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ABSTRACT

In this work we present our approach to model selection for statistical parsing via boost-

ing. The method is used to target the ine�ciency of current feature selection methods, in

that it allows a constant feature selection time at each iteration rather than the increasing

selection time of current standard forward wrapper methods. With the aim of perform-

ing feature selection on very high dimensional data, in particular for parsing morphologi-

cally rich languages, we test the approach, which uses the multiclass AdaBoost algorithm

SAMME (Zhu et al., 2006), on French data from the French Treebank, using a multilingual

discriminative constituency parser (Crabbé, 2014). Current results show that the method is

indeed far more e�cient than a naïve method, and the performance of the models produced

is promising, with F-scores comparable to carefully selected manual models. We provide

some perspectives to improve on these performances in future work.
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INTRODUCTION

Syntactic parsing is one of the key tasks in Natural Language Processing (henceforth NLP).

Assigning syntactic structure to sentences is seen as important for many NLP applications

in establishing relationships between words in view to uncovering the meaning behind

these relationships.

However up until very recently, the majority of the research in parsing has focused on

English, a con�gurational language, with little morphology and whose word order is very

�xed. More recent work has shown a greater interest in parsing typologically varied lan-

guages, including those that are morphologically rich, spurred on by initiatives such as the

SPMRL (Statistical Parsing of Morphologically Rich Languages) shared tasks (Seddah et al.,
2013, 2014). Parsing techniques must therefore be adapted to the fact that the majority of

these languages show less �xed word order than English, and also have richer morphology,

which could provide key clues as to how syntactic structure should be assigned.

This change in focus coincides with a change in approach to syntactic parsing, provoked by

a plateau in the performances of traditional probabilistic generative models. These meth-

ods, which produce reasonably high scores for English, due to the fact that word order is

so important, have a limited capacity to integrate context and lexical information. Re�n-

ing these methods results in data sparseness issues and a necessity to perform complex

calculations. Many modern parsers therefore rely on discriminative methods and the use

of a classi�er to score derivations (Hall et al., 2007; McDonald et al., 2005). Context and

lexical information can be more easily integrated into the model without facing the same

data sparseness issues. The complexity of the problem now lies in a di�erent issue, which

is the choice of which features to include in the model.

A model’s capacity to predict structure is based on the types of features that are included

in the parser. For a model to be expressive, features must be informative, although without

being too speci�c to training data, which can result in over�tting and an inability to make

generalisations to unseen data. It is important to select only a subset of possible features

to choose the most informative ones and to ensure that parsing is not too time-consuming.

It is the task of model selection to select a subset of features to produce an optimal model.
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INTRODUCTION

Often the number of possible features is too great to perform a simple enumeration of

all feature combinations, which would be the most exact method. Relying on linguistic

intuitions, although they can be useful, is a complex and time-consuming way of selecting

features due to the interaction of features, and it is not a method guaranteed to produce an

optimal result. We therefore focus on automatic methods of feature selection, which rely

on heuristic searches of the feature space to produce an optimal model in an e�cient way.

The approach we present here is an automatic feature selection method using the machine

learning technique, boosting (Freund and Schapire, 1999; Zhu et al., 2006). The method,

which has previously been used for feature selection, although not to our knowledge for

parsing, has the advantage over standard methods of being far more e�cient due to the

fact that it �ts the model in a forward stagewise additive manner. This e�ciency will

enable us to explore the feature space more widely than current state-of-the-art methods,

which rely on constraining heuristics to make them feasible. Our approach also paves

the way for feature selection on more complex data, which may include a greater number

of morphological or semantic attributes, an essential step in providing high-performing

models for morphologically rich languages.

In this work, we shall focus on the parsing of French, a language which is more morpho-

logically rich than English, but typologically far from being one of the richest. French will

serve as a test of our approach in terms of model performance but also of the e�ciency

of the method. In future work, we hope to also study typologically varied languages, for

which annotated data is available, such as Basque, Hebrew, Hungarian and Korean (Seddah

et al., 2014).

The structure of the thesis is as follows. We will begin in Chapter 1 by describing the do-

main of our work, which is the parsing of natural languages, providing a description of

formalisms and a state of the art in statistical parsing methods. We also describe in detail

the discriminative, phrase structure parser we use throughout this work (Crabbé, 2014)

and the way in which features are used to score derivations. In Chapter 2 we provide an

overview of model selection methods and discuss the various choices and heuristics avail-

able, in particular in the context of parsing. We present our contribution in Chapter 3,

in which we describe our approach to feature selection using boosting, before presenting

our experiments and results on the French Treebank (FTB) (Abeillé et al., 2003) in Chap-

ter 4. We conclude by reviewing the boosting approach in comparison to a more standard

selection method and propose lines of research for further improving the method.
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CHAPTER 1

PARSING NATURAL LANGUAGES

One of the de�ning tasks of NLP is syntactic analysis, which seeks to assign syntactic

structure to a sequence of tokens or words. The syntactic structure describes the relation-

ship between the words of the sentence and also the way in which they can be combined.

The focus in this work is mainly on phrase (or constituency) structure, whereby the syn-

tactic representation produced is a tree structure, with a hierarchical phrasal grouping,

as described in Section 1.1. A discussion and comparison of the choice between phrase

structure and dependency, the other widely used formalism, is also provided in Section 1.1.

So much attention has been paid to parsing mainly because of the belief of the impor-

tance of assigning structure to sentences in being able to access the semantic meaning of

sentences, one of the holy grails of NLP. For example, information extraction (IE) relies

on being able to analyse the semantic relationship between elements of a sentence to ac-

cess certain meaningful pieces of information. Within IE, Question Answering involves

not only the extraction of information but the formulation of a semantic representation of

the question to ascertain what information must be extracted. Many other tasks involv-

ing natural language understanding, such as machine translation and text summarisation,

would greatly bene�t from a full semantic analysis. Syntactic representations are seen as

key to obtaining a semantic analysis of the sentence because they impose structure on the

sequence of words, which can be exploited to study the semantic relationships between

them. A lot of e�ort has been put into obtaining good quality parsing because, in sequen-

tial processing, the quality of semantic parsing is dependent on the quality of the syntactic

analysis. Where it is not yet possible to do a full semantic analysis, syntactic analyses can

be used as a sort of approximation of the relationships between words and the regularities

found in the structure of sentences used for many of these tasks. For example, in machine

translation, it is possible to build a transfer system from one language to another based on

lexical and syntactic transfer that does not necessary go through a purely semantic phase.

Whether syntactic parsing is used as a stepping stone to semantic parsing or is exploited

directly, the aim is to produce as useful and as accurate a syntactic structure as possible.

The usefulness of a syntactic representation depends on how the structure is to be used and

3



1.1. PHRASE STRUCTURE ANALYSIS

the accuracy on how well the structures produced correspond to the structure we would

have hoped to have obtained. One of the big challenges in developing a parser is ensuring

that the parsing is robust, i.e. that it is capable of parsing unseen structures. It must also

be capable of adequately disambiguating between multiple possible analyses for a single

sequence.

Up until now, much attention has been paid to parsing English, and a further challenge

is developing a system capable of parsing typologically di�erent languages, something

that has gained interest over the past ten years. There are strong reasons to believe that

the syntactic analysis of morphologically rich languages could greatly bene�t from the

integration of morphological information (such as case or agreement) in parse decisions

(Crabbé and Seddah, 2014). An important step in improving parsing of these languages is

being able to easily exploit such information if it is made available.

The following chapter will describe and explain the theory and design choices of the mul-

tilingual parser used throughout the project (Crabbé, 2014), in particular those that have

an in�uence on the the feature selection methods considered in Chapter 2. The parser is a

discriminative phrase structure parser. It uses an incremental shift-reduce algorithm with

beam-search and scores derivations using a perceptron classi�er, capable of integrating

lexical information if provided.

1.1 Phrase structure analysis

Phrase structure (also known as constituency) analysis is a formalism for representing the

structure of a sentence as a hierarchical grouping according to a relation of constituency.

Words or sequences of words are organised into phrases (such as noun phrases, verb

phrases, prepositional phrases etc.) that de�ne the distribution of the sequences and the

way in which they can combine with other phrases to form a sentence.

The sentence “le chat mange une mouche” (en: The cat is eating a �y), shown in Example 1.1

as a sequence of tokens and part of speech (POS) tags, can be represented by the typical

phrase structure analysis in Example 1.2
1
. The terminal elements (the leaves of the tree)

can be the words of the sentence, their parts of speech, or as shown here, words associated

with their parts of speech. An alternative way of representing the same tree structure is

by labelled bracketing, as shown in Example 1.3, which is a more compact and more easily

machine-readable format often used for treebanks.

(1.1) Le/D chat/NC mange/V une/D mouche/NC

1
Here the analysis used is that of the French Treebank (FTB).

4



1.1. PHRASE STRUCTURE ANALYSIS

(1.2)
SENT

NP

D

le

NC

chat

VN

V

mange

NP

D

une

NC

mouche

(1.3) (SENT (NP (D le) (NC chat) ) (VN (V mange) ) (NP (D une) (NC mouche) ) )

Constituency and context-free grammars. Constituency can be modelled with context-

free grammars (CFGs), also known as phrase structure grammars, formalised indepen-

dently by Chomsky (1956) and Backus (1959). A context-free grammar de�nes a set of

rules (or productions) that specify the ways in which phrases can be formed. More for-

mally, a CFG is a quadruplet G = 〈N ,T ,S ,P〉, where N is a set of non-terminal symbols, T
a set of terminal symbols, S the axiom and P the set of productions. Each production is of

the form α → β where α ∈ N and β ∈ (N ∪T )∗.

The tree structure in Example 1.2 therefore belongs to the language de�ned by the context-

free grammar productions shown in Example 1.4.

(1.4) SENT→ NP VN NP

NP→ D NC

VN→ V

D→ le

D→ une

NC→ chat

NC→ mouche

V→ mange

Dependency Analysis. An alternative representation of syntactic structure, �rst for-

malised by Lucien Tesnière (Tesnière, 1959), is dependency, where relationships between

words are represented by binary governor-dependent relations, which are often labelled

for a speci�c function (such as subject, object, modi�er, determiner etc.). Example 1.5

shows the same sentence in dependency format, the focus being on the lexical govern-

ment relationship between a head element and its dependent rather than on phrase-based

regrouping.

(1.5)

Le chat mange une mouche

D NC V D NC

det
subj

obj

det

root

5



1.1. PHRASE STRUCTURE ANALYSIS

The two formats, constituency and dependency, are structurally equivalent, provided that

only projective dependency trees are considered. Both formalisms associate structure to a

sequence of words, and converting between the two formats is possible provided that infor-

mation is made available to each of the two formats and provided dependency trees are pro-

jective. Converting from constituency to dependency requires encoding which branch of a

phrase leads to its head, which can be done with a list of head-propagation rules and rules

for labelling functional relations. Converting from dependency to constituency requires

associating phrase labels to groups containing a governor and its dependents. Therefore

whilst structural conversions are possible between the two formats for projective trees, in-

formation is required in both directions of translation to provide labelling, highlighting the

fact that the two formalisms can be seen to provide di�erent types of information. Exam-

ple 1.6 shows how a constituency structure is equivalent to a projective dependency tree,

provided that functional labels (e.g. subj, obj, det) are provided to label the dependency

relations.

(1.6)
SENT[mange]

NP[chat]

D[le]
le

NC[chat]
chat

VN[mange]

V[mange]
mange

NP[mouche]

D[une]
une

NC[mouche]
mouche

subj

det

obj

det

One major di�erence is the fact that in most cases phrase structure trees are necessar-

ily projective, i.e. a constituent contains only contiguous sequences of words, whereas a

dependency tree may contain non-projective branching
2
. For this reason, dependency is

often said to be more adapted for representing languages with so-called free word order.

However in many cases (especially for con�gurational languages such as English), non-

projectivity is a relatively rare phenomenon that can be dealt with post-parsing.

1.1.1 Encoding head relations using lexicalisation

One way of integrating information about the head of a phrase into phrase structure is

by propagating lexical information associated with phrasal heads throughout the tree in

a dependency-like fashion. By providing a phrase structure representation in which the

head of each constituent is accessible, we are able to integrate the advantages of using

dependency structure into the constituent structure. To do this, there is a need for head-

propagation rules, as was the case when converting from constituency to dependency.

Making lexical heads accessible can have advantages for parsing, especially for aiding the

disambiguation of parse structures based on the lexical content of the sentence. Syntactic

2
This is mainly due to the limitations imposed by CFGs. Formalisms with discontinuous constituents do

exist, for example linear context-free rewriting systems (LCFRS) (Vijay-Shanker et al., 1987) and there even

exist several treebanks for German with hybrid representations, allowing for crossing branches (see Skut

et al. (1997) for the annotation scheme of the NEGRA and TIGER treebanks).

6



1.2. THE PARSING OF MORPHOLOGICALLY RICH LANGUAGES

ambiguity, where more than one syntactic structure is possible for a sentence, is a major is-

sue in parsing. Collins (1999) illustrated the use of head-driven statistical models, adapting

methods for probabilistic parsing to lexicalised probabilistic context-free grammars, which

resulted in improved performances on the Penn Treebank.

Here, heads are encoded in the grammar via specially marked constituent labels, as shown

in Figure 1.

word tag sword
<ROOT−head>

<SENT−head>
<NP>

Le DET Le
l o y e r NC−head $UNK$

</NP>
<VN−head>

s e r a V s e r a
p l a f onn é VPP−head $UNK$

</VN>
. . .

Figure 1: An example of the French Treebank in the native parser format with head encod-

ing

We will see in Section 1.4.2.1 how specialised parse actions are used to specify the head-

encoding in predicted parse trees and in Section 1.4.3 how lexical information associated

with the head of each constituent can be used to score di�erent parse actions.

1.2 The parsing of morphologically rich languages

In the early days of statistical parsing, e�orts dedicated to improving parsers were centred

mainly on English, and in particular the parsing of the Penn Treebank (PTB), which is

taken as the reference corpus. The main reason, other than the general anglo-centricity in

NLP research, was the lack of good quality training data in other languages. The creation

of a treebank is a non-trivial task, which is costly both in terms of time and money. As

a result, comparatively very little work had been done on parsing languages other than

English. Typologically, English is characterised by the fact that is morphologically poor and

word order is quite �xed, which is not the case for the majority of the world’s languages.

Statistical techniques designed to parse English are therefore not necessarily well adapted

to parsing languages for which distinctions are more likely to be lexical than related to

word order.

However the tides are changing and more e�orts are being focused on the parsing of mor-

phologically rich languages. Methods need to be adapted to be able to incorporate more

lexical information than is necessary in English-based models. They need to be able to

handle di�erent syntactic structures and more �exible word order and also need to func-

tion on a comparatively small amount of data in relation to that of English. Apart from

7



1.3. OVERVIEW OF STATISTICAL PARSING

Petrov et al. (2006), whose latent annotations produce high performances on a range of

languages, e�orts are concentrated on discriminative statistical models (to be described in

Section 1.3.2 and the incorporation of lexical information in the form of feature functions.

Data is becoming available in a variety of di�erent languages and the creation of SPMRL

(Statistical Parsing of Morphologically Rich Languages) workshops and shared tasks has

encouraged the development of multilingual parsers. For example, the 2013 SPMRL shared

task (Seddah et al., 2013) provided datasets for 9 languages: Arabic, Basque, French, Ger-

man, Hebrew, Hungarian, Korean, Polish and Swedish, and was aimed at providing more

realistic evaluation scenarios. The data used for this shared task is provided in multi-view

format, which means that both constituency and dependency structures are supplied for all

languages. The reasoning behind providing both formats is that the two structures provide

di�erent and useful information, regardless of whether one of the formats may be globally

more adapted for a given language. It is generally considered that dependency is more

adapted to parsing languages with relatively free word order and constituency to parsing

more con�gurational languages, but in both cases, the other formalism can be useful and

we argue that it is important to have both dependency and constituency parsers. It is for

this reason that we do not consider one formalism to be superior to the other and here we

have chosen to concentrate on the parsing of constituency structures.

1.3 Overview of statistical parsing

Parsing strategies can be divided into groups: symbolic parsers and statistical parsers. Be-

fore the emergence of statistical parsers in the 1990s, parsers were rule-based and relied

on hand-written grammars. Many di�erent frameworks exist, some with highly complex

rules to handle subcategorisation, agreement and semantics. Coherent grammars must

be developed to handle a wide variety of linguistic phenomena and their advantage lies

in their ability to �ne-tune the grammar rules. They are often more domain-transferable

than statistical approaches because rules are not designed with a speci�c language style

in mind and are instead based on notions of grammaticality, whereas statistical methods

are trained on domain-speci�c data. The disadvantages of these approaches include the

speci�city of a grammar to a particular language and the time and skill needed to write

coherent and robust grammars.

Statistical approaches, which exploit the statistical properties of syntactically annotated

treebanks, appeared to provide a relatively simple solution to the problem of having to

develop complex and coherent rules by providing a means of extracting them automati-

cally from data. The methods are therefore seen as more transferable from one language

to another, provided that data for that language is available. However the availability of

language resources is a non-trivial point that should not be overlooked
3
. One of the most

important advantages of the data-driven approach and one of the reasons for the interest

in developing these methods is that the extracted grammar is a performance grammar, one

3
Often statistical approaches are said to be less time-consuming than symbolic approaches due to the fact

that the latter rely on the development of a hand-written grammar. This is not entirely true given that the

time taken to develop the treebank must also be considered and, in the case of a treebank, the complexity

lies in the coherency of the annotation protocol.

8



1.3. OVERVIEW OF STATISTICAL PARSING

trained on real data, whilst the hand-written grammar is based on competency and gram-

maticality. Statistical parsers therefore tend to be more robust in the sense that they can be

capable of providing a syntactic structure in all cases. This can be very useful for parsing

real-life data in which all syntactic eventualities are di�cult to envisage, but these systems

usually require a more powerful method of disambiguation because they must allow for

many more possible structures. A �nal advantage of statistical methods is a practical one,

in that once the treebank has been developed, making changes to the way in which it is

exploited can be far simpler than with symbolic approaches thanks to a separation of data

and method.

For these reasons, most modern research in parsing concentrates on statistical methods

and the exploitation of annotated data. Here we shall give a brief overview of the two

main approaches to statistical parsing: generative modelling and discriminative modelling.

We describe the evolution of thought that has led to a renewed interest in more complex

modelling and the incorporation of more lexical information.

