(6):389–420, Dec. 1992. See also Part I, one
dimensional time, 21(5):315–348.

[17] M. Frigo and S. G. Johnson. FFTW: An adaptive software
architecture for the FFT. In Proc. of the ICASSP Conf., volume 3,
pages 1381–1384, 1998.

[18] C. A. Herrmann and C. Lengauer. Parallelization of
divide-and-conquer by translation to nested loops. J. of Functional
Programming, 9(3):279–310, 1999.

[19] C. A. Herrmann and C. Lengauer. HDC: A higher-order language for
divide-and-conquer. Parallel Processing Letters, 10(2/3):239–250,
2000.

[20] KAP C/OpenMP for Tru64 UNIX and KAP DEC Fortran for Digital
UNIX. http://www.hp.com/techsevers/software/kap.html.

[21] W. Kelly. Optimization within a unified transformation framework.
Technical Report CS-TR-3725, University of Maryland, 1996.

[22] K. Kennedy. Telescoping languages: A compiler strategy for
implementation of high-level domain-specific programming systems.
In Proc. Intl. Parallel and Distributed Processing Symposium
(IPIPS’00), pages 297–304, 2000.

[23] O. Kiselyov, K. N. Swadi, and W. Taha. A methodology for
generating verified combinarorial circuits. In Embedded Software
Conf. (EMSOFT’04), Pisa, Italy, Sept. 2004.

[24] T. Kisuki, P. Knijnenburg, M. O’Boyle, and H. Wijshoff. Iterative
compilation in program optimization. In Proc. CPC’10 (Compilers
for Parallel Computers), pages 35–44, 2000.

[25] C. Lattner and V. Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. In ACM Conf. on Code
Generation and Optimization (CGO’04), San Jose, CA, Mar. 2004.

[26] C. Lengauer, D. Batory, C. Consel, and M. Odersky, editors.
Domain-Specific Program Generation. Number 3016 in LNCS.
Springer-Verlag, 2003.

[27] X. Li, M.-J. Garzaran, and D. Padua. A dynamically tuned sorting
library. In ACM Conf. on Code Generation and Optimization
(CGO’04), San Jose, CA, Mar. 2004.

[28] J. Llosa. Swing modulo scheduling: A lifetime-sensitive approach. In
Parallel Architectures and Compilation Techniques (PACT’96), 1996.

[29] V. Loechner and D. Wilde. Parameterized polyhedra and their
vertices. Int. J. of Parallel Programming, 25(6), Dec. 1997.
http://icps.u-strasbg.fr/PolyLib.

[30] D. Parello, O. Temam, A. Cohen, and J.-M. Verdun. Towards a
systematic, pragmatic and architecture-aware program optimization
process for complex processors. In ACM Supercomputing’04, 2004.
To appear.

[31] M. Poletto, W. C. Hsieh, D. R. Engler, and M. F. Kaashoek. ‘C and
tcc: A language and compiler for dynamic code generation. ACM
Trans. on Programming Languages and Systems, 21(2):324–369,
Mar. 1999.

[32] W. Pugh. A practical algorithm for exact array dependence analysis.
Communications of the ACM, 35(8):27–47, Aug. 1992.

[33] M. Püschel, B. Singer, J. Xiong, J. Moura, J. Johnson, D. Padua,
M. Veloso, and R. W. Johnson. SPIRAL: A generator for
platform-adapted libraries of signal processing algorithms. Journal of
High Performance Computing and Applications, special issue on
Automatic Performance Tuning, 18(1):21–45, 2004.

[34] L. Rauchwerger and D. Padua. The LRPD test: Speculative run–time
parallelization of loops with privatization and reduction
parallelization. IEEE Transactions on Parallel and Distributed
Systems, Special Issue on Compilers and Languages for Parallel and
Distributed Computers, 10(2):160–180, 1999.

[35] M. D. Smith. Overcoming the challenges to feedback-directed
optimization. In ACM SIGPLAN Workshop on Dynamic and Adaptive
Compilation and Optimization, pages 1–11, 2000. (Keynote Talk).

[36] Standard performance evaluation corporation.
http://www.spec.org.

[37] A. Van Deursen, P. Klint, and J. Visser. Domain-specific languages:
An annotated bibliography. ACM SIGPLAN Notices, 35(6):26–36,
2000.

[38] T. Veldhuizen. Using C++ template metaprograms. C++ Report,
7(4):36–43, 1995.

[39] T. Veldhuizen and D. Gannon. Active libraries: Rethinking the roles
of compilers and libraries. In SIAM Workshop on Object Oriented
Methods for Inter-operable Scientific and Engineering Computing,
Oct. 1998.

[40] R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated empirical
optimizations of software and the atlas project. Parallel Computing,
2000.

[41] M. E. Wolf. Improving Locality and Parallelism in Nested Loops.
PhD thesis, Stanford University, Aug. 1992. Published as
CSL-TR-92-538.

[42] K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong, M. Garzaran,
D. Padua, K. Pingali, P. Stodghill, and P. Wu. A comparison of
empirical and model-driven optimization. In ACM Symp. on
Programming Language Design and Implementation (PLDI’03), San
Diego, CA, June 2003.