1.3.1 Generative models

Statistical techniques for phrase structure parsing started to become popular in the 1990s,

encouraged by the availability of treebanks, such as the PTB which was published for the

�rst time in 1993 (Marcus et al., 1993), and advances in generative statistical methods in

the �eld of speech processing. In parsing, these methods relied on exploiting the struc-

tural properties of treebanks to predict the most probable structure for a sentence, and

gained interest mainly because of the simplicity of the approach in achieving reasonable

performances, at least for English
4
. Inspired by the generative tradition in syntax and by

traditional parsing methods such as the Cocke-Kasami-Younger (CKY) algorithm and the

Earley Algorithm, the majority of statistical methods relied on probabilistic context-free

grammars (PCFGs), which involved modifying the standard algorithms by enriching them

with probabilities to disambiguate between competing trees. The simplest version of the

generative probabilistic model is one that assigns probabilities to each rule of a context-

free grammar extracted from a treebank. These probabilities are usually estimated using

the counts in the treebank such that P (α → β ) =
C (α→β )
C (α→∗) , where ∗ represents any right-

hand side. The probability of rule α → β is therefore given by P (β |α ), with the constraint

that

∑
γ P (α → γ ) = 1. A derivational structure can then be assigned a probability by

multiplying the individual probabilities of the subtrees (i.e. the CFG rules) of which it is

composed.

Since these methods involve assigning probabilities to the individual rules that make up

the derivations, they rely on strong independence assumptions; the choice of a constituent

label depends only on its direct child nodes, and lexical items are approximated by their

POS tags. Therefore, two di�erent sentences which have the same sequence of POS tags

will necessarily be assigned the same syntactic structure, regardless of their lexical content.

For example, given two sentences “Stig smashes bottles with stones” and “Stig likes bottles

4
A lot of attention has been (and still is) paid to parsing English and particularly early on in the history

of parsing English held a monopoly over most research in NLP.
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with labels”, each of which could be assigned the same sequence of POS tags “NPP VBZ

NN IN NN”
5
, it may be preferable to assign the two di�erent structures in Figure 2. How-

ever since the two sentences share the same sequence of POS tags, the simple PCFG-based

model would assign the same most probable syntactic structure in both cases, and there is

therefore no way of making distinctions based on the lexical content of the sentences.

SENT

NP

NPP

Stig

VP

VBZ

smashes

NP

NN

bottles

PP

IN

with

NP

NN

stones

SENT

NP

NPP

Stig

VP

VBZ

likes

NP

NN

bottles

PP

IN

with

NP

NN

labels

Figure 2: Two di�erent structures for the POS tag sequence “NPP VBZ NN IN NN”. Note

that these trees would have to be transformed to ensure that they contain the same number

of derivational steps in order to compare their probabilities.

The limitations of the generative models therefore lie in their inability to distinguish suf-

�ciently between structures based on their lexical content as well as their inability to take

into account non-local contextual information that could help disambiguation.

It was not until the 2000s that these models really took o� thanks to new ways of re�ning

the grammars and integrating this information through latent annotations, for example

through lexicalised grammars, known as LPCFGs (Collins, 1999; Charniak, 2000) and an-

cestor and sibling labelling (Johnson, 1998; Klein and Manning, 2003; Petrov et al., 2006).

Both methods have the e�ect of re�ning POS tags and constituent labels to take into ac-

count more information and therefore of weakening independence assumptions.

Lexicalised Probabilistic Context-Free Grammars (LPCFGs). An LPCFG is a PCFG

in which constituent labels are annotated with their lexical head, which has the e�ect of

splitting constituent labels into �ner classes. For example the category VP in Figure 2 can be

split into two distinct labels VP[smashes] and VP[likes], making the left-hand side of the VP

rules di�erent, as shown in Example 1.7. The probabilities of the structures are no longer

necessarily the same, now depending on the speci�c lexical items in the sentences. The

approach has the advantage of conserving the very simple parsing algorithms of PCFGs,

but the disadvantage of making parameter estimation more complex and calculations more

5
The Penn Treebank (PTB) format is used here for tags and for the phrase structure trees in Figure 2.
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costly. Re�ning the labels necessarily makes them sparser, which can lead to very small

probabilities for a large number of rules, and this also greatly increases the number of

rules in the grammar and therefore the number of possible derivations. Nevertheless,a

signi�cant gain in accuracy is seen over simple PCFG-based models.

(1.7) VP[smashes]→ VBZ[smashes] NP[bottles] PP[with]

VP[likes]→ VBZ[likes] NP[bottles]

Context annotation. Several other approaches have been developed with the same aim

of including contextual information through the decoration of internal tree nodes. The

other main branch of category-splitting is through the annotation of contextual elements

such as parent annotation (Johnson, 1998; Klein and Manning, 2003), and sibling annota-

tion (Klein and Manning, 2003), enabling non-local contextual information to be taken into

account. Yet again, these latent annotations make the models more expressive, but increase

the number of di�erent rules and therefore the number of possible derivations that must

be calculated. Petrov et al. (2006) propose a solution to this problem by providing a system

capable of inferring useful category splits, making their models signi�cantly more com-

pact. More recently, a di�erent approach to including lexical and contextual information

has emerged, but without having to inject data sparseness into the grammar: Hall et al.’s
2014 discriminative parser uses a grammar and surface features related to the span of a

constituent, for example span’s length, its �rst and last elements and a span’s contextual

elements. They show that it is possible to incorporate this information without having to

decorate probabilistic trees, going some way to resolve data sparseness issues.

The problem is that pure generative methods, despite the advances made in capturing non-

local and lexical distinctions through category splitting, are somewhat limited in their abil-

ity to incorporate further lexical information and performances appear to increase very

little. This is especially true of parsing typologically varied languages, for which word

order is not necessary very �xed. These languages are often also morphologically rich,

but this lexical information cannot easily integrated into probability-based methods. With

the aim of overcoming the plateau in prediction performances, there is currently a move-

ment to inject complexity into statistical generative models, taking inspiration from the

complexity that can be found in symbolic parsers, such as Tree Adjoining Grammar (TAG)

parsers, which can easily incorporate lexical information and constraints in feature struc-

tures. However current e�orts are limited due to the complexity of the formalisms. For

example, Kallmeyer and Maier (2010) developed a parser for German using Linear Context-

Free Rewriting Systems (LCFRS), which allows for non-continuous constituents and non-

projectivity and which is therefore more expressive than context-free systems. The down-

side is that these more complex systems are currently too computationally expensive to be

as high performing as the formalism should allow.

1.3.2 Discriminative models

These limitations have led to a recent interest in discriminative, transition-based models

for phrase structure parsing (Sagae and Lavie, 2005; Wang et al., 2006; Zhu et al., 2013;

11
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Crabbé, 2014). These methods are inspired by dependency parsing algorithms, for which

discriminative parsing is widely used. Whilst constituency formalisms have dominated

syntax for English, dependency is often the preferred structure for languages with freer

word order due to the facility in modelling non-projectivity and discontinuity. This is one

of the reasons why languages such as Russian (the language of one of the leading �gures

in dependency, Igor Mel’čuk) and Czech (for which there exists the Prague Dependency

Treebank) often use dependency rather than constituency. It happens that these languages

with a less �xed word order than English also tend to be more morphologically rich, and

taking into account lexical information is very important. Discriminative methods, as op-

posed to generative methods, rely on a classi�er to score di�erent elements of the predicted

sequence, rather than taking the language produced by a treebank. The use of a classi�er

to provide scores rather than probabilities simpli�es the addition of features, making the

technique more transferable from one language to another. What is more, the use of incre-

mental discriminative methods makes parsing very e�cient, something that is currently a

serious problem for the majority of advanced generative parsing techniques.

For dependency parsing there are two main strategies: transition-based and graph-based.

Transition-based parsers construct the structure incrementally by scoring di�erent actions

to produce the derivational sequence with the highest score. Inspired by classic parsing

methods for computer languages, such as LR parsing, Nivre and Scholz (2004) (also Nivre

(2006)) proposed a deterministic transition-based parsing method, which parses in linear

time, a huge improvement on the cubic time of most chart-based generative parsing algo-

rithms such as CKY and Earley. In more recent work, Huang and Sagae (2010) extended

Nivre’s idea to a non-greedy implementation, by using beam-search and dynamic program-

ming to maintain performance in linear time, but widening the derivational search space.

The other main class of dependency parsing is graph-based parsing, which is designed

to focus on performing a more exact search than beam-searched transition approaches.

They emphasise the coherency of the entire predicted structure when scoring predicted

sequences, rather than proceeding in an incremental way. One of the most well-known

graph-based approaches is McDonald et al. (2005), which seeks to �nd the maximum span-

ning tree in an initially complete directed acylic graph (DAG) structure. The algorithm

which runs in O (n2), can produce non-projective trees and has high performances for

highly non-projective languages, although the integration of extra features in scoring func-

tions makes the exact search in the DAG very costly.

Some of the most successful dependency parsing algorithms are those that use a combina-

tion of the two strategies. For example Nivre and Mcdonald (2008) achieve this by stack-

ing, Sagae and Lavie (2006) by reparsing a weighted combination of parses, and Bohnet

and Kuhn (2012) by use of a graph-based completion model, in which a global graph-based

approach is used to re-rank derivations in the beam at each stage of a transition-based

approach.

Of these two strategies, the �rst – transition-based parsing – is the one that has attracted

interest in terms of phrase structure parsing, thanks to its e�ciency and its ability to incor-

porate lexical information. First attempts by Sagae and Lavie (2005) were directly inspired

by Nivre and Scholz’s (2004) algorithm for deterministic labelled dependency parsing for

English, for which performances were lower than the state of the art for English, mainly

12
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due to the use of a greedy search. Further work such as Wang et al.’s (2006) parser for

Chinese provide more successful results, and more recent work by Zhang et al. (2009), Zhu

et al. (2013) and Crabbé (2014) (this last reference describing the parser used in the cur-

rent work) use a beam search to increase the number of derivations explored. More details

on incremental discriminative parsing and the incremental parsing algorithm shift-reduce

will be given in Section 1.4.

1.4 Discriminative phrase structure parsing

Discriminative phrase structure parsers are largely inspired by incremental dependency

algorithms. They exploit the fact that lexical information can easily be integrated and the

fact that incremental parsing algorithms can be very e�cient. Here we will describe the in-

cremental, transition-based algorithm (shift-reduce) we use, as adapted to phrase structure

parsing. We lay out the derivational search space in Section 1.4.2.1 and describe the use

of approximate search techniques to limit the exponential number of structures produced.

Finally, we discuss how a classi�er and feature functions can be used to disambiguate be-

tween potential derivations.

1.4.1 Shift-reduce algorithm

The shift-reduce algorithm is an incremental bottom-up parsing algorithm, �rst described

by Knuth (1965) and designed for parsing computer languages and as such was originally

deterministic. Sequences are processed from left to right, incrementally building the struc-

ture without having to back up at any point. For parsing natural language, the same prin-

ciple can be used to construct syntactic structures, which are represented as sequences of

actions. The main di�erence is that natural language is characterised by ambiguity, which

must be incorporated into the algorithm. This will be discussed as of Section 1.4.2 and for

now we shall assume non-ambiguity in the examples used.

The algorithm is usually described as having a con�guration made up of a stack and a

queue 〈S ,Q〉, the stack containing elements that have already been processed and the queue

elements that have yet to be seen. The initial con�guration is one in which all words are in

the queue and the stack is empty. At each step of the algorithm, an action is chosen, which

alters the stack-queue con�guration.

For dependency parsing, Nivre’s incremental dependency algorithm used actions speci�c

to dependency, namely ‘shift’, ‘left-arc’, ‘right-arc’ and ‘reduce’
6
. The parser we use here

is not a dependency parser but a constiteuncy parser, but for constituency parsing, the

principal is the same. As in the standard algorithm, it uses two classes of action: ‘shift’ and

‘reduce’. ‘Shift’ transfers the next element of the queue to the top of the stack, proceeding in

6
Two variants of the algorithm were developed: arc standard and arc eager, both described in detail in

Nivre (2008). Whilst arc standard uses only the actions ‘shift’, ‘left-arc’ and ‘right-arc’, arc eager introduces

a supplementary action ‘reduce’.
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a left-to-right fashion to process the next word in the sentence. ‘Reduce’ takes the topmost

elements of the stack and reduces them to create a constituent. The derivation is complete

when there are no more elements to shift and the elements on the stack have been reduced

to the grammar’s axiom.

To illustrate the shift-reduce algorithm, we represent the sequence of shift-reduce steps

necessary to produce the phrase structure analysis of the sentence “Le chat mange une

mouche” (en: The cat is eating a �y) in Figure 3. Note that ‘reduce’ actions are speci�c to

a constituent type in order to produce a labelled constituency structure.

In Nivre’s dependency version the number of actions for a sentence of length n is therefore

2n − 1 and the same can be true of the constituency version as long as the ‘reduce’ action

is constrained to reduce only and exactly two stack elements. In Section 1.4.2.2 we will

explain how in practice, the parser used here produces sequences of actions of length 3n−1

due to its capacity to also handle unary rules.

1.4.2 Derivational search space

The original shift-reduce parsers were those such as LR parsers, designed to be determin-

istic, which means that at each step of the algorithm there is only a single possible action,

or at least a means of disambiguating actions with a lookahead strategy. Parsing natural

language is a completely di�erent scenario in which ambiguity is rife, and for a parser to

be robust, i.e. capable of parsing unseen sentences, it must envisage ambiguity at each step

of the derivation. This means that for a given sentence there exist a large number of pos-

sible derivations, which we refer to here as the derivational space. Here we discuss what

determines the size of the derivational space, how we can navigate it and methods used to

avoid having to explore all possible derivations.

1.4.2.1 Properties of the derivations

At each step of the algorithm, the parser is presented with a choice of an action given the

current con�guration. The number of choices at each step is dependent on the number of

possible actions and also on the number of topmost stack elements that can be reduced.

If no constraints are imposed by the grammar on the number of daughters allowed for a

governing node, the number of possible reductions is greatly increased; for each of the

possible constituent labels, as many di�erent reductions are possible as elements on the

stack. A lack of constraints also has the serious disadvantage that possible derivations are

not guaranteed to be of the same length, which is problematic when it comes to scoring

derivations and comparing them (See Section 1.4.3).

It is therefore important to limit the possibilities of reduction by applying certain con-

straints to the tree structures that can be produced. If the input is limited to a context free

grammar in Chomsky reduced form, in which each non-terminal production has exactly

and only two non-terminal elements on its right-hand side (corresponding to subtrees of

arity 2), and lexical productions are necessarily unary (see Example 1.8), for n the length
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Stack Queue Action
1 LeD chatNC mangeV uneD moucheNC Shift

2
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END

Figure 3: The steps of the shift-reduce algorithm for the sentence “Le chat mange une

mouche”
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of a sentence, the number of possible steps is 2n − 1.

A → BC
A → h
where A, B and C are non-terminal symbols and h is a terminal symbol

(1.8)

Ensuring these constraints means necessarily transforming the existing input treebank to

conform to them, since the majority of treebanks display variable arities. A pre-processing

step is therefore responsible for the transformation of the treebank via an order 0 head

Markovisation (see Figure 4 and Collins (2003)) to reduce subtrees of arity > 2 to binary

trees, followed by a reduction of unary trees (see Figure 5). The transformed treebank is

then used to perform the analysis and the resulting trees restored to the original tree format

via a post-processing step.

Original tree n =∞ n = 2 n = 1 n = 0

NP

D NC Adj PP

NP

D NP:NC+Adj+PP

NC NP:Adj+PP

Adj PP

NP

D NP:NC+Adj

NC NP:Adj+PP

Adj PP

NP

D NP:NC

NC NP:Adj

Adj PP

NP

D NP:

NC NP:

Adj PP

Figure 4: nth order horizontal head Markovisation

NP

NPP

Tinkerbell

→ NP$NPP

Tinkerbell

Figure 5: Reduction of unary branches by concatenating node labels

Both pre-processing steps are necessary to ensure that derivations are always of the same

length, but they have the e�ect of increasing the number of possible constituent labels

during the algorithm because they introduce temporary symbols, which do not appear in

the post-processed analyses. Given that reductions are speci�c to a constituent label, the

number of actions is dramatically increased.

In reality, the parser uses a relaxed version of the Chomsky normal form, in which unary

trees are allowed for tag label branching to lexical items. The main reason for allowing

these unary branches is that the use of strict Chomsky normal form would have the e�ect

of altering the tag set (as it does with constituent labels), which adds unnecessary sparse-

ness to the data. To ensure that all derivations are of the same length, a further action is

introduced, known as ‘ghost reduce’, which has the e�ect of adding an action without alter-

ing the con�guration. With this relaxed version of the grammar, derivations are produced

in 3n − 1 steps.
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The di�erent types of parse actions are detailed in Table 1. Apart from ‘shift’ and ‘ghost-

reduce’, the actions are speci�c to the constituent type (including temporary constituent

labels), which has the e�ect of multiplying the number of possible parse actions. There

are two di�erent types of ‘reduce’ action in order to propagate lexical heads throughout

the tree. ‘reduce-left’ indicates that the two topmost stack elements are reduced to a con-

stituent and the second element from the top is the head of the new constituent. ‘reduce-

right’, in a similar fashion reduces the two topmost stack elements and indicates that the

top element is to be the head of the constituent formed. ‘Reduce-unary’ is discussed in the

previous paragraph.

Shift 〈S ,w jw j+1〉 → 〈S w j,w j+1〉

Reduce-left X 〈α[y]β[z],Q〉 → 〈X [y],Q〉
Reduce-right X 〈α[y]β[z],Q〉 → 〈X [z],Q〉
Reduce-unary X 〈α[y]β[z],Q〉 → 〈α[y]X [z],Q〉
Ghost-reduce 〈α[y],Q〉 → 〈α[y],Q〉

Table 1: Illustration of parse actions and the consequences on the con�guration. Each item

is a pair 〈S ,Q〉 consisting of stack and queue elements.

1.4.2.2 Properties of the search space

As de�ned in Section 1.4.2.1, derivations are sequences of actions of length 3n − 1. The

search space represents all the possible derivations for a given sequence of wordforms.

It is characterised by the fact that at each step of the algorithm, there are |A| possible

choices, where A is the number of di�erent actions. The search space therefore increases

exponentially at each step of the derivational sequence.

Figure 6 illustrates the exponential space of a simpli�ed shift-reduce algorithm in which

there are only two actions and the grammar is in Chomsky normal form, so the length

of the possible derivations is 2n − 1. This reduced space is shown for legibility purposes,

but the principle remains the same in our case; as the number of steps in the derivation

(directly related to the length of the sentence) increases, the number of possible derivational

sequences increases exponentially. The di�erences between the illustration and our case is

that derivational sequences are of length 3n − 1 and there are a greater number of actions

(See Section 1.4.2.1). The number of derivational sequences for a sentence of length n is

|A|3n-1
.

We can see from Figure 6 that the search space can be represented as a tree structure, in

which each transition is an action in the sequence. If each of these actions, based on the

position in the tree (i.e. the con�guration at a certain point in the shift-reduce algorithm),

is assigned a score, �nding the optimal derivation for a given sentence amounts to �nding

the maximally weighted path from the start point to the end. A necessary condition is that

each of the derivations have the same length for a given sentence, since there is a positive

correlation between the score and the number of derivational steps.

Dynamic programming can be used (as in Huang and Sagae (2010)) to reduce the number

of nodes at each step as long as there are equivalences between nodes. The principle is to
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Figure 6: Derivational search space for a shift-reduce algorithm for a grammar in Chomsky

normal form for a sentence of length n. At each step of the derivation, the number of

possible sequences of actions increases exponentially. The total number of derivational

sequences for a sentence of length n is |A|2n−1
where A are the possible actions.

regroup overlapping subproblems and to seek an optimal solution through their resolution.

Although it is characteristically a technique for reducing the complexity of chart-based

phrase structure parsing algorithms, Huang and Sagae succeeded in integrating dynamic

programming into an incremental algorithm. We will see in Section 1.4.3.1 how feature

functions are used to characterise a particular con�guration. Although each con�guration

is unique to a step of a particular derivation, not all elements of the con�guration will be

used in the scoring function (this is a choice to be discussed in Chapter 2) and therefore

the scoring function can be the same for several nodes in a same step. If this is the case, the

nodes that share feature function values within a same derivational step can be regrouped,

since the scores of outgoing actions will be the same in all cases. Take for example the

sentence “Sassoon runs far in the distance”, for which we could expect an ambiguity in the

attachment of the adverb “far”, either as shown in Example 1.9 or as in Example 1.10.
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(1.9) (VP runs (far in the distance))

(1.10) (VP (runs far) (in the distance))

Imagine that the only element of the con�guration used to score actions is the �rst element

of the queue. As illustrated in Figure 7, after having shifted the verb “runs” onto the stack,

we are faced with two options, to either shift the adverb “far” onto the queue, as would be

the case to produce the structure in Example 1.10, or reduce the last stack element to a VP,

as would be the case for Example 1.9. If the next action for Example 1.10 is a shift and the

next action for Example 1.9 is a reduce, each of the resulting con�gurations is one in which

the �rst element of the queue is the word “in”. Since the �rst element of the queue is the

only element used to score the following actions from these two points, these two nodes

can be considered equivalent and therefore merged (as shown to the right of Figure 7).

In the case where dynamic processing is used, the tree-structured search space becomes a

DAG structure, in which the number of internal nodes is inferior or equal to the number

of nodes in the tree-structured search space. The same principal of �nding the maximally

score path in the DAG holds.

... runs S far in the distance Q

... VP S far in the distance Q

... VP far S in the distance Q

... runs far S in the distance Q

... VP S in the distance Q

reduce_VP

shift

shift

reduce_VP

reduce_VP

shift

shift

reduce_VP

Figure 7: An example of the regrouping of derivational steps where the scores of their

outgoing actions are guaranteed to be the same. We assume here that the only element

used to score di�erent actions is the next element of the queue, highlighted in bold red,

which explains the equivalence between the two pink nodes.

1.4.2.3 Approximate search

As shown in Section 1.4.2.2, the derivational search space is exponential in size, and this is a

problem for parsing, which must be able to �nd the best of these derivational sequences for

a given sentence. Exploring such a large space, in particular for longer sentences, provides

challenges both in terms of memory and time costs.

A common method used, in particular in incremental parsing, is the beam search, which

limits the number of sequences kept at each stage of the derivation, retaining the k best-

scored sequences at each step.

This means that the number of derivations explored is far more limited and avoids the time
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0

11 21 31 00. . . 3n-11

12 22 32 00. . . 3n-12

13 23 33 00. . . 3n-13

14 24 34 00. . . 3n-14

Figure 8: An illustration of the beam search with a beam size of four. At each step of the

derivation, only the four best paths are retained.

and memory costs associated with an exponential search. The search is only approximate

because not all paths are explored, and the optimally best path might be �ltered out before

the end of the derivation if its score early on is less than the k-best partial derivations at a

given point. If the beam is of size 1, the algorithm amounts to greedily and locally taking

the best-weighted transition at each step, as in the �rst incremental parsing algorithms

for natural language (Nivre and Scholz, 2004; Sagae and Lavie, 2005). An in�nite beam is

equivalent to exploring the entire search space and is usually avoided at all costs. The aim

is to reach a compromise between obtaining accurate results and reducing training and

prediction times.

1.4.3 Disambiguating between derivations

In light of the many di�erent derivations possible for a single sentence, it is necessary to

provide a means of ranking them according to how close they are to the desired syntactic

analysis
7
. Derivations are scored by using a linear classi�er to assign scores to the individ-

ual parse actions that make up the derivation and then by summing over these scores.

The classi�er used in this work is an averaged multiclass perceptron (described in more

detail in Section 1.4.3.2). It is used to assign scores to individual actions based on a certain

con�guration in the shift-reduce algorithm.

Structured prediction. A standard linear classi�er would take a set of examples made

up of con�guration-actions pairs and learn weights to optimise the correct prediction of

the actions from each con�guration. For a given con�guration, an action could then be

assigned a score by the classi�er. However in the case of parsing, it is preferable for the

classi�er to learn to optimise not individual con�guration-action pairs but the sequence

7
This can be estimated by the gold standard examples provided in training data.
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of actions that make up the derivation (i.e. the sequence of con�guration-action pairs),

because individual local choices are not necessarily the most coherent for learning the best

sequence of actions. The challenge in structured prediction is to optimise a classi�er with

the aim of producing the best overall derivational sequences and not individual actions. A

global optimisation is produced by basing the loss function to be minimised on the entire

derivational sequence for a given sentence. Regardless of whether the classi�er is optimised

locally or globally, the parser must be integrated into the classi�cation process in order to

produce the con�guration-action pairs to be scored, and in terms of the global model must

be used to produce sequences of con�guration-action pairs that will be assigned a global

score.

An action is scored by carrying out a linear combination of a learned weight vectorw ∈ RD

and the result of the application of the function Φ to the con�guration Ci and action ai at

a certain point i in the derivation sequence, as shown in Equation 1.11.

W (ai ,Ci ) = w · Φ(ai ,Ci ) (1.11)

The score for a derivation sequence of length M C0⇒M , i.e. C0

a0

⇒ . . .
aM−1

⇒ CM is therefore

the sum of the scores of the con�guration-action pairs that characterise the derivation, as

shown in Equation 1.11.

W (C0⇒M ) = w · Φд (C0⇒M ) =
M−1∑
i=0

w · Φ(ai ,Ci ) (1.12)

Since derivational sequences are scored incrementally and the score of a derivation is the

sum of the scores of its actions, it is extremely important for competing derivations to be

of the same length. The use of a beam search means that at each step of the derivation,

the partial scores of each sequence are compared in order to retain the k-best and to prune

the rest. The �nal predicted sequence is therefore the one that is assigned the highest �nal

score and that did not fall o� the beam in the process of the derivation.

In the following two sections, we will describe how the con�guration is used to produce

feature functions (the result of the function Φ) and how the perceptron classi�er learns the

values of the weight vector w .

1.4.3.1 Feature functions

Φ(ai ,Ci ) is a D-dimensional vector of feature functions, each of which is of the form

Φj (ai ,Ci ) =



1 if ai = α and if Ci ful�lls the condition x
0 otherwise

(1.13)

where α is a speci�c action and x is a condition instantiating a value of a particular element

of the current con�guration. See for example the two features functions in Examples 1.14

and 1.15, the �rst of which contains a single condition and the second two conditions. In

theory they could contain a limitless number of conditions other than the action condition,
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which is always implicit to the feature. However a maximum of three (as in Huang and

Sagae (2010)) is imposed here to reduce the number of possible features.

Φ10(ai ,Ci ) =




1 if ai =shift

and if “1st queue element word = pot”

0 otherwise

(1.14)

Φ27(ai ,Ci ) =




1 if ai = shift

and if “2nd stack element phrase type = NP”

and if “1st queue element gender = fem”

0 otherwise

(1.15)

The types of constituents and lexical values available to be used in feature functions are

those present in the training data. The con�guration is the stack-queue con�guration of

the shift-reduce algorithm as described in Section 1.4.1 and although in theory the features

could instantiate values of any stack or queue element regardless of the size of the stack

and queue, in practice, parsers limit the number of stack and queue elements available. As

in Huang and Sagae (2010), we limit the number of stack elements for use in the feature

functions to three and we also limit the number of queue elements to four, as shown in

Table 9. This reduces the number of feature functions, and therefore the number of opera-

tions performed to weight each action and, as long as the number is not too constraining,

does not have a huge in�uence on the performance; distant elements tend to be less reliant

predictors of the next action than local elements, such as the top element of the stack or

the next element in the queue.

Queue items are lexical items and stack elements are partial tree structures in which the

leaves are lexical items, and the direct descendants of the �rst two stack elements are ac-

cessible. As described in Section 1.1.1, heads are encoded in the phrase structure analysis,

meaning that any constituent is also annotated for its lexical head. This provides another

source of values that can be instantiated in feature functions. These lexical items, whether

they are in the stack or the queue, are associated with a certain number of pieces of lex-

ical information, obligatorily the wordform and the part-of-speech but also other lexical

information as provided in the annotated data, such as gender, number, case, tense etc.

A summary of these con�gurational elements is presented in Figure 9.

1.4.3.2 Perceptron learning

Weights for individual features are learnt using an averaged multiclass perceptron (see

Collins (2002)). The perceptron is an algorithm for learning a classi�er from a set of fea-

ture functions and the vector w , a set of real valued weights. The weights are learnt in an

online fashion by iteratively updating the weight vector whenever an example is misclas-

si�ed. The algorithm is repeated on the set of training data until there is convergence (see

Algorithm 1).

In the structured case, the training examples are pairs (xi ,yi ) where xi is a sequence of

words and yi is the gold derivational sequence. The algorithm is equipped with a func-
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Stack Queue

s2.ct [s2.wt ]

s1.ct [s1.wt ]

s1.cl [s1.wl ] s1.cr [s1.wr ]

s0.ct [s0.wt ]

s0.cl [s0.wl ] s0.cr [s0.wr ]

q0 q1 q2 q3

Figure 9: si represents the ith element of the stack and qj the jth element of the queue. Given that

the direct daughters of the �rst two stack elements are also available, ct, cl and cR represent the

non-terminal of a particular stack element at the three di�erent positions (top, left and right). At

each stack element, lexical information about the lexical head is also available, indicated in squared

brackets as si.w{t, l, r}
.

tionGEN (xi ) which generates the possible derivational sequences for a given sequence of

words. As seen above (Section 1.4.2.3), the use of an approximate search means that only a

fraction of all possible derivations will be scored, which is why the algorithm does not use

an argmax over all possible sequences. Note that the scoring of a derivational sequence is

a linear combination of the weight vector to be learned and a feature representation of the

sequence as de�ned in Section 1.4.3).

Algorithm 1 Structured perceptron (Collins, 2002)

1: Data = {(x1,y1), ..., (xD ,yD )}

2: . Each xi is a sequence of words and yi a derivational sequence C0⇒M

3: Initialise w ← NULL

4: for t from 1 to T do
5: for d from 1 to D do
6: zd ← argmaxC0⇒M ∈GEN (xd )w · Φд (C0⇒M )

7: if zd , yd then
8: w ← w + Φд (yd ) − Φд (zd )

9: end if

Convergence. The algorithm is run a certain number of timesT , but it comes with guar-

antees of convergence, provided that the data is separable and all updates are valid updates

(i.e. they are only made when the predicted sequence is false). We are rarely able to separate

natural language data and so whilst convergence to a loss of zero cannot be guaranteed by

the perceptron, we can expect there to be convergence to a residual loss (and with residual

variation) if the perceptron is run a su�cient number of times. There are methods, such

as the averaged perceptron (used here), to counter this problem of convergence. In the

averaged perceptron, rather than the weight vector of the �nal iteration being used, the

average weight vector over all iterations (a total ofD ·T ) is calculated, therefore giving more

weight to more consistent weight vectors and avoiding a bias towards the later examples.

The moment at which the perceptron converges is linked to the number of updates made,

the number of examples and the size of the model (i.e. the number of feature functions

used to score the derivations); in general, the larger the model, the longer the perceptron
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takes to converge. Furthermore, the more feature functions there are in a model, the more

calculations are necessary to predict a sequence, and so the longer the training and parse

times.

Perceptron and beam search. It may appear strange to consider that an update may be

invalid, since the algorithm speci�es that an update should only occur when the predicted

output does not match the gold output. However the use of inexact searches such as a beam

search means that valid updates are not always guaranteed. As evoked in Section 1.4.2.3,

the correct derivation may be pruned before the �nal step of the derivation if its partial

derivation scores lower than the k-best partial derivations up to this point. Therefore, even

if the derivation would have scored highly enough in its �nal steps to be the best scored

overall, the pruning procedure of the beam search means that it falls o� the beam and is no

longer considered. This is illustrated graphically in Figure 10, in which the beam search is

crudely represented by the shaded area on the graph. At step 5, derivation C falls o� the

beam, since its score is lower than the k-best partial derivations. Had the derivation been

continued for C and its score calculated until the �nal step 8, its �nal score would have been

higher than the best-scored derivation according to the beam search, in this case derivation

B. An update performed here would be invalid, due to the fact that the incorrect sequence

was chosen not because of poorly optimised feature functions but because of the use of an

approximate search.

E
a
r
l
y

u
p

d
a
t
e

M
a
x

v
i
o

l
a
t
i
o

n
u

p
d

a
t
e

0 1 2 3 4 5 6 7 8

Derivation steps

S
c
o

r
e

A

B

C

Figure 10: An illustration of the growing scores for three derivational sequences, where

derivation C would have been the highest scoring but falls o� the beam at step 5.

To ensure valid updates, even when using an inexact search, di�erent strategies can be

used. The �rst to be developed was ‘early updates’ by Collins and Roark (2004). It consists
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of performing the update of the weight vector at the point in the derivation where the

correct derivation falls o� the beam, only updating on the partial derivations up to this

point. In Figure 10, this corresponds to a partial update at step 5. The disadvantage of this

approach is that updates are only performed on partial derivations and more iterations

are often needed for the perceptron to converge. An alternative solution, ‘max violation

update’, was provided by Huang et al. (2012), whereby the update is performed at the point

in the derivation where there is a maximum violation, i.e. where the di�erence between

the best-scored derivation and the correct derivation is greatest, corresponding to step 6

in the illustration.
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CHAPTER 2

MODEL SELECTION

Model selection is the task of choosing which feature functions are to be used to score

derivations. This is a crucial part of designing a parser, because features de�ne the capacity

of the model to be expressive and capture generalisations between the input and the struc-

tured output. Too few features or the inclusion of only non-informative ones may result in

an insu�cient ability to capture the relationship between con�gurations and actions. Too

many features could result in the correlations being too speci�c to the training data and

therefore not generalisable, which is known as over�tting. Furthermore, the time taken

for parsing is directly linked to the number of calculations that need to be performed. The

higher the dimensionality of the model, the longer the parse times will be. In discrimina-

tive models, which can allow for a very large number of dimensions, reducing the number

of dimensions in the model is crucial.

The aim of model selection is to select an optimal model from a set of possible models.

In Section 2.1 we will see how there are multiple criteria for optimality in the case of

parsing, including generalisation performance, compactness and speed of the method used.

We will illustrate how this notion is also dependent on the level of granularity at which

feature selection is performed, a choice which also de�nes how many possible models

are in the search space. It should become clear from this discussion that enumerating all

possible models is an unfeasible task, and in Section 2.2.1 we provide some clues as to the

limitations of linguistic intuitions when manually selecting a model, in particular when it

comes to the interaction of features. We dedicate the remainder of the chapter to automatic

feature selection methods, providing a general review of the literature in Section 2.2, before

describing those speci�c to feature selection in parsing in Section 2.3.
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2.1 What does it mean to select an optimal model?

2.1.1 De�ning optimality

De�ning what constitutes an optimal model relies on having a set of principles for com-

paring them. Despite the fact that the topic has been widely studied in the literature, the

problem is that there is not a single unique criterion for de�ning optimality when perform-

ing model selection. We identify three di�erent optimality functions for model selection: i)

the bias-variance trade-o�, ii) model compactness and iii) the speed of the feature selection

method.

Model selection is often linked to the bias-variance trade-o� (Geman et al., 1992); a com-

promise between choosing a model that can represent the training data well (shown by

low training error) and one that can generalise well to new data (shown by low gener-

alisation error). The bias is a measure of the degree to which a model characterises the

training data, calculated as the di�erence between the predicted values and the true val-

ues. A model which �ts the training data well is therefore characterised by a low bias. The

variance measures the speci�city of the model to a given training set. It is calculated as

the di�erence between the predictions of the model over di�erent training sets. If a model

is very dependent on the speci�c points of a data set, predictions will vary widely depend-

ing on the training data used and variance will be higher. In a good model, we therefore

seek to minimise both bias and variance. These two concepts are often con�icting in that

low bias (high accuracy on training data) often entails high variance (a model that over�ts

the training data), and low variance (a very general model) often entails high bias (one

that cannot capture regularities in the data and therefore is said to under�t). Finding an

optimal model is therefore a trade-o� between the reduction of bias and variance. The

ability for a model to be generalised to new data is clearly an important factor. Models

are often �t using generalisation accuracy as a guide, or cross-validation if the data set

is small. Smaller models (with fewer parameters) are often preferred for computational

reasons; however expressivity of the model is important for ensuring a su�cient ability

to separate data points. Expressivity or complexity of a model can be expressed using the

Vapnik-Chervonekis (VC) dimension (Blumer et al., 1989), which is the largest number of

points that the model is able to shatter (separate) given all possible combinations of labels

of the data points. Although not always directly linked to the number of features in the

model, in linear models it is usually the case that a model with more features has a greater

VC dimension. This dimension is important because it enables the calculation of the upper

bound of the generalisation accuracy of a model. The higher the dimension, the greater

the upper bound and the greater the chance the model has of separating test data.

Bearing this in mind, the general strategy to be adopted is one in which generalisation

accuracy is the de�ning criteria for choosing a model over another. In the case of two

models quasi-equivalent in generalisation accuracy, the smaller model is preferred, not

only following Occam’s razor but also in order to optimise training and parsing speed.

However, a third criterion, the speed of the feature selection itself, must be taken into

account. Given a very large number of features, di�erent strategies must be adopted to

limit the time taken to choose the model in the interest of feasibility and practicality. In
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practice, the choice is therefore a three-way trade-o� between generalisation accuracy,

compactness of the model and the speed of the feature selection.

An important remark. It is important to mention that in statistical parsing there is

rarely a unique optimal model for a given problem. One reason for this is the correlation

of features. If two features are very highly correlated to each other, one may be redundant

if the other is already included in the model. The decision to include one over the other

may be arbitrary or a function of the algorithm or the parameters used and not necessarily

indicative of their comparative pertinence. For this reason, the interpretation of statistical

models to make theoretical judgements should be done with care, bearing in mind this

interdependence of model features and the fact that certain results may be an artifact of

the chosen method.

2.1.2 Model search space

Although we have identi�ed criteria to de�ne optimality in the case of feature selection,

the notion remains incomplete without mentioning the set of possible models in which

selection takes place (which we refer to as the model search space).

Determining the size of the model search space is important for the following chapter

in which we discuss feature selection methods. This is because the feasibility of di�erent

feature selection methods is often highly dependent on the number of di�erent models that

can be produced and the number of elements in the search space, especially if complex

training is incorporated into the feature selection process. However it is also important

for the notion of optimality itself; optimality is dependent on the level of granularity of

the model selection, i.e. to what extent we make distinctions between models, which is

determined by the basic units we choose to manipulate.

2.1.2.1 The basic units of a model

The number of possible models and the granularity of the distinctions between models are

de�ned by the basic units that are manipulated in model selection. The number of models

is equal to the number of di�erent combinations of the basic units. So if there are m basic

units, there will be 2
m − 1 possible combinations, if we consider that a model must contain

at least one unit.

The smallest basic units used for scoring derivations are features. However larger groups

such as feature templates can also be manipulated. Using larger units has the e�ect of

reducing the search space, which increases the e�ciency of the feature selection methods,

but also reduces the ability to �ne-tune models, because fewer distinctions can be made

between them. There can be several reasons for choosing a larger basic unit over a smaller,

more precise one: readability, gain in speed, and compactness of representation.
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Feature functions. A model is de�ned by the feature functions it uses to score deriva-

tions. These feature functions de�ne the expressivity of the model and its capacity to make

good predictions. They are the elementary blocks for scoring actions and therefore ideally,

if other considerations such as search space size and e�ciency are disregarded, feature se-

lection should be performed at the feature level. However the feasibility of this �ne-grained

approach lies in the size of the model search space.

In all statistical models in which features instantiate particular values, the number of fea-

tures is necessarily dependent on the number of di�erent values for each attribute type

used, as de�ned by those present in training data. The number of combinations is also in-

�uenced by the number of di�erent conditions that can be included in a feature function,

given that it is possible to create interactions using a logical ‘AND’. This factor is �xed

to avoid having an in�nite number of features. Finally, for a shift-reduce parser, we can

add the fact that the number is also dependent on the number of di�erent positions of the

shift-reduce con�guration that can be used in feature functions.

To give an idea of the number of feature functions in a model, we provide an example

using the speci�c possibilities and constraints of the shift-reduce parser used throughout

this work. Let us consider the case where the only lexical information available is the word-

form and the POS tag. Let S denote stack items considered
1

and Q queue items considered,

A the set of possible actions, Σ the set of all possible wordforms, Γ the tagset and C the set

of constituent labels
2
.

Each feature is inherently speci�c to an action, so here I shall consider that a feature con-

taining one condition is a feature with one condition other than the one pertaining to the

action. For example, the following feature function contains a single condition:

Φ1(a,C ) =



1 if a = action1 and if q0 = word1

0 otherwise

The number of di�erent conditions is calculated by multiplying the number of values for

each type of lexical information (here this is |Σ| + |Γ |) by the number of possible positions

that can have associated lexical information (|S | + |Q |) and adding the number of possible

non-terminal categories of each of the stack positions:

nconditions =

(
|Σ| + |Γ |

) (
|S | + |Q |

)
+

(
|S | × |C |

)
The number of possible features with a single condition is the number of possible condi-

tions multiplied by the number of possible actions.

F1= |A| ×
((
|Σ| + |Γ |

) (
|S | + |Q |

)
+

(
|S | × |C |

))
Features can have a maximum of three conditions, and calculating the number of features

1
Given that the �rst two stack elements are tree structures rather than simple nodes, here I shall consider

the left and right daughters of the �rst two stack elements to be separate stack elements to help the quanti�-

cation process. Therefore in a situation where we consider three stack elements (of which the �rst two are

tree structures), the number of stack items S would be 7.

2
In our model, the stack elements are also associated with a constituent label.

29



2.1. WHAT DOES IT MEAN TO SELECT AN OPTIMAL MODEL?

with n conditions amounts to calculating the number of possible combinations of condi-

tions, multiplied by the number of possible actions:

Fn= |A| ×

(
nconditions

n

)
For example, consider the scenario S (based on the training set for the version of the FTB

used for the 2013 SPMRL shared task (Seddah et al., 2013)), which has a wordset of 27,472

words, a tagset of 31 tags, 182 possible actions, 120 possible constituent labels
3
, seven stack

items (including the two daughters of the �rst two stack items) and four queue items and a

maximum number of three conditions (in addition to the action condition) for each feature

function, the total number of features is as follows:

F1 = 55,213,886

F2 = 8.375 × 10
12

F3 = 8.469 × 10
17

Ftotal = 8.469 × 10
17

which makes an impressive total of 2
8.469×10

17

possible models.

Feature templates. It is common practice in parsing, especially when there are a huge

number of features, to manipulate a larger unit than the feature when de�ning a model,

whether this is done manually or automatically. These units, known as feature templates,

abstract away from the individual values of features and code simply the type of informa-

tion used, which acts as a way of grouping features into groups of those using the same

elements and information types. This can be particularly important for the readability of

the type of features present in a model, and is often the method used when manually de�n-

ing what types of information from the con�guration should be used. By extension, it is

also often the method used for automatic selection for the same reasons and also because

it is often useful to regroup features into groups to reduce the size of the search space.

For example, the template ‘T(1) = q0(word)’ regroups all features pertaining to the word of

the �rst element of the queue in the shift-reduce con�guration. Since each feature function

is speci�c to an action and to the values of the condition, a template regroups a number

of di�erent features. In a simpli�ed model, in which there are only two possible actions

action1 and action2 and two possible word forms word1 and word2, this template will

create 2×2 features, representing all the di�erent combinations of values for q0 and actions:

Φ1(a,C ) =



1 if a = action1 and if q0 = word1

0 otherwise

Φ2(a,C ) =



1 if a = action1 and if q0 = word2

0 otherwise

3
The number of constituent labels is large due to the introduction of temporary symbols in the binarisa-

tion process. The number of actions is dependent on the number of constituent labels because the actions

reduce_left, reduce_right and reduce_unary are speci�c to a type of constituent
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Φ3(a,C ) =



1 if a = action2 and if q0 = word1

0 otherwise

Φ4(a,C ) =



1 if a = action2 and if q0 = word2

0 otherwise

In a more realistic scenario, the number of features generated by a template is much greater.

If Σ represents all possible wordforms and A the possible actions, the number of features

instantiated by this template is |A| × |Σ|, representing all the di�erent combinations of

values. For a vocabulary of just 1,000 words, and �ve actions, this single template produces

5,000 features
4
.

Templates are used primarily as a way of specifying features, but this regrouping into

classes of features can also be bene�cial for de�ning the feature space. If features are

automatically grouped into these classes, manipulating these classes of features rather than

individual features is a way of dramatically reducing the search space, and therefore the

time taken to run the selection algorithm.

For example, for the scenario S, the total number of templates is 4,088. See Table 2 for a

comparison.

Number of Conditions Number of Features Number of Templates

1 5.521 × 10
7

29

2 8.375 × 10
12

406

3 8.469 × 10
17

3654

All 8.469 × 10
17

4088

Table 2: Comparison of feature numbers and template numbers

This simpli�cation comes at a cost; by performing template selection instead of feature

selection, the search is more approximate and the �nal model likely to be larger, since

features are added by batches. There is the risk that a very important feature be missed if

it is grouped in a template with less important features, and so the �nal model is likely to

be less good than a feature selection model that selects individual features. However the

gain in the speed of the selection is particularly important, especially given that selecting

individual features could well be unfeasible depending on the chosen algorithm.

A note on vocabulary. Vocabulary is variable in the literature and the term ‘feature’

does not always have the same value for all authors. In many cases, ‘feature’ is often

used to refer to a feature template (for example in Nilsson and Nugues (2010), Ballesteros

and Nivre (2014)), and therefore in the majority of cases it is template selection and not

feature selection that is performed. We will follow in this tradition and also use feature

templates as our basic units and will make the distinction between the terms ‘feature’ and

4
In practice, the number of features is huge, and to avoid memory problems, sparse representations of

feature vectors must be used, where only feature functions of value 1 are stored.
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‘feature template’ where necessary. Where we speak of ‘feature selection’, this should be

understood as the task of selecting feature templates in our speci�c case, and ‘feature’ will

be used in the general case where it is not speci�ed what basic units are to be selected.

The term ‘feature’ is also sometimes used to refer to the di�erent attributes in the data (the

di�erent kinds of information provided, such as the wordform, the POS tag etc.). We will

refer to these items as attributes or variables.

2.1.2.2 Consequences of the choice of unit

We have already mentioned the fact that the number of possible models is dependent on

the number of basic units chosen to make up a model. This is relevant because model

selection is the selection of an optimal model amongst all possible models. If the search

space is su�ciently small, enumerating all possible models to select the highest performing

is a trivial task. However an exhaustive search of the model space is often impossible due

to a very high number of possible models. For example, the training of a single shift-

reduce parser model can be several hours for a model containing approximately 50 feature

templates. The training time is related to the number of calculations necessary (greater

for a larger model) and the time taken for the perceptron to converge, and in general the

more templates added to the model, the longer this will take. If there are 4088 possible

feature templates, and therefore 2
4088−1 possible models, we can easily see that training all

models is an unfeasible task. Heuristic methods, such as those mentioned in the following

chapter must be used to approximate the search. These heuristic methods often require

manipulating the basic units of models, for example by selecting models unit by unit. In

this case, although the method does not require enumerating all possible combinations, a

search of the basic unit space is nevertheless necessary and the time taken to perform the

search is dependent on the number of basic units available.

We shall see that in parsing, methods are often used to reduce this feature space to accel-

erate the time taken to perform feature selection, either by making the basic units larger

or by �xing constraints as to the order in which basic units are searched.

2.2 Overview of feature selection methods

We have established in the previous section that enumerating all 2
m − 1 possible models to

select the one with the highest generalisation accuracy is not feasible; even when grouping

features into feature templates, the cumulative training time of all models is unreasonably

long. The alternative is to �nd ways of approximating the solution, either manually or

automatically.
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2.2.1 Manual methods

Many statistical parse models rely on hand-chosen feature templates, selected according

to linguistic intuitions and a certain amount of trial-and-error, for want of a better method.

The resulting models can be high performing but there is no guarantee that the model is

optimal, and choosing a model manually can be a very time-consuming task. The selection

process can be guided by linguistic intuitions, which can help to target particular values or

contextual elements. We can cite for example the well-known problem of the ambiguity of

PP-attachments and that of coordination, but we stress that any remarks are given as an

example and are not guaranteed to hold true in all cases.

PP-attachment. Consider the sentence “J’ai vu un éléphant en pyjama” (en: I saw an

elephant in pyjamas). There is a real ambiguity as to the attachment of “en pyjama” either

to “éléphant” or to “j’ai vu” to produce the two analyses shown in Figure 11.
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(a) The elephant was in pyjamas
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P

en

NC

pyjama

(b) I was in pyjamas

Figure 11: Ambiguity in the attachment of the prepositional phrase

In this case the ambiguity is real, but in many cases the it is possible to disambiguate

the structure based on the words of the sentence, and we can apply linguistic intuitions

to decide which elements might be useful in aiding the disambiguation. Let us take the

incremental shift-reduce algorithm used for our parser. The shift-reduce con�ict appears

once “éléphant” has been shifted onto the stack, as shown in Figure 12.

Stack Queue

s2 s1 s0 q0 q1

VN[vu] D[un] NC[éléphant] en/P pyjama/NC

Figure 12: The con�guration just before the shift-reduce con�ict, with key elements high-

lighted.

We can either shift, as in Figure 13a or reduce as in Figure 13b. We can speculate as to which

elements could potentially be useful for making the choice. For example, the lexical head

at position s2 could be a good trigger in this case, because certain verbs are associated with

only one type of PP-attachment. If we were to replace the verb “vu” by “voulu” (en: wanted)
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to create the similar sentence “J’ai voulu un éléphant en pyjama” (en: I wanted an elephant

in pyjamas), the preferred reading would be the structural analysis of Figure 11a. Other

potentially important elements are the lexical item of the preceding NC (here at position

s0) and the lexical item of the noun within the prepositional phrase (here at position q1).

Finally, the preposition itself, situated at q0 can also be an important trigger.
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(a) Shift the word “en”
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(b) reduce the topmost stack elements to NP

Figure 13: Shift-reduce con�ict for PP-attachment

However, although certain elements can be identi�ed as key, the con�gurations are sus-

ceptible to variation, which may alter the position of key elements, making them di�cult

to predict. For example, if instead of a normal elephant, the elephant were blue: “J’ai vu

un éléphant bleu en pyjama”, there would be one extra element “bleu” on the stack and the

other stack elements would be shifted down one place. This means that the key elements

are no longer found at the positions s2 and s0, making the identi�cation of key positions

particularly di�cult, even for isolated phenomena. Many such variations exist, making it

extremely di�cult to make reliable generalisations.

Coordination. The attachment of coordinated elements is another well-known problem

of ambiguity in parsing and far more complex to model than PP-attachment. Consider the

English sentence “I saw a mouse and an elephant squealed”, whose syntactic structure is

presented in Figure 14. The structure presents sentential coordination as contrasted with

nominal and verbal coordination structures shown in Figures 15b and 15a.

To identify key positions in the shift-reduce con�guration that could help choose where

to attach the conjunct, we again present the shift-reduce con�guration at an intermediary

point in the derivation, after having shifted the word “mouse”, as shown in Figure 16. The

potential candidates for indicating whether to shift the “and” straight away (creating a

nominal coordination) or to reduce the two topmost stack elements (to perform either a

verbal or sentential coordination) could be the category of s1 and of s0, the lexical form of

q0 and the tag of q3. The logic behind this is that the category of s1 and s0 could indicate

whether we already have the verbal element of the current sentence. For example, had

the category of s1 been an adverb such as “Yesterday” and supposing that s2 is empty,

“a mouse” and “an elephant” could form a coordinate subject noun phrase. The lexical

form of q0 could be an indication because certain conjuncts may be preferred for certain

types of coordination. For example “but” would suggest that nominal coordination is not
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Figure 14: Sentential coordination construction
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(a) Nominal coordination construction
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(b) Verbal coordination construction

Figure 15: Coordination constructions
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Stack Queue

s2 s1 s0 q0 q1 q2 q3

PRP[I ] VBD[saw] NP[mouse]

DT[a] NC[mouse]

and
CC

an

DT

elephant

NN

squealed

VBD

Figure 16: The con�guration just before the shift-reduce con�ict, with key elements high-

lighted.

possible here. Finally, the tag of q3 is a key indicator because the presence of a verb in

this case suggests that nominal coordination is again not possible. However the verb is

not necessarily situated at q3. The presence of a verb later on in the sentence is what is

important, but the position of this verb is unbounded to the right, and we cannot identify

one particular element of the queue at which the verb should be situated.

Stack Queue

s1 s0 q0 q1 q2 q3

PRP[I ] VP[saw]

VBD[saw] NP[mouse]

and
CC

an

DT

elephant
NN

squealed

VBD

Figure 17: The con�guration just before the shift-reduce con�ict, with key elements high-

lighted.

If we were to choose to reduce the two topmost elements, we are again faced with a shift-

reduce con�ict, of whether to shift the conjunction (to create verbal coordination) or to

reduce the topmost stack elements in view to creating sentential coordination. This con-

�guration is shown in Figure 17. Again it may be possible to suggest key trigger elements,

for example the verb phrase at s0, the noun at q2, the token “and” at q0 and the verb at q3.

However the situation is far from clear. It is di�cult to predict the position of the elements

and the problem is often unbounded and too complex to model with position numbers, as

must be done here.

The problem. Especially in the case of coordination, which is not a very intuitive lin-

guistic phenomenon to capture in terms of features, the task of manually selecting con-

�guration elements and values is an incredibly di�cult task. It is sometimes possible, as

with PP-attachment to identify certain key elements, but the interaction of these elements

with other key elements for other linguistic phenomena makes the overall task very di�-

cult and time-consuming. It also necessitates having an in-depth knowledge of the speci�c

annotation guide used for the data used, as well as adapting the knowledge to speci�c

languages.
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With so much complexity in the templates, it is often di�cult to predict which templates

will be useful. Linguistic intuitions can even sometimes be misleading; a template may be

statistically pertinent even though linguistically it is not clear why, and on the other hand a

template that might appear linguistically interesting may prove not to be useful. This could

also be linked in certain cases to correlation between templates. If two templates provide

the same information, then it is not necessary to include them both in the model; it goes

against the principle of �nding the most compact model. It is also important to take into

account the fact that statistical models often use features containing several conditions.

Although it is possible to have good linguistic intuitions about features relative to the

most local elements and to which pieces of morphological information are most useful, the

interaction of several conditions means that choosing the most pertinent templates often

goes beyond linguistic intuitions.

2.2.2 Automatic selection methods

There has therefore been a very strong interest in developing automatic methods of feature

selection, using heuristic methods to approximate the optimisation of the model. Using

heuristics means that there is still no guarantee of �nding an optimal solution, but auto-

matic methods provide a greater feasibility of nearing it than manual methods, because

of their power of calculation and their ability to capture statistical generalisations that go

beyond linguistic intuitions.

There are two main families of feature selection method: �lter and wrapper methods, which

di�er in their speci�city to a particular learning algorithm. Filter methods use heuristics

related to the intrinsic characteristics of the data, whereas wrapper methods integrate the

learning algorithm to guide the search of the feature set.

2.2.2.1 Filter methods

Filter methods are a popular method for feature selection in classi�cation tasks due to

their e�ciency and simplicity. They select features based on general characteristics of the

data and follow the principle that such decisions can be made without having to study the

speci�city of features to a particular task. They are therefore generally much faster than

methods that require integrating the learning algorithm (see Section 2.2.2.2 for wrapper

methods). Selection is generally made up of two steps: the �rst a ranking of features ac-

cording to a set of criteria based on the general properties of the training data, and the

second a �ltering of the features according to their rank. The resulting subset should show

a high correlation between the predictor variables and the labels, but a low correlation

between the predictor variables themselves to avoid redundancy. Methods can be uni-

variate, which means that each type of variable is studied independently of the others, or

multivariate, which also takes into account their interdependency. Performing a multivari-

ate �ltering can be important given that individually good features may not produce the

best combination of features when brought together in a model, and there may also be a

high amount of redundancy. However taking into account interdependence can be com-

37



2.2. OVERVIEW OF FEATURE SELECTION METHODS

putationally more expensive, which explains why univariate methods are still a popular

choice.

We cite three of the most commonly used �lter criteria for ranking variables: the Fisher

score, mutual information gain and Relief algorithms.

The Fisher score is a univariate method used to evaluate the degree to which a variable’s

values are similar for instances of the same class and di�erent for instances of di�erent

classes, the idea being to assign a higher score to variables that maximise the distance

between class labels. The score for a variable vi is de�ned as follows:

S (vi ) =

∑K
k=1

Nk

(
µik − µi

)
2∑K

k=1
Nkρ

2

ik

, (2.1)

where there areK class labels, N indicates the number of instances of classk , µik and ρik are

the mean and variance of the i-th variable for a speci�c class k and µi is the mean of all val-

ues of the i-th variable. This method assigns scores to variables individually, whereby they

can then be ranked and �ltered. But the calculation of informativeness is done indepen-

dently for each variable and therefore the method cannot take into account the possibility

that there be redundant variables amongst the highest scoring, nor the fact that there may

be low scoring variables that combined are very informative co-predictors. A solution to

this problem is provided by Gu et al. (2012), who perform a joint selection of variables to

maximise a Generalised Fisher Score, capable of reducing redundancy in selected variables.

Another method of assessing informativeness of variables is to calculate the mutual in-
formation gain between variables and the class labels. The method is very popular due

to its simplicity and e�ciency, but again is a univariate method, used to calculate the in-

formativeness of individual variables to the class labels. Information gain between the i-th
variable and class Ci is calculated as follows:

Info_gain(vi ) = H (vi ) − H (vi |Cj ), (2.2)

where H (vi ) is the entropy of the i-th variable and H (vi |Cj ) the entropy of the i-th variable

given the j-th class. Extensions of this method have been suggested, such as the predomi-

nant correlation method by Lei Yu (2003), which ranks variables according to their individ-

ual informativeness for predicting class labels and then �lters the results where correlation

between two variables is greater than that of one of the variables to the class label, thus

eliminating redundancy.

The third method that will be mentioned here is Relief (Kira and Rendell, 1992), which is

an instance-based selection method designed to rank variables according to their ability to

separate closely positioned instances of di�erent classes. They involve iteratively chang-

ing the quality of variables depending on their ability to separate close instances. Relief

algorithms are useful for large datasets with many dimensions but again cannot reduce

redundancy between highly informative variables.

The advantage of �lter methods, namely their e�ciency, is linked to the fact that they do

not require integrating a particular learning algorithm and can simply base the selection

on general data properties. This advantage can also be a disadvantage in that their success
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heavily depends on the speci�c dataset and the task they are used for. Di�erent feature

selection methods produce the best results on di�erent datasets and there does not exist a

one-�ts-all feature selection method adapted to produce optimal results on all tasks.

2.2.2.2 Wrapper methods

Wrapper methods for feature selection overcome the limitations of �lter methods by inte-

grating the learning algorithm into the selection process to guide the search of the feature

space and to terminate the search. For large feature spaces, wrapper methods can be com-

putationally heavy, given that the number of possible models is 2
m − 1 where m is the

number of features, and optimising this problem is NP-hard. Therefore, greedy strategies

are often preferred for high-dimensional feature spaces, because of their ability to avoid

computing all possible subsets. The principle of greedy strategies is to continually modify

the ensemble of features that make up the model until the accuracy of the model no longer

increases, or at least does not decrease. The �nal model should contain a subset of the

initial set of possible features and should have an accuracy that is better or equal to all

intermediate models constructed during the search.

There are two main strategies that determine the direction of search: forward and back-

ward search, both shown in the generic algorithm in Algorithm 2. In forward search, the

initial model contains no features at all, and at each iteration a feature is greedily added un-

til there is no increase in the accuracy of the model. The selected feature is the one amongst

the remaining unselected features that, if added, would result in the highest accuracy gain

over the current model. In a backward search, the initial model contains all possible fea-

tures and at each iteration the feature whose removal would result in the lowest accuracy

loss over the current model is removed. This is repeated until there is no more accuracy

gain. In both cases, the �nal model is the model produced at the last iteration. The advan-

tage of performing a forward search is that, since a �nal model often contains a very small

subset of possible features, it is often much faster to add features than to remove them from

a complete set of features, and in general backward searches require training much larger

models. However they are less capable than backward methods of taking into account the

interdependence of features. If two features do not individually result in an accuracy gain

to the model, they will not be added, even if the combination of the two would result in a

high accuracy gain, which is known as co-prediction. The backward model can taken into

account these dependencies because in the case of the same two features, removing one

would result in a high decrease in accuracy and therefore the feature would remain in the

model. We will see in Section 2.3 how variants, including forward-backward methods also

exist.
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Algorithm 2 A generic framework for either a forward or backward wrapper method

1: Data = {(x1,y1), ..., (xD ,yD )}

2: SearchSpace
(0) ← INITIALISE_SEARCH_SPACE()

3: FeaturesInModel
(0) ← INITIALISE_MODEL_FEATURES()

4: Model
(0) ← INITIALISE_MODEL() . A model is a set of t feature-weight pairs

5: for t from 1 to T do
6: Feature

(t) ← SELECT_FEATURE(SearchSpace
t-1

, Data, FeaturesInModel
(t-1)

)

7: FeaturesInModel
(t) ← UPDATE_MODEL_FEATURES(FeaturesInModel

(t-1)
, Feature

(t)
)

8: Model
(t)

, acc
(t) ← FIT_MODEL(Data, FeaturesInModel

(t)
)

9: SearchSpace.remove(Feature
(t)

)

10: Return Model
(T)

In both methods the stopping criterion can either be a �xed limit to the number of rounds

T or a more adapted criterion based on a continued increase in generalisation accuracy for

the forward wrapper and a decrease in generalisation accuracy below a certain threshold

for the backward wrapper.

The downside of the method is its ine�ciency, especially given a large dataset and high

dimensionality. This is linked to the fact that in the standard algorithm, to select new fea-

tures, all remaining features must be �t and compared. If the integrated learning algorithm

requires training, the selection procedure can be very slow. Taking the forward wrapper,

for T features added to the model out of M possible features, the standard algorithm has

to train N + (N − 1) + ... + (N −T ) = TN − N (N−1)
2

models. Furthermore, we have seen in

Section 1.4.3.2 how training time can be highly dependent on the size of the model. This

method requires retraining the entire model at each round, and as a new feature is addeed

to the model each time, training time increases at each round.

Hybrid �lter-wrapper methods exist, which aim to combine the merits of both methods;

the e�ciency of �lter methods and the speci�city of wrapper methods to the task at hand.

For example, Zhu et al. (2007) combine a univariate �lter method with a wrapper method

for a genetic algorithm to appropriately add and delete features to and from the search

space, based on the ranking provided by a �lter method. Das (2001) proposes a �lter-based

method, using boosted decision stumps to iteratively select features, with training accu-

racy used as a stopping criterion. However, although these methods do integrate training

accuracy, they do so just to determine when to terminate the search, and therefore the

search itself is not guided by the learning algorithm and, for more complex algorithms

such as those used in parsing, are likely to produce less good results.
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2.3 Feature selection methods for parsing

As in many domains where the number of potential features can be very large, the parsing

community has started to become interested in methods of selecting an optimal subset of

features. In many cases (Zhang and Nivre, 2011; Hall et al., 2007), this is done manually by

trial-and-error and the use of linguistic intuitions. However, this can be a tedious task and

due to the speci�city of data-driven parsing models to the domain of the data on which

they were trained, it is often necessary to re-perform this selection procedure each time a

new language, style or domain is to be used for training. Furthermore, the optimal feature

subset is often very speci�c to a particular parsing algorithm or to the parameters of the

algorithm, meaning that the optimal features are not necessarily transferable from one

system to another.

We have seen in Section 1.2 how the growing interest in languages other than English, and

in particular morphological rich languages has led to the rise in popularity of discrimina-

tive models, which can more easily integrate a large number of di�erent lexical features.

In search of expressivity, the authors of these models now have at their disposition a very

large number of potential features and enumerating all possible models has become un-

feasible. There has therefore been a certain amount of interest in feature selection speci�c

to parsing. Due to the fact that parsing is not a simple classi�cation task but structured

prediction, simple �lter methods are poorly adapted for selecting an optimal subset and so

methods rely rather on the wrapper approach, integrating the parser’s performance and

training into the feature selection method. However training a parser can be particularly

time-consuming, especially when large amounts of high-dimensional data are used, and

methods therefore need to be orientated towards e�ciency. They incorporate heuristics to

limit the time taken for feature selection either by adapting the search method or by reduc-

ing the search space. Most automatic methods for parsing are therefore greedy methods,

performing variants of backward and forward selection.

Whilst the majority of the methods concentrate on a forward wrapper method, due to the

fact that training very high-dimensional models (a necessity for backward selection) is

very time ine�cient, some backward methods do exist, provided that the total number of

templates is reasonably small to start with. Attardi et al. (2007) perform feature selection

on their shift-reduce dependency parser by starting out with a model with 43 templates

and performing backward selection from this initial subset to remove one template. The

advantage of this approach is that they need not perform multiple rounds of the feature

selector, dramatically reducing the time necessary for selection and do succeed in produc-

ing di�erent models for ten di�erent languages, improving the labelled attachment score

(LAS) up to 4% for some languages in comparison to the scores obtained on the default

set. However this method relies on the fact that they use a small initial subset and perform

very little feature selection within it.

This can be compared to the entirely forward method used by Nilsson and Nugues (2010),

also for shift-reduce dependency parsing, in which the initial model contains only the �rst

word of the �rst queue element and forward selection is performed for all other possible

features. The attributes taken into account are the wordform, the part of speech and the

dependency label. To reduce the size of the search space, the search is guided by the order
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of stack and queue elements, under the informed assumption that elements more local to

the focus tokens result in a greater increase in parsing performance than elements further

away. They achieve state-of-the-art performances for English and Swedish with smaller

�nal models than most state-of-the-art models.

Other methods use a mixture of forward and backward methods to combine the advantages

of the two approaches. As in Attardi et al. (2007), Ballesteros and Nivre (2014) start with

an initial default set of features and perform backward and forward selection of features

as the feature selection step in MaltOptimizer, an optimiser for the dependency parser

MaltParser. Given that the feature set is large and training is time-consuming, they �x

heavy constraints and heuristics on the order in which features are processed, and on how

backward and forward selection is performed. The process is formed of six steps:

1. Backward selection of POS features (starting from elements furthest away) and then

forward selection if none were eliminated

2. Backward selection of wordform features and then forward selection if none were

eliminated

3. Backward selection of dependency link features and then forward selection of POS

features for the dependency tree nodes

4. Forward selection of contextual features using POS and wordform features

5. Forward selection of coarse POS tags, morphosyntactic features and lemma features

starrting with the nearest elements to the focus tokens and working outwards.

These heuristics have been carefully designed to intelligently guide the search, which

would otherwise be too computationally expensive. Although the use of a heuristic search

means that there are no optimisation guarantees, they found that in the majority of cases

for a variety of languages, the optimised parser produced slightly higher LAS scores than

carefully selected manual feature models, with an average of 0.58% increase in LAS over

manual models for ten di�erent languages, proving that automatically selected models can

be high performing. They notice a big di�erence in LAS scores between the initial default

model and the �nal resulting model for a number of languages, including Basque, Hun-

garian, Czech and Turkish, whilst the improvements for Catalan, Japanese, Chinese and

Swedish were more modest. The authors explain this variation in terms of availability of

training data (for some languages more morphological clues are available) and also on the

choice of a non-projective or projective dependency algorithm.

Ballesteros and Bohnet (2014) extend the ideas used in MaltOptimizer to deal with a larger

number of feature templates. They also perform feature selection on the Mate parser, and

test two models, one purely transition-based and the other transition-based with a graph-

based completion model. For both models their search space instantiates values from stack

and queue elements as described in Section 1.4. As in MaltOptimizer, they start from a

default set of features, attempt to perform backward selection on each of the features in

this initial set, and then perform standard forward selection for the remaining features,

adding each feature if the gain is above a certain threshold. Again, they rely on heuristics

to avoid testing feature templates pertaining to elements and values further away from

focus tokens if features involving more local variants were excluded. They achieve state-
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of-the-art performances for English, Chinese and Russian and results that are comparable

with Bohnet et al.’s (2013) results for Hungarian, but using fewer features.

He et al. (2013) also implement a feature selection strategy for discriminative parsing, but

for a graph-based (MST) model. Their strategy to increase the e�ciency of the selection

method is to apply feature selection dynamically, depending on the necessity to add more

templates. Their search space includes 268 �rst-order feature templates and 112 second-

order templates. They start by ranking all features in a forward wrapper-style way and then

grouping them into a certain number of groups, such that each group results in a similar

accuracy gain. The parser is run a certain number of times and at each round, a parse tree

is produced. For each link in the parse tree, a binary classi�er decides whether the link is

reliable enough to be locked for the �nal model or whether another template group must

be added to decide on the link. In the next round, locked links remain and are treated

as constraints for the other decisions made in the tree, and the new links produced are

again classi�ed as lock or add. After a certain number of rounds, a locked tree is produced,

without having had to use all templates for all links. This approach has the advantage of

only using templates when they are needed, thus reducing the calculation times for parsing,

but is rather speci�c to graph-based models.
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CHAPTER 3

OUR APPROACH: MODEL SELECTION VIA BOOSTING

In the case of the constituency-based shift-reduce parser throughout this thesis, the major-

ity of problems faced by the feature selection methods for dependency parsing (mentioned

in the previous section) are the same, due to the fact that they use very similar algorithms.

However we are potentially faced with a dimensionality problem that surpasses all of the

previously mentioned feature selection methods for parsing, due to the fact that the ulti-

mate aim is to test the hypothesis that supplementary morphological information can be

useful for parsing morphologically rich languages. We are therefore likely, at least at a

later date, to include more morphological information than most of the methods described

previously. We face a search space in the order of several thousand, or up to tens of thou-

sands for data for up to six di�erent types of lexical attribute (see Section 2.1.2.1 for an

explanation of this quanti�cation).

The methods previously mentioned use a variety of heuristics to guide the feature search,

including starting from a default set of feature templates, regrouping templates into groups

or applying more vigorous constraints on the order and direction of feature selection. How-

ever they do not tackle one of the major reasons for the extremely long duration of most

feature selections in parsing, which is the time needed to train models. The standard for-

ward wrapper, in which the template that would contribute the highest gain in accuracy

is added to the model at each iteration, requires retraining an ever-growing model; the

greater the size of the model, the longer training times will be. We propose a solution to

this problem by suggesting a method in which feature selection is constant at each round.

This can be achieved by performing a stepwise additive �t, which means that the model

can be constructed template-by-template without ever changing the coe�cients of the tem-

plates already added. Therefore, whilst the same number of models need to be trained at

each step of the algorithm, the model trained contains only the template that would be

added, which drastically reduces the time needed for training.

An algorithm that has these desired properties is the boosting algorithm AdaBoost. Boost-

ing algorithms are ensemble methods, originally designed for predictive modelling, used
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to combine a set of weak learners
1

to produce a strong one, by additively and iteratively

choosing the best weak learner and assigning a coe�cient (the classi�er’s importance in

the �nal model) until no more weak classi�ers are available. The weighted combination

of the classi�ers should produce a superior classi�er to each individual one. Boosting can

be seen as a feature selection method in that it iteratively selects the best weak classi�ers

until there are no more to add or until a certain number have been added, with the result

that the �nal subset produces a strong model, as in a forward wrapper feature selection

method. It has previously been used for feature selection for automatic face-detection in

the domain of imagery (Viola and Jones, 2004), for which the very large number of possible

features necessitates a very e�cient feature selection method, and for a variety of classi-

�cation tasks by Das (2001) using boosted decision stumps. However to our knowledge,

boosting methods have not yet been used in the context of feature selection for parsing. In

our case, the weak learners would be feature templates or groups of templates, combined

to form an ensemble of templates that can be used to retrain a strong parser.

3.1 The AdaBoost algorithm

Figure 3 shows the algorithm for the standard two-class AdaBoost. A weight distribution

over the training examples, initially an even distribution, is updated at each iteration. This

is a way of encoding the dependency of the choice of the next weak classi�er on those

already in the model. We will see in the paragraph ‘Minimising an exponential loss func-

tion’ how these weight updates are actually a simple way of encoding the exponential loss

function in the data in order to minimise this loss function.

At each round t , each of the possible weak classi�ers is �t to the weighted data and the

weak classi�er with the smallest weighted error is selected. A coe�cient α for the weak

classi�er, representative of its weight in the �nal �t, is calculated as half the log odds of

the weighted error. This coe�cient α is then used to update the weights of each example,

therefore giving more weight to misclassi�ed examples. This has the e�ect of selecting

classi�ers that concentrate on the “hard” examples, i.e. those that were misclassi�ed by

the weak classi�ers already added.

The �nal boosted prediction is a weighted prediction of the weak classi�ers added to the

�t, each weighted by its coe�cient α .

1
A weak learner (also known as a weak classi�er or weak hypothesis) is a classi�er that performs slightly

better than random classi�cation. In the two-class case, it is a classi�er with an accuracy of just above 50%.

An example of a weak classi�er is a decision stump (a one-level decision tree)
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Algorithm 3 Standard two-class AdaBoost (Freund and Schapire, 1999)

. Data = {(x1,y1), ..., (xD ,yD )}
1: Initialisation of data weights

w (1)
i =

1

D
, i = 1, 2, ..., D

2: for t=1 to T do

(i) Fit classi�er д(t )(x) to data using weights w (t )
i

(ii) Calculate the weighted error

err (t ) =

∑D
i=1

w (t )
i I

(
yi , д

(t ) (xi )
)

∑D
i=1

w (t )
i

(iii) Calculate α (t )

α (t ) =
1

2

log
*
,

1 − err (t )

err (t )
+
-

(iv) Update data weights using α (t )

w (t+1)
i = w (t )

i · exp

(
−α (t )yi д

(t ) (xi )
)
, i = 1, 2, ..., D

And normalise weights such that

∑D
i=1

w (t+1)
i = 1

end for

3: Prediction is the sign of a weighted prediction of models д(t ) , t = 1, 2, ..., T

f (x) = sign

(∑T
t=1

α (t )д(t ) (x )
)

3.2 AdaBoost as forward stagewise additive modelling

As demonstrated in Hastie et al. (2009), Zhu et al. (2006) and Friedman et al. (2000), boosting

is equivalent to a forward stagewise additive modelling, in which each mini-model is �t

successively, optimising an exponential loss function and encoding the performance of

models already added to the �t in the reweighting of the examples. Here we present the

statistical view of boosting as presented in Hastie et al. (2009).

Why use stagewise additive modelling? In many optimisation problems, �nding the

analytical solution can be very computationally expensive, especially when multiple fea-

ture functions are combined to produce a single optimal model. A solution to this problem

is to approximate the solution to the optimisation problem by proceeding in a forward

additive stepwise fashion, i.e. adding the feature functions one by one without having to

recalculate the coe�cients of the functions already added to the model.

Take a linear regression model f (x), made up of a series of T base functions д(t ) (x ), each

weighted by a coe�cient α (t )
:

f (T ) (x ) =
T∑
t=1

α (t )д(t ) (x ). (3.1)

46



3.2. ADABOOST AS FORWARD STAGEWISE ADDITIVE MODELLING

If the loss function to be minimised is least squares, which for one example is calculated

by

L
(
f (T ) (xi ),yi

)
=

(
yi − f (T ) (xi )

)
2

, (3.2)

the global loss function to be optimised, withD examples andT base functions in the model

is

min

{(д(t ) , α (t ) ), 1≤t≤T }

D∑
i=1

L *.
,

T∑
t=1

α (t )д(t ) (xi ),yi
+/
-
, (3.3)

which amounts to �nding the combination of functions and their associated coe�cient α
that minimise the least squares loss function. For a large number of possible functions,

this calculation necessitates complicated optimisation techniques. A solution is to �t each

function and its coe�cient separately and successively, without modifying the coe�cients

of those already included in the model, but by memorising the residual losses of the ad-

ditive model in order to choose the next best base function. This method is known as a

stagewise (or stepwise) method, because it progressively approaches the minimum of the

loss function as each new base function is added. Therefore at each step, the optimisation

only needs to be performed for one base function д(t ) and its coe�cient α (t )
.

The demonstration is simple: from Equation 3.1, we can see that a model f (T ) (x ) can be

obtained from an addition of the preceding model f (T−1) (x ) (containing basis functions 1 to

T − 1) and theT th base function, weighted by its coe�cient α (T )
, as shown in Equation 3.4.

f (T ) (x ) = f (T−1) (x ) + α (T )д(T ) (x ). (3.4)

From this, we can extend this principle to the calculation of the loss function, by plugging

Equation 3.4 into the loss function in Equation 3.2 as follows:

L
(
f (T ) (xi ),yi

)
=

(
yi −

(
f (T−1) (xi ) + α

(T )д(T ) (xi )
))2

=

(
yi − f (T−1) (xi ) − α

(T )д(T ) (xi )
)

2

,

(3.5)

in which the optimisation uses the residual loss yi − f (T−1) (xi ) (i.e. the loss obtained for

the example using all features already added to the model) to encode the dependency on

already added features. By keeping track of the residual loss of the base functions already

added to the �t, the next function to be added can therefore be more easily computed in

order to approximate the solution to our original optimisation problem in Equation 3.3.

Minimising an exponential loss function. The loss function in the standard binary

AdaBoost is not least squares but the exponential loss function shown in Equation 3.6.

L
(
f (xi ),yi )

)
= exp(−yi f (xi )) (3.6)
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There are two main advantages of using an exponential loss function. The �rst is that it

is easy to derive (see the derivation in Appendix A) and makes it possible to represent the

minimising of loss as a minimisation of the loss of a weighted sample, which results in the

simple AdaBoost algorithm based on weighted updates, as shown in Algorithm 3. This also

means that more weight is given to misclassi�ed examples, which has the e�ect of �nding

classi�ers that concentrate on “hard” examples. The second advantage is the observation

that minimising the exponential loss is equivalent to estimating a logistic regression model

in a stagewise fashion, as demonstrated by Friedman et al. (2000)’s statistical explanation,

which means that it is equivalent to a Bayes classi�er, minimising misclassi�cation error.

AdaBoost is a forward additive model, and as with the minimisation of the least squares

function (discussed in the paragraph ‘Why use stagewise additive modelling?’), the ex-

ponential loss based on the training data can be minimised incrementally by gradually

improving on residual losses. The same additive property as in Equation 3.5 can therefore

be seen for exponential loss as shown in Equation 3.7.

L
(
f (T ) (xi ),yi

)
= exp

(
−yi

(
f (T−1) (xi ) + α

(T )д(T ) (xi )
))

(3.7)

At step T , we are therefore looking for the base function and its coe�cient that minimise

the loss, which is based on the residual loss of the model produced at step T − 1 plus that

of the base function, weighted by its coe�cient, as shown in Equation 3.8.(
α (T ),д(T )

)
= argmin

(α ,д)

D∑
i=1

exp

(
−yi

(
f (T−1) (xi ) + α д(xi )

))

= argmin

(α ,д)

D∑
i=1

exp

(
−yi f (T−1) (xi)

)
exp

(
−yi α д(xi )

)
= argmin

(α ,д)

D∑
i=1

w(T)
i exp

(
−yi α д(xi )

)
(3.8)

The residual loss, shown in red, can be seen as the weight of each example wi , since it is

independent of both д(x ) and α . The weights are updated at each iteration t to encode the

fact that the residual losses of an additive model are taken into account when choosing the

next best feature.

As long as the value of α is positive, we can easily show that

д(T ) = argmin

д

D∑
i=1

w (T )
i I

(
yi , д(xi )

)
, (3.9)

which means that the next best д is the one that minimises the weighted error rate on the

training data.

The function can be derived to calculate the coe�cient of α that minimises the function,

the solution being the half the log odds of the error, as seen in Equation 3.10.

α =
1

2

log

1 − err

err
(3.10)
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The proof behind these two observations is described more fully in Appendix A

3.3 Multi-class AdaBoost

Freund and Schapire (1999) propose a simple extension (AdaBoost-M1) of their original

algorithm to the multi-class case by performing a one-vs.-all binary classi�cation on each

of the classes. The obvious advantage of this method is that the binary AdaBoost can be

used with very little modi�cation. However this has the limitation of constraining weak

learners to having an error rate < 0.5, which for a multi-class case is more challenging than

in the binary case, especially when there a large number of classes.

Here we will study the use of the multi-class variant SAMME (Stagewise Additive Mod-

elling using a Multi-class Exponential loss function), as described in Zhu et al. (2006). This

variant has the advantage, as do several others, of reducing to the standard binary Ad-

aBoost if there are only two classes. What is more, weak learners only need to be better

than random guessing at
1

K where K is the number of classes, rather than the stricter
1

2

necessary for Adaboost-M1.

Algorithm 4 Multi-class (SAMME) AdaBoost (Zhu et al., 2006)

. Data = {(x1,y1), ..., (xD ,yD )}
1: Initialisation of data weights

w (1)
i =

1

D
, i = 1, 2, ..., D

2: for t=1 to T do

(i) Fit classi�er д(t )(x) to data using weights w (t )
i

(ii) Calculate the weighted error

err (t ) =

∑D
i=1

w (t )
i I

(
yi , д

(t ) (xi )
)

∑D
i=1

w−t )i

(iii) Calculate α (t )

α (t ) = log
*
,

1 − err (t )

err (t )
+
-
+ log(K − 1)

(iv) Update data weights using α (t )

w (t+1)
i = w (t )

i · exp

(
α (t ) · I

(
yi , д

(t ) (xi )
))

, i = 1, 2, ..., D

And normalise weights such that

∑D
i=1

wi = 1

end for

3: Prediction is the sign of a weighted prediction of models д(t ) , t = 1, 2, ..., T

f (x) = argmaxk

∑T
t=1

α (t )I
(
д(t ) (x ) = k

)

The algorithm is shown in Algorithm 4. SAMME is in fact very similar to the two-class

AdaBoost (shown in Algorithm 3). A distribution over training examples is kept at each
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round, encoding the exponential loss of previously added weak classi�ers. Apart from the

prediction, which is now an argmax over possible classes, the element that changes is the

calculation of the coe�cient α and the update of weights. The calculation for α for the

multi-class version is now the log odds of the error plus an additional term log

(
K − 1

)
rather than being half the log odds as for the two-class version. As explained in Zhu et al.
(2006), the term log

(
K − 1

)
has theoretical justi�cations. In their explanation, they start

by presenting a notational variant of the two-class AdaBoost, which resembles the multi-

class version and is therefore used as its basis. The �rst step is identifying the notational

equivalence between −yi д
(t ) (xi ) and 2I

(
yi , д

(t ) (xi )
)
− 1. We can therefore change the

weight update in the two-class case to

(3.11) w (t+1)
i = w (t )

i · exp

(
α (t ) · I

(
yi , д

(t ) (xi )
))

, i = 1, 2, ..., D,

which, being half the update of the original version, requires doubling the coe�cient α ,

making the calculation of the coe�cient now the log odds of the error, rather than half the

log odds, as follows:

(3.12) α (t ) = log
*
,

1 − err (t )

err (t )
+
-

This notation has the merit of abstracting away from the two-class case and the use of {+1, -

1}. Now the only di�erence between the two-class case and SAMME is the term log

(
K − 1

)
added to the log odds of the error. The reason behind this addition is that now the weak

classi�er need only have above random classi�cation rate (
1

K ), rather than
1

2
as in Freund

and Schapire’s original extension to the multi-class case. We can see that in the case of a

random classi�er (one with error rate as 1− 1

K ), the coe�cient α is equal to zero. This also

has the advantage of reducing to the two-class algorithm in the case where K = 2.

3.4 Adapting boosting to feature selection for parsing

Ensemble methods such as boosting can be a popular choice for classi�cation tasks because

of their ability to combine weak classi�ers to produce a stronger one, but, as evoked by

Cortes et al. (2014), these traditional methods pose problems for structured prediction, such

as in parsing. Due to the fact that in structured prediction, predicted outputs are sequences

of classes and not individual classes, weak classi�ers are of course evaluated on their ability

to predict the sequence of classes. This means that regardless of the fact that a weak learner

may be a local expert and have very high performances at predicting a certain element of

the sequence, if globally it is not a high performer, it will always lose out to a more globally

successful one. Models that are on average high-performing will therefore always triumph

over those models that could have provided expert local advice. Cortes et al. (2014) try

to solve this problem by using a DAG to represent the individual substructures that make

up the sequence. They keep a weight distribution over paths, enabling the problem to be

reformulated as �nding the best path expert in the DAG. Figure 18 shows a representation

of this DAG for a structured example containing L substructures and p weak hypotheses.

Choosing the best path expert means that it is possible to combine the di�erent predictions
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Figure 18: DAG structure for structured prediction (Cortes et al., 2014)

of each substructure rather than taking a single path for one given weak hypothesis.

However, the e�ective use of ensemble methods for structured prediction is known to be

particularly problematic, notably in terms of calculating optimisation guarantees. In the

case of parsing, several problems arise if we wanted to implement a boosting algorithm for

global optimisation. The �rst is knowing how many di�erent classes to consider, as this

number is necessary to calculate the coe�cient α and to ensure that classi�ers added to the

�nal �t indeed have better than random accuracy. In theory, since classes are sequences

of actions, there can be an in�nite number of classes because sentences are not limited

in length. However this is very impractical and problematic for the algorithm, notably

because there would be no lower limit for the performance of a weak learner. A simple

solution could be to �x the number of classes simply as the number of di�erent sequences

in the training data. In the worst case scenario, the number of classes would be equal to the

number of sentences, and therefore a weak classi�er would be one that is able to correctly

predict at fewest two sequences of actions. This leads to the second problem, which is that

it may be di�cult in some cases to �nd a su�cient number of weak classi�ers, especially

if each weak classi�er is a very small one, containing only one or two features.

Local feature selection and global re�tting. For these reasons, we choose to use

boosting to select features based on a simple local optimisation, for which examples are not

sequences, but simple pairs (xi ,yi ) where xi is a con�guration andyi is an action. A similar

approach by Wang et al. (2007) shows surprisingly good results on English and Chinese

from boosting locally optimised weak parsers (locally trained), but for which the error and

the coe�cient are calculated according to the structured output error. We therefore choose

to perform boosting using a local optimisation with the unique aim of performing feature

selection. We will then use the resulting selected templates to retrain a global model on

the same data to ensure that the model is a good �t for structured prediction. This method,

though an approximation of global optimisation, has the advantage that each weak classi-

�er can be trained much faster due to the fact that fewer training rounds are necessary for

perceptron convergence.
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CHAPTER 4

EXPERIMENTS

4.1 Methods

To evaluate our approach to feature selection by boosting, we shall test and compare the

method to a naive forward wrapper algorithm, concentrating on both e�ciency of the

feature selection and the generalisation performance of the resulting model. Both methods

require the use of additional heuristics to reduce the size of the feature space, and so we

shall test two di�erent heuristics.

The �rst method, our baseline in terms of running time, which we will call method A1, is

the standard forward wrapper method (see Section 2.2.2.2), using a heuristic by regrouping

templates into back-o� style template groups. We expect this method to be high performing

but very ine�cient. It therefore serves as a baseline on which to improve e�ciency and

a target to reach in terms of its generalisation performance. We compare this method

to two methods by boosting: method B1 uses the same template grouping heuristic as

method A1, and method B2 uses an additive search space heuristic. As an approximation

of the optimisation of the standard forward wrapper, we are aiming for generalisation

performances as high as the method A1, but in a much faster running time. The methods

are summarised in Table 3. Both heuristics will be described in further detail below.

Heuristic

Method Template grouping Additive search space

Standard Wrapper A1 -

Boosting B1 B2

Table 3: The three methods tested

Note that method A1 was not tested with the heuristic of an additive search space. The

additive search space uses weak classi�ers with only a single template and the standard

wrapper method relies on a global optimisation, which produces particularly poor and
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sometimes incoherent results when trained on such a weak model. This same e�ect is not

seen however with the local optimisation of the boosting method.

4.2 Data

All methods will be tested using data from the French Treebank (Abeillé et al., 2003), a

corpus of journalistic texts from the French newspaper Le Monde. We use three versions

of the corpus, which we refer to as FTBα , FTBα ≤ 20 and FTBβ .

FTBα and FTBα ≤ 20. The two FTBα sets are derived from the version of the FTB

produced for the 2013 SPMRL shared task (Seddah et al., 2013). The data, used to train

the models presented in Crabbé (2014), contains little morphological information, only the

wordform, the POS-tag and an extra value ‘sword’, short for ‘smoothed word’, in which the

wordform is replaced by a symbol $UNK$ for wordforms with fewer than 2 occurrences in

the corpus. An example of the format can be found in Figure 19. The di�erence between

the FTBα and FTBα ≤ 20 is that FTBα contains all sentences provided for the shared task,

whilst FTBα ≤ 20 is only a subset, containing sentences of 20 tokens or fewer.

word tag sword
<ROOT−head>

<SENT−head>
<VN−head>

Es t V−head Es t
−ce CLS −ce

</VN>
dé j à ADV dé j à

<NP>
l e DET l e
cas NC−head cas

</NP>
<PP>

chez P−head chez
<NP>

l e s DET l e s
<NC+−head>

mar ins NC−head $UNK$
− PONCT −

pê cheur s NC pê cheur s
</NC+>

</NP>
</PP>

? PONCT ?
</SENT>

</ROOT>

Figure 19: An example of the FTBα and FTBα ≤ 20 datasets in the native parser format
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FTBβ. FTBβ contains more morphological features than FTBα and FTBα ≤ 20 and will

allow us to test the hypothesis that extra morphological information can be useful in pars-

ing French. The data is derived from the version of the FTB produced for the 2014 SPMRL

shared task Seddah et al. (2014) and uses the morphological CRF tagger Marmot (Müller

et al., 2013) for a better prediction of POS tags. The dataset contains six lexical columns: the

wordform, the POS-tag and four extra columns: ‘mwe’ indicating multi-word tokens and

their position in the word, using the BIO format, ‘num’ indicating grammatical number,

‘mood’ for grammatical mood and ‘gen’ indicating grammatical gender. This morpholog-

ical information was produced automatically using Marmot, trained on FTB data using a

10-fold jackkni�ng technique (explained in Crabbé (2015)). An example of FTBβ is given

in Figure 20.

word tag mwe num mood gen
<ROOT−head>

<SENT−head>
<VN−head>

Es t V−head O s ind Na
−ce CLS O s Na m

</VN>
dé j à ADV O Na Na Na

<NP>
l e DET O s Na m
cas NC−head O s Na m

</NP>
<PP>

chez P−head O Na Na Na
<NP>

l e s DET O p Na m
<NC+−head>

mar ins NC−head B_NC p Na m
− PONCT I_NC+ Na Na Na
pê cheur s NC I_NC+ p Na m

</NC+>
</NP>

</PP>
? PONCT O Na Na Na

</SENT>
</ROOT>

Figure 20: An example of the FTBβ dataset in the native parser format

Due to the fact that method A1, the baseline in terms of selection time, is particularly inef-

�cient and therefore unfeasible for the complete dataset (both FTBα ad FTBβ), all methods

will be trained and compared on FTBα ≤ 20. Once the model selection is complete, the

resulting templates from each method will be used to retrain a global model on the FTBα
dataset to test the generalisability of the features to more complete data. In addition to

these comparisons, method B2 can also be run on more complete and complex data, since

it is expected to be far more e�cient than the other two methods. Method B2’s perfor-

mance on the FTBα ≤ 20 dataset can therefore be compared to its performance on the

FTBβ dataset.
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4.3 Results

4.3.1 Method A1 (standard forward wrapper with template grouping)

Heuristic: Template grouping. This principle of regrouping features can be extended

to the regrouping of di�erent templates into classes of template. There are di�erent meth-

ods by which this could be possible, but the method we use relies on the fact that templates

contain a certain number of conditions (up to three) and that therefore one template can

therefore be said to subsume another if all conditions in the second are also contained in the

�rst. We refer to these groups as template groups. Each template group initially contains

seven templates: three uni-conditional, three bi-conditional and one tri-conditional tem-

plate. Whilst uni-conditional and bi-conditional templates can belong to several template

groups, the tri-conditional template has a unique membership to a template group and can

therefore be said to de�ne the group. The aim of this regrouping is to include templates in

a back-o� style, with templates with similar conditions in a same group. For example, the

template ‘T[2] = q0.word & q1.word & q2.word’ subsumes the following templates:

T[3] = q0.word & q1.word

T[4] = q0.word & q2.word

T[5] = q1.word & q2.word

T[6] = q0.word

T[7] = q1.word

T[8] = q2.word

Templates 2-8 can therefore be regrouped into a single set of templates, to be selected

all together, thus reducing the number of objects in the search space to the number of

templates with three conditions. As template groups are added to the �nal �t, the uni-

and bi-conditional templates included within it are removed from the remaining template

groups so as not to include a template more than once in the �nal �t.

Feature selection. Method A1 was run for six iterations and stopped manually due to

time constraints. The progression of the feature selector on the FTBα ≤ 20 dataset is

shown in Table 4.

Iter Dev acc Dev acc gain Tpls added Model size Time (hrs) Total time (hrs)

1 0.807 0.807 7 7 68 68

2 0.856 0.049 7 14 221 289

3 0.864 0.008 7 21 277 566

4 0.869 0.005 7 28 297 863

5 0.871 0.002 6 34 301 1163

6 0.872 0.001 5 39 334 1497

Table 4: Model characteristics from method A1 at each round of the feature selector.

We can see that with each iteration, the accuracy on the development set increases by a
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diminishing score each time. The heuristic used is the grouping of templates and for the

�rst four iterations the template group added has the maximum template group size of

seven templates, the �fth iteration adding six templates and the sixth only �ve. Since at

each iteration the model trained increases in size, the time taken to perform each iteration

increases, despite the fact that with each iteration the search space decreases by one tem-

plate group. This is due to the fact that more calculations are necessary for a larger model

and because a larger model takes longer to converge. With this method we approximated

a termination of the perceptron training on convergence by stopping training when the

loss change was below a certain value for �ve consecutive rounds, and in all cases, the

maximum number of perceptron iterations was limited to 35.
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Figure 21: Convergence of loss during perceptron training for method A1 on FTBα data,

shown at each iteration of the feature selector: with 7, 14, 21, 28, 34 and 39 templates.

To test the fact that the larger models take longer to converge, we plot the training logs

of the intermediate and �nal models in Figure 21. We observe that in all cases, perceptron

training drives down the training loss, and more so for larger models. It is interesting to

note that there appears to be little di�erence between the 28-template model and the 34-

template model, perhaps implying that the adding of this �nal template group changes little

in terms of performance. The next round, with 39 templates shows a greater decrease in the

loss, suggesting that the interactions between these templates added and the ones in the

previous round add a greater expressivity to the model. We can also see that smaller models

converge must faster; the smallest model appears to reach convergence after approximately

10 iterations, whereas the three largest models do not appear to have converged even after

75 iterations.
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Accuracy on the development set. We retrained the model produced after each itera-

tion of the feature selection on the FTBα training set, using a global optimisation, a beam

size of 8 and early updates.

F-score with punctuation F-score without punctuation

Iter Size FTBα ≤ 20 FTB≤40 FTBα FTBα ≤ 20 FTB≤40 FTBα
1 7 84.88 75.80 74.05 85.93 79.16 75.80

2 14 87.98 80.57 78.88 88.89 84.12 80.57

3 21 88.98 82.31 80.41 90.00 85.09 82.31

4 28 89.44 83.03 81.28 90.52 85.63 83.03

5 34 89.89 83.50 81.77 91.03 85.95 83.50
6 39 87.73 79.72 79.72 88.91 84.80 81.57

Table 5: Method A1: F-score on the FTBα development set, having retrained the model

produced after each round of the feature selector.

Table 5 shows the F-scores after retraining the model on the FTBα data set using the tem-

plates produced at each step of the feature selector. We see a general increase in F-scores

as the size of the model increases. This is to be expected, since the criterion for adding a

template group is increased accuracy on the development set. However we observe over-

�tting in the �nal iteration, as scores fall for all sets. This is due to the fact that the feature

selection was run on FTBα ≤ 20 data and therefore over�ts when the templates are used

on more complete data. The continued increase on the FTBα ≤ 20 development set is

therefore not a good stopping criteria for the feature selection. Instead, we propose that an

increasing F-score on the full FTBα development set be the continuation criterion for fea-

ture selection. In this case, the best model produced is the 34-template model at iteration

5 with an F-score of 83.50 for FTBα and 85.95 for sentences of 40 tokens or fewer.

Templates in the model. The back-o� style construction of template groups means

that each template group is identi�able by its largest template (the others being subsumed

by this template in terms of the conditions they contain). We therefore summarise the

templates added to the �nal model in Table 6. The full template list can be found in Table 14

in Appendix B.

Iteration Templates added to �nal model

1 q0(word) & s0(t,c,_) & s1(t,c,_)

2 q0(tag) & s0(l,h,tag) & s0(l,h,sword)

3 q1(tag) & s0(r,h,sword) & s1(l,h,tag)

4 q0(sword) & s0(r,h,tag) & s1(t,h,word)

5 s0(t,c,_) & s0(r,c,_) & s1(r,h,word)

Table 6: Method A1: A summary of template groups added at each iteration, as de�ned by

the largest template in each group.

The template group with the highest accuracy on the development set is the group contain-

ing a combination of the conditions ‘q0(word)’, ‘s0(t,c,_)’ and ‘s1(t,c,_)’, which correspond

to the word of the �rst queue element and the constituent types of the top of the �rst two
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stack elements. Also deemed important and so added early on (in the second iteration) are

templates containing a combination of the POS tag of the �rst queue element and the POS

tag and smoothed word of the head of the left child of the top stack element. We can see

that the templates use elements near to the top of the stack and the beginning of the queue,

not going further than two elements on the queue and two elements on the stack.

4.3.2 Method B1 (Boosting with template grouping)

Heuristic: Template grouping. The heuristic used here is the same back-o� style tem-

plate grouping as used for the method A1.

Feature selection. The principal advantage of the boosting method is its increased ef-

�ciency over the standard forward wrapper method. Method B1 is very similar to method

A1 in that the search space is the same and therefore the same number of models need to

be trained to achieve a model of approximately the same size. The di�erence lies in the

speed of training. With method A1, the model trained at each round is a model that in-

creases in size at each iteration and therefore takes longer to converge in training. With

method B1, the models trained remain roughly the same size (with slight �uctuations in

the size of template groups as the feature selection progresses) and therefore convergence

can be guaranteed at a lower number of perceptron iterations. We choose to �x a very low

number of perceptron iterations to reduce the risk of over�tting. We �x the number of per-

ceptrons at 2, which could be considered under�tting, but appears to be su�cient in this

case to make distinctions between the informativeness of features, whilst also decreasing

the time necessary for feature selection. Run on FTBα ≤ 20, the progression of the feature

selection is shown in Table 7.

Iter Tpls added Time (hrs) Total time (hrs)

1 7 6.88 6.88

2 6 6.93 13.81

3 7 5.54 19.35

4 5 6.16 25.52

5 6 6.18 31.69

6 6 5.25 36.94

7 3 5.63 42.57

8 5 5.32 47.89

Table 7: Model characteristics for method B1 at each round of the feature selector.

In terms of e�ciency, method B1 is much faster than A1, with a slightly decreasing time

taken at each round, because the search space decreases by one template group each time.

Due to the fact a constant number of perceptron iterations are done at each round (and

also fewer perceptron iterations in general than for the method A1, the times in general

are greatly reduced, although still in the order of several hours per iteration.
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Accuracy on the development set. We retrained the templates obtained at each round

of the selector using a global optimisation on FTBα , as for method A1. The resulting F-

scores are shown in Table 8. We observe a general, although variable increase in F-scores

up to the 5th round of the feature selector, the highest scores being observed for the model

of size 31, with an F-score of 81.72 for FTBα and 80.43 for sentences of 40 tokens or fewer.

After the 5th round we see a slight decrease in scores, probably a sign of over�tting.

F-score with punctuation F-score without punctuation

Iter Size FTBα ≤ 20 FTB≤ 40 FTBα FTBα ≤ 20 FTB≤ 40 FTBα
1 7 84.88 77.88 73.66 85.93 79.16 75.80

2 13 87.73 83.00 79.33 88.85 84.27 81.07

3 20 87.78 82.90 79.88 88.94 84.17 81.65

4 25 87.43 82.94 79.78 88.59 84.25 81.62

5 31 87.94 83.10 80.05 88.99 84.39 81.72
6 37 87.47 82.65 79.74 88.51 83.92 81.42

7 40 87.70 82.87 79.97 88.71 84.10 81.67

8 45 88.11 82.98 79.83 89.33 84.30 81.58

Method A1 (31 templates) 85.95 83.50

Table 8: Method B1: F-score on the FTBα development set, shown after each round of the

feature selector

What is interesting is the very sharp increase in F-score between the �rst and second it-

erations and the very gradual increase thereof. With only 13 templates, the model scores

81.07 on FTBα , which is higher than the score of 80.57 scored by the method A1 with a

model of 14 templates. However the behaviour of the boosting algorithm is unexpected,

since we would expect accuracies to increase over a larger number of iterations.

Templates in the model. As with method A1, we can summarise the templates in the

model by listing the tri-conditional templates added at each round of the feature selector,

as shown in Table 9. We indicate the templates also selected by method A1 in bold red.

The full template list for this model can be found in Appendix B.2.

4.3.3 Method B2 (Boosting with an additive search space)

Heuristic: An additive search space. The heuristic used here approaches the princi-

ple of template subsumption from the other direction to template grouping. The idea is

to start with a very small search space containing only uni-conditional templates, which

expands to accept bi-conditional and tri-conditional templates as new templates are added.

The approach should in principal favour the addition of smaller templates to the �nal �t,

which could reduce the total number of calculations made. Templates are added to the

search space once the templates containing their conditions have been chosen to be added.

For example ‘T[3] = q0.word & q1.word’ is added once the uni-conditional templates ‘T[6]

= q0.word’ and ‘T[7] = q1.word’ have been added to the �t. The template ‘T[2] = q0.word

& q1.word & q2.word’ can be added only once all three conditions are included in tem-

plates that have been added to the �t. This second heuristic is more extreme than template
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Iteration Templates added to �nal model

1 q0(word) & s0(t,c,_) & s1(t,c,_)
2 q0(word) & s0(t,h,word) & s1(l,h,word)

3 q1(sword) & s0(r,h,word) & s1(t,h,word)

4 q0(sword) & s0(r,h,tag) & s1(t,h,word)
5 q0(sword) & s0(t,c,_) & s1(t,h,word)

6 q0(word) & s0(l,h,word) & s1(r,h,word)

7 q1(word) & s0(r,h,word) & s1(t,h,sword)

8 q0(sword) & s0(t,c,_) & s1(l,h,word)

9 q0(word) & s0(r,h,word) & s1(l,h,sword)

Table 9: Method B1: A summary of template groups added at each iteration, as de�ned by

the largest template in each group. Those that were also added by method A1 are shown

in bold and in red.

grouping in terms of reducing the search space, as it reduces the initial search space to one

that is the same size as the number of possible conditions. It also imposes an order on the

templates added to the model. However it does not suppose that templates must be added

in batches and therefore potentially more re�nement can be made to �nal models as basic

units are feature templates and not template groups.

Feature selection. This method proceeds template by template, selecting the template

with the best weighted accuracy at each round. Each weak model is very small and there-

fore the perceptron tends to converge in a single round. We ran the feature selector on

FTBα ≤ 20 (for a comparison with the previous two methods) and on FTBβ , which con-

tains more morphological information. The time taken to select a feature is very short

(approximately 50 seconds when run on FTBα ≤ 20 and 10 minutes when run on FTBβ)

and therefore the feature selector can be run a larger number of times, even on the more

complete dataset. The feature selector was stopped manually after approximately 100 it-

erations when trained on FTBα ≤ 20 data and stopped automatically after 37 iterations

when trained on FTBβ .

Accuracy on the development set. We retrained the templates produced on the FTBα
dataset (for the feature selection run on FTBα ≤ 20) and on the FTBβ dataset (for the

feature selection run on French SPMRL). Results are shown in Tables 10 and 11.

The results are very poor for the feature selection run on the FTBα ≤ 20 dataset, the best

model for the entire dataset being around 30 templates with an F-score almost 10 points

below the best score achieved by the method B1 and over 11 points below method A1. It

is telling that the best model for parsing FTBα ≤ 20 is the largest model whose results

are shown here (at 50 templates), suggesting that the templates selected are more adapted

to parsing shorter sentences. The best model for the complete data is one which contains

50 templates, but the scores, at 73.47 for FTBα and 77.24 for sentences of 40 tokens or
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F-score with punctuation F-score without punctuation

Size FTBα ≤ 20 FTB≤ 40 FTBα FTBα ≤ 20 FTB≤ 40 FTBα
10 82.18 74.96 71.06 83.27 76.24 72.73

20 81.59 74.65 70.98 81.59 76.03 72.70

30 81.23 74.92 71.18 81.23 76.38 72.89

40 81.63 74.74 70.94 81.63 76.19 72.72

50 81.33 75.26 71.77 81.33 77.24 73.47
Method A1 (34 templates) 85.95 83.50

Method B1 (31 templates) 80.93 81.72

Table 10: Method B2: F-score on FTBα , shown after each 10 rounds of the feature selector

F-score with punctuation F-score without punctuation

Size FTBβ ≤40 FTBβ FTBβ ≤40 FTBβ
5 77.26 72.92 78.56 74.64

10 79.55 75.82 80.89 77.52

15 79.55 75.97 80.91 77.80

20 80.21 76.40 81.66 78.17

25 80.55 77.24 82.08 79.18

30 81.34 77.78 82.81 79.71

37 82.01 78.47 83.41 80.21
Method A1 (34 templates) 85.95 83.50

Method B1 (31 templates) 80.93 81.72

Table 11: Method B2: F-score on FTBβ , shown after approximately 5 rounds each time.

fewer, are far inferior to the scores obtained for the preceding two methods. The scores

appear erratic as the model grows in size, suggesting that the feature selection was not

very successful in this case.

The same method, when run on the complete dataset (FTBβ), produces more encouraging

results. The best model is the one containing all 37 templates, with an F-score of 80.21

for all data and 83.41 for sentences of 40 tokens or fewer. We can hypothesise that the

boosting method functions better when run on complete data. This is supported by the

fact that the performance on the FTBα ≤ 20 dataset is similar to that of the model run

on the smaller dataset, but the model obtained from feature selection on complete data

produced far superior scores on the full dataset.

Templates in themodel. Since the templates are not added by groups and are therefore

not easily summarisable, we choose not to list the templates here in the best model. The

complete model can be found in Appendix B.3. Here we will simply evoke the characteris-

tics of the templates added. In total there were 8 uni-conditional, 10 bi-conditional and 18

tri-conditional templates, which is far more tri-conditional templates than with the heuris-

tic by template grouping. The only lexical values instantiated were related to the word (i.e.
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no morphological information was used in the model). Three elements of the queue were

used and two elements from the stack. The constituent labels of the stack were used for

the top element of the �rst and second stack elements and for the left daughter of the �rst

stack element.

It is surprising that no extra morphological information was used in the chosen templates.

This could either be linked to the slightly strange behaviour of the boosting algorithm,

evoked brie�y in the results of method B1 and discussed in more detail in Section 4.5, or

to the fact that individually, the lexical information is too weak to be selected. It could

be that a combination of these morphological values, and therefore a grouping of tem-

plates, is necessary to take into account their ability to co-predict
1
. This was not possible

with this method due to the fact that additive forward selection does not function well for

co-predictors and especially that the heuristic used does not allow the addition of multi-

conditional templates before the uni-conditional templates they subsume are added.

4.4 Analysis

4.4.1 Model performance during the feature selection

Given that method B2 did not select any extra morphological values, despite the fact that it

was trained on the FTBβ dataset, both B2 results can be compared against those obtained

from methods A1 and B1. Figure 22 shows the progression of the F-scores on the devel-

opment set for the models constructed with each method A1, B1 and B2. Two di�erent

models are shown for method B2, one for which feature selection was performed on the

FTBα ≤ 20 dataset and the other for which it was performed on the FTBβ dataset.

4.4.2 Generalisation performances

The performances of the best model for each method, tested on FTBα and FTBFTBβ test

sets, are shown in Table 12 and compared with results from two state-of-the-art models, the

Berkeley parser (Petrov et al., 2006) and the manually chosen model presented in (Crabbé,

2014). The method A1 achieves the best score at 2 points higher than the manually selected

model. The boosting method B2, run on the FTBβ data, produces a slightly lower score,

equalling the score obtained by the Berkeley parser.

4.4.3 E�ciency of feature selection

Although the boosting method achieves slightly lower scores, it shows a huge increase in

e�ciency as shown by the cumulative selection times shown in Figure 23. Whilst method

1
Co-predictors are units that do not necessary perform well individually but when combined are high

performers.
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Figure 22: The F-scores for the development set for each method, shown relative to the size

of the model selected

Parser Run on F (FTB≤40) F (FTBα ) Rank

Berkeley (Petrov et al., 2006) - 83.16 80.73 4

Manual model (Crabbé, 2014) - 84.33 81.43 3

Method A1 (34 templates) FTBα ≤ 20 86.27 83.43 1

Method B1 (31 templates) FTBα ≤ 20 84.78 81.81 2

Method B2 (50 templates) FTBα ≤ 20 75.16 71.76 6

Method B2 (37 templates) FTBβ 83.84 80.73 4

Table 12: A comparison of model scores on FTB data using the best models produced by

each method. Scores are given without taking into account punctuation.
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Figure 23: The cumulative time taken for each feature selection method, shown against the

increasing size of the model

A1 shows an increasing selection time at each round, the boosting method (both B1 and

B2) demonstrate a quasi-constant selection time at each round, B2 being the most feasible

method for large, high-dimensional datasets.

4.4.4 Descriptive analysis of model templates

To get an insight into what sort of information each model uses, we present here in Fig-

ure 24 the positions and lexical values instantiated by the best model for each method,

highlighting in red the con�guration positions used in the feature templates that make up

each model.

We observe that method A1 uses more lexical values and all three types of values avail-

able, whereas method B1 uses far fewer. Method B2, trained on di�erent data does not use

any other morphological values other than the word. All models use the �rst two queue

elements, the constituent label for the topmost of the top stack element and lexical infor-

mation relative to the heads of the left daughter of the second topmost stack element and

of the right daughter of the topmost stack element. This could indicate the importance

of these particular elements in capturing generalisations, although a careful and thorough

investigation of why these elements in particular are statistically pertinent is necessary

before any real conclusions can be drawn.
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Stack Queue

s2.ct [s2.wt ]

s1.ct[s1.wt]

s1.cl [s1.wl] s1.cr [s1.wr]

s0.ct[s0.wt]

s0.cl [s0.wl] s0.cr[s0.wr]

q0 q1 q2 q3

Lexical values:

word: s1.th , s1.rh and q0

tag: s0.lh , s0.rh , s1.lh , q0 and q1

sword: s0.lh , s0.rh , q0 and q1

(a) A summary of templates used for the method A1 using 34 templates.

Stack Queue

s2.ct [s2.wt ]

s1.ct [s1.wt]

s1.cl [s1.wl] s1.cr [s1.wr ]

s0.ct[s0.wt]

s0.cl [s0.wl ] s0.cr [s0.wr]

q0 q1 q2 q3

Lexical values:

word: s0.th , s0.rh , s1.lh and s1.th
tag: s0.rh
sword: s0.th , q0 and q1

(b) A summary of template positions used for the method B1 using 31 templates

Stack Queue

s2.ct [s2.wt ]

s1.ct[s1.wt]

s1.cl [s1.wl] s1.cr [s1.wr ]

s0.ct[s0.wt ]

s0.cl[s0.wl ] s0.cr [s0.wr]

q0 q1 q2 q3

Lexical values: word: s0.rh , s1.th , q0, q1 and q2

(c) A summary of template positions used for the method B2 (FTBβ) using 37 templates

Figure 24: A comparison of con�guration elements used in the models resulting from each

method
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4.5 Analysis of the boosting approach

The boosting approach in its current state produces slightly lower scores than the standard

forward wrapper, even when run on more complete data. It is clearly advantageous in terms

of its e�ciency, which means that it can be realistically used on very high-dimensional

data. However the behaviour of the boosting algorithm is not quite as expected. Although

we observe a general increase in generalisation accuracy in the model produced at each

round of the feature selector (until over�tting occurs), the exponential loss at each round

does not decrease as expected. For example, Table 13 illustrates the full details of the feature

selector for method B1 and we can see that the loss function does not decrease at each

round.

Iter Loss Templates added Time (hrs) Total time (hrs)

1 161394 7 6.88 6.88

2 161527 6 6.93 13.81

3 161512 7 5.54 19.35

4 161408 5 6.16 25.52

5 161420 6 6.18 31.69

6 161433 6 5.25 36.94

7 161395 3 5.63 42.57

8 161401 5 5.32 47.89

9 161402 5 5.13 53.02

Table 13: Model characteristics and results for method B1 at each round of the feature

selector.

Figure 25, a plot of the boosted prediction accuracy for both training and development sets,

shows that it is erratic in both cases and even appears to globally decrease. We observe

that the boosted prediction accuracy (the weighted prediction of all weak learners added

to the �nal model, tested on the training and development sets) is not indicative of the �nal

score of the model once it has been retrained on global data. However we would expect to

see a general trend of increasing accuracy over time. The second iteration often displays

a decrease in boosted prediction accuracy. The reason for this is that if the second learner

added has a higher coe�cient than the �rst (because it is based on weighted error), its

prediction will dominate over the �rst. Since the �rst weak learner added is necessarily

the superior one in terms of prediction, as it was selected �rst, the boosted accuracy will

necessarily be lower in the second round, since it will be entirely based on the predictions

of the second model. In later rounds we see that boosted accuracy appears to decrease and

to converge to around 35%, which is incidentally the percentage of actions that belong to

the most common class of action ‘shift’. A look at the individual predictions made by each

of the weak classi�ers for individual examples reveals that a majority of models predict

‘shift’. This means that after a certain number of these classi�ers are added, the action

‘shift’ will almost always receive the highest weighted vote and the boosted accuracy is

bound to converge to the same percentage as the percentage of ‘shifts’ in the corpus. We

would nevertheless expect the boosting algorithm to succeed in choosing weak classi�ers

to target particular lacunas and not to concentrate on the most common action.
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Figure 25: The boosted prediction accuracies for the FTBβ train and development sets for

method B2.

We have several possible explanations for this strange behaviour and hope that further

investigations in later work will provide a solution to the problem, improving the results

of the feature selector in the meantime. The �rst possibility is an implementation problem,

which must be considered alongside other hypotheses. However there could also be more

theoretical explanations, namely the fact that feature selection is done using local optimi-

sation, the properties of the dataset and the properties of the mini-classi�ers added at each

step.

Many of these ideas can be linked to the insu�cient capacity of the weak learners to ensure

AdaBoost’s guarantees, and further work needs to be done to de�ne what properties these

weak learners must have to do so.

SAMME’s guarantees. Although Zhu et al.’s (2006) multi-class algorithm (SAMME) has

theoretical guarantees as long as the weak classi�ers have a weighted error above random

error (
1

K ), in practice, this condition appears to be too weak, a point that is also mentioned

in Mukherjee and Schapire (2011). It appears that the algorithm is not always guaranteed to

drive down the training error, especially if the weak classi�ers have an error very close to

random. In their article, Zhu et al. demonstrate their algorithm on a three-class simulation

sample, whereas we have a situation in which there are over a hundred classes. They

run the feature selector for 600 rounds, far longer than our experiments here, which could

explain why we do not see a general trend as they do. Their experiments show a very spiked
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curve representing the decreasing test error, showing that the test error does not always

decrease between successive rounds, something that we too observe. It is possible that the

threshold they mention is theoretically sound but insu�cient for a practical application,

unless the algorithm is run a very large number of times. In our case, it is important

not to have to run the feature selector a large number of times because we prefer model

compactness. We therefore need to choose an empirically acceptable threshold, which we

can be sure will guarantee the training loss to decrease, even when run for a relatively

low number of rounds and with a high number of classes. This can be made possible

by examining the properties of the data to �nd the true random error weight, given the

noisiness of the data and the class imbalances.

4.5.1 Properties of the weak learners.

Aside from the threshold for de�ning a weak learner, which appears not to be su�ciently

restrictive, we can also examine the properties of our weak learners to decide why they are

too weak in the �rst place. The point is demonstrated in particular by the fact that method

B2, run on FTBβ , stopped naturally after 37 rounds. This indicates that there were no more

templates that had a high enough accuracy after the 37th round according to the threshold

set by Zhu et al..

Strength of weak learners. Individual templates appear to be too weak for boosting

to work as expected. We would have expected the method B2 to have produced a better

model than method B1, given that the basic units are feature templates rather than template

groups and there is a potentially a greater capacity to �ne-tune the model. However what

we observe is the opposite: the best model produced by B2 is one with 37 templates and

a lower score than the best model produced by B1 with only 31 templates. This suggests

that grouping templates into mini-parsers that act as weak learners functions better than

using templates individually as with the additive search space heuristic.

Co-predictors. The additive search space heuristic also poses a problem for co-predictors,

since templates cannot be added in groups and therefore only individually high-performing

templates can ever be added to the model. Half of the templates added to the best model

produced by method B2 were tri-conditional templates and the method appeared to add

the multi-conditional templates as soon as they were made available. This suggests that

these multi-conditional templates were almost always individually stronger than ones with

fewer conditions. This also provides a plausible explanation for the lack of morphology in

the templates added. If each template using a morphological attribute is individually too

weak to be added to the model, the multi-conditional templates containing these morpho-

logical attributes, which stand a better chance of being strong enough, are never added to

the search space, according to the heuristic de�ned. What is more, the individual templates

can never be added in batches because templates are added one by one.
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4.5. ANALYSIS OF THE BOOSTING APPROACH

Avoid over�tting. Another observation is the fact that in both methods B1 and B2, the

results appear better when weak learners are trained using a very small number of percep-

tron iterations. We observe that the learners over�t very rapidly, especially in method B2

where the weak learners are individual templates, and a more thorough work into deter-

mining the optimal number of iterations is necessary.

4.5.2 Conclusion and perspectives

There are therefore several paths that need to be explored to improve the method by boost-

ing, which is already very promising in terms of e�ciency and produces reasonably high

scores when tested on French data. Two hyperparameters need to be investigated: i) the

empirical threshold needed to ensure proper functioning of the multi-class AdaBoost algo-

rithm and ii) the e�ect the number of perceptron iterations performed during training has

on the feature selection. This is especially linked to the fact that the perceptron is known

to over�t if run for too many iterations. However to ensure that weak learners are strong

enough to perform higher than the more constraining threshold that will be �xed, and to be

able to take into account co-predictors, the heuristics will have to be re�ned. Whilst tem-

plate grouping appears to perform better than the additive search space heuristic, it does

not reduce the search space enough to be able to perform an e�cient feature selection,

especially on data containing more morphological attributes. It is therefore not possible

to use this heuristic to test our hypothesis on more morphologically rich languages than

French. However the additive search space heuristic is far too constraining in that indi-

vidual templates are too weak to be selected, and the method fails to take into account co-

predictors. We propose to further study these heuristic methods to produce one in which

templates are grouped to allow for co-predictors and to ensure su�ciently strong weak

learners. However the method will have to regroup templates di�erently from the back-o�

style grouping presented here in order to reduce the search space to a greater extent. One

option is to rely on the order of elements in the stack and the queue to �rst use templates

closest to the focus tokens before adding templates that use more distant elements, as in

Nilsson and Nugues (2010). Another option is to perform an initial �t of the templates to

establish an order between them, which could be used to group the templates and to guide

the search of the feature space. Finally, we propose to develop a way of integrating default

templates into the initial model, as in Ballesteros and Nivre (2014) in order to accelerate

the initial steps of the feature selection process. This step can also be considered a way

of integrating linguistic intuitions into the feature selection process. Although linguistic

intuitions are a too complex way of accurately selecting an optimal subset of individual

templates, they are in some cases su�cient for identifying general trends of positions and

of values that might be useful. If this information is provided, it can be used to limit the

feature space and to guide the feature selection process.

69



CHAPTER 5

CONCLUSIONS AND FUTURE WORK

We have proposed a new approach to feature selection for syntactic parsing, designed

to handle lexically rich (and therefore high dimensional) data. We have seen that using

boosting for feature selection has the advantage over state-of-the-art methods of being

very e�cient, taking a constant time at each iteration of the feature selector. It therefore

has the merit of being more generalisable to larger and more complex datasets, without

falling into the trap of the curse of dimensionality.

The results on French data show that the method can currently produce comparable re-

sults to carefully selected manual models, such as the one presented in Crabbé (2014). We

hope to improve on these scores in later work by testing the practical limits of the SAMME

algorithm, which currently appear to be too weak in our case, and by adjusting the heuris-

tics used to de�ne the feature space to ensure weak learners are su�ciently strong. In

terms of morphology, we have not yet been able to test our hypothesis that added lexical

information can aid parsing, due to the fact that our method is currently a poor selector

of co-predictors and the heuristic used on the complete data is too constraining for these

particular attributes. The two heuristics, template grouping and an additive search space,

will need to be replaced by a method capable of reducing the feature space, but without im-

posing the same strong constraints as the additive search space heuristic. We will use the

results of our experiments and inspiration from heuristic methods used in the literature to

design an adapted heuristic method. We also envisage the possibility of re-integrating lin-

guistic intuitions into this heuristic, by allowing the integration of underspeci�ed template

classes to guide the search.

Having achieved promising (although clearly improvable) results on French data, we plan

to test our method on typologically varied data, for which more morphological information

is provided. We are con�dent that our approach, unlike alternative approaches, is capable

of handling this high-dimensionality, and we also hope to test our hypothesis that using

extra morphological information can improve parsing performances for these languages.
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APPENDIXA

ADABOOST

A.1 Explaining the use of Adaboost’s exponential loss
function (two-class)

Finding the base function and its coe�cient that minimise the loss can be performed in

two steps, by �rst solving the function for д(T ) and then by using the formula obtained to

calculate the optimal value for α .

To calculate the base function that minimises the exponential loss, let us revisit Equa-

tion 3.8.(
α (T ),д(T )

)
= argmin

(α ,д)

D∑
i=1

w (T )
i exp

(
−yi α д

(T ) (xi )
)

(3.8 abridged)

For any value of α > 0, д(T ) can be expressed as follows:

д(T ) = argmin

д

D∑
i=1

w (T )
i exp

(
−yi α д(xi )

)
(A.1)

Since this is the two-class case, the value of y (and therefore д) is in {1,−1} and so we

can separate the examples that were correctly classi�ed from those that were incorrectly

classi�ed and redistribute the equation as follows:

= argmin

д
eα

∑
yi,д(xi )

w (T )
i + e−α

∑
yi=д(xi )

w (T )
i (A.2)

= argmin

д
eα

D∑
i=1

w (T )
i I(yi , д(xi )) + e−α

D∑
i=1

w (T )
i I(yi = д(xi ))

= argmin

д
eα

D∑
i=1

w (T )
i I(yi , д(xi )) + e−α

D∑
i=1

w (T )
i − eα

D∑
i=1

w (T )
i I(yi , д(xi ))

(A.3)
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A.1. EXPLAINING THE USE OF ADABOOST’S EXPONENTIAL LOSS FUNCTION

(TWO-CLASS)

= argmin

д

(
eα − e−α

) D∑
i=1

w (T )
i I(yi , д(xi )) + e−α

D∑
i=1

w (T )
i (A.4)

By reducing the terms in this expression that do not e�ect the minimum д, we can see that

the chosen base function that minimises the loss is the one that has the lowest weighted

error on the training set, as shown in Equation A.5

д(T ) (x ) = argmin

д

D∑
i=1

w (T )
i I

(
yi , д(xi )

)
, (A.5)

This last expression obtained can now be used in Equation A.4 to calculate the coe�cient

that minimises the loss. We can divide by a constant factor

∑D
i=1

w (T )
i to simplify the for-

mulation, without altering the minimum value:

(
α (T ),д(T ) (xi )

)
= argmin

д

(
eα − e−α

) ∑D
i=1

w (T )
i I(yi , д(xi ))∑D
i=1

w (T )
i

+ e−α , (A.6)

and if we consider

∑D
i=1

w
(T )
i I(yi,д(xi ))∑D
i=1

w
(T )
i

to be the weighted error err on the training data, this

can be simpli�ed as follows:(
α (T ),д(T ) (xi )

)
= argmin

д

(
eα − e−α

)
· err + e−α , (A.7)

The coe�cient α that minimises the loss can now be calculated by deriving this function

f : α 7→
(
eα − e−α

)
· err + e−α as illustrated in Equation A.8.

df

dα
=

d

dα

(
eα − e−α

)
err + e−α

= eαerr + e−αerr − e−α

= e−αe2αerr + e−αerr − e−α

= e−α
(
e2αerr + err − 1

) (A.8)

Let us now seek the value of α for which the following equality stands:

e−α
(
e2αerr + err − 1

)
= 0

e2αerr + err − 1 = 0

e2αerr = 1 − err

e2α =
1 − err

err

α =
1

2

log

1 − err

err

(A.9)
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APPENDIXB

FINAL MODELS

B.1 Method A1

Iteration Templates added to �nal model

1

q0(word)

q0(word) & s0(t,c,_)

q0(word) & s0(t,c,_) & s1(t,c,_)

q0(word) & s1(t,c,_)

s0(t,c,_)

s0(t,c,_) & s1(t,c,_)

s1(t,c,_)

2

q0(tag)

q0(tag) & s0(l,h,tag)

q0(tag) & s0(l,h,tag) & s0(l,h,sword)

q0(tag) & s0(l,h,sword)

s0(l,h,tag)

s0(l,h,tag) & s0(l,h,sword)

s0(l,h,sword)

3

q1(tag)

q1(tag) & s0(r,h,sword)

q1(tag) & s0(r,h,sword) & s1(l,h,tag)

q1(tag) & s1(l,h,tag)

s0(r,h,sword)

s0(r,h,sword) & s1(l,h,tag)

s1(l,h,tag)

4

q0(sword)

q0(sword) & s0(r,h,tag)

q0(sword) & s0(r,h,tag) & s1(t,h,word)

q0(sword) & s1(t,h,word)

s0(r,h,tag)

s0(r,h,tag) & s1(t,h,word)

s1(t,h,word)

5

s0(t,c,_) & s0(r,c,_) s0(t,c,_) & s0(r,c,_) & s1(r,h,word) s0(t,c,_) &

s1(r,h,word) s0(r,c,_) s0(r,c,_) & s1(r,h,word) s1(r,h,word)

Table 14: Method A1: The templates added after each round of the feature selector. We

present only the �rst �ve rounds here, as this was the best model produced.
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B.2. METHOD B1

B.2 Method B1

Iteration Templates added to �nal model

1

q0(word)

q0(word) & s0(t,c,_)

q0(word) & s0(t,c,_) & s1(t,c,_)

q0(word) & s1(t,c,_)

s0(t,c,_)

s0(t,c,_) & s1(t,c,_)

s1(t,c,_)

2

q0(word) & s0(t,h,word)

q0(word) & s0(t,h,word) & s1(l,h,word)

q0(word) & s1(l,h,word)

s0(t,h,word)

s0(t,h,word) & s1(l,h,word)

s1(l,h,word)

3

q1(sword)

q1(sword) & s0(r,h,word)

q1(sword) & s0(r,h,word) & s1(t,h,word)

q1(sword) & s1(t,h,word)

s0(r,h,word)

s0(r,h,word) & s1(t,h,word)

s1(t,h,word)

q0(sword)

4

q0(sword) & s0(t,c,_)

q0(sword) & s0(t,c,_) & s1(t,h,word)

q0(sword) & s1(t,h,word)

s0(t,c,_) & s1(t,h,word)

q0(word) & s0(l,h,word)

q0(word) & s0(l,h,word) & s1(r,h,word)

5

q0(word) & s1(r,h,word)

s0(l,h,word)

s0(l,h,word) & s1(r,h,word)

s1(r,h,word)

q1(word)

q1(word) & s0(r,h,word)

q1(word) & s0(r,h,word) & s1(t,h,sword)

Table 15: Method B1: The templates added after each round of the feature selector.

74



B.3. METHOD B2 - FTBβ

B.3 Method B2 - FTBβ

Iter Templates added Iter Templates added

1 s0(t,c,_) 20 q1(word) & s0(t,c,_) & s0(r,h,word)

2 s1(t,c,_) 21 s1(t,h,word)

3 s0(t,c,_) & s1(t,c,_) 22 q1(word) & s0(r,h,word) & s1(t,h,word)

4 q0(word) 23 s0(r,h,word) & s1(t,h,word)

5 q0(word) & s0(t,c,_) & s1(t,c,_) 24 q2(word) & s0(r,h,word) & s1(t,h,word)

6 q0(word) & s1(t,c,_) 25 q0(word) & s0(r,h,word) & s1(t,h,word)

7 q1(word) 26 s0(t,c,_) & s0(r,h,word) & s1(t,h,word)

8 q0(word) & q1(word) & s1(t,c,_) 27 s0(t,c,_) & s0(r,h,word)

9 q1(word) & s0(t,c,_) & s1(t,c,_) 28 q0(word) & s1(t,c,_) & s1(t,h,word)

10 s0(r,h,word) 29 s0(t,c,_) & s1(t,c,_) & s1(t,h,word)

11 q0(word) & s0(r,h,word) & s1(t,c,_) 30 q2(word) & s1(t,c,_)

12 q1(word) & s0(r,h,word) 31 s0(t,c,_) & s1(t,h,word)

13 q1(word) & s0(r,h,word) & s1(t,c,_) 32 s0(r,h,word) & s1(t,c,_)

14 q0(word) & q1(word) & s0(r,h,word) 33 q0(word) & s0(t,c,_)

15 q2(word) 34 q1(word) & s1(t,c,_)

16 q1(word) & q2(word) & s0(r,h,word) 35 s0(l,c,_)

17 q2(word) & s0(t,c,_) & s1(t,c,_) 36 s0(t,c,_) & s0(l,c,_) & s1(t,c,_)

18 s0(t,c,_) & s0(r,h,word) & s1(t,c,_) 37 s0(l,c,_) & s1(t,c,_)

19 q0(word) & q2(word) & s1(t,c,_)

Table 16: Method B2: The templates added after each round of the feature selector.
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