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Abstract—Cable-driven parallel robot (CDPR) are par-

allel robots that use coilable cables as legs. We are inter-

ested here in suspended CDPR for which there is no cable

that exert a downward force on the platform. If we assume

that the cables are mass-less and not elastic it has been

shown that at a given pose whatever is the number m > 6
of cables there will always be at most 6 cables under ten-

sion simultaneously. A cable configuration (CC) at a given

pose is the set of cables number that are under tension and

usually there are several possible CC for the same pose.

These CC are not equivalent in terms of cable tensions, sen-

sitivity to measurement errors and therefore it make sense

from a control viewpoint to enforce the ”best” CC to ob-

tain the optimal robot configuration, which can be done by

controlling the length of the cables that are not members

of the CC so that we are sure that they are slack. Hence

we are interested in ranking the different CC in term of ro-

bustness. We propose several ranking indices for a CC and

algorithms to calculate these indices at a pose, on a tra-

jectory or when the robot moves on a surface and we show

examples for a CDPR with 8 cables.

Keywords: cable-driven parallel robots,cable configurations,

kinematics,statics

I. Introduction

Cable-driven parallel robot (CDPR) are robots whose

platform are connected to the ground by a set of cables

that can be uncoiled or coiled. The study of CDPR has

started about 30 years ago with the pioneering work of Al-

bus [2] and Landsberger [16] but there has been recently

a renewed interest in such a robot, both from a theoretical

and application viewpoint. For example kinematics analy-

sis of CDPR is much more complex than the one of parallel

robot with rigid legs as static equilibrium has to be taken

into account [5], [14], [32] and is still an open issue espe-

cially as not all cables of a robot with m cables may be

under tension [1], [3], [8], [6], [25] and that only stable so-

lutions have to be determined [7]. Numerous applications

of CDPRs have been mentioned e.g. large scale mainte-

nance studied in the European project Cablebot [26], rescue

robot [31], [22] and transfer robot for elderly people [19] to

name a few.

The output point of the coiling mechanism for cable i

∗Jean-Pierre.Merlet@inria.fr

will be denoted Ai while this cable is attached at point Bi

on the platform. We define an absolute frame (O,x,y, z)
and we assume that the coordinates of Ai in this frame

are known. In the same manner we define a mobile frame

(C,xr,yr, zr) that is attached to the platform (figure 1).

Without lack of generality C will be assumed to be the cen-

ter of mass of the platform with coordinates (xc, yc, zc). We

assume that the coordinates of Bi in the mobile frame are

known.
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Fig. 1. A suspended CDPR

The proprioceptive measurement on such a robot is usu-

ally the cable lengths as other physical quantities such as

orientation of the cables or their tensions are difficult to

measure and are very noisy. The kinematic analysis of such

robot is drastically influenced by the cable model that is

used. We will assume here that the cables are mass-less and

non deformable (which is a realistic assumption for some

synthetic cables as soon as the size of the CDPR is not too

large). We will also assume that the number of cables is

larger than 6 in order, for example, to enlarge the size of

the CDPR workspace. In this paper we consider a specific

class of CDPR: suspended CDPR for which there is no ca-

ble that can exert a downward force, gravity being used as a

virtual wire that is pushing the platform downward. In that

case it has been shown that there will be at most 6 cables

under tension at the same time [21]. The length of the cable

will be denoted ρi and if it is not slack its positive tension

will be τi. We will assume that the platform is submitted to

gravity only so that the wrench F applied on the platform
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is {0, 0,−mg, 0, 0, 0}where m is the mass of the platform.

Let S be a sextuplet of cables that may support the platform

at a given pose X. The inverse jacobian matrix of the robot

for this sextuplet will be denoted J−1 while τ will be the

vector of the cable tensions. The sextuplet will support the

platform if

ρi = ||AiBi|| ∀ i ∈ S ρi > ||AiBi|| ∀ i 6∈ S (1)

which indicates that the length of the cables under tension

shall be exactly the distance between Ai, Bi while for the

slack cables this length should be larger than this distance.

At the same time the sextuplet should satisfy the mechani-

cal equilibrium condition

F = J−Tτ (2)

with τ having only positive components. In this equation

J−T is the transpose of the inverse jacobian matrix whose

i-th column is

((
AiBi

ρi

CBi ×AiBi

ρi
))

where C is the center of mass of the platform.

For a given pose there will be usually several sextuplets

of cables that satisfy equations (1,2), that will be called

valid cable configurations (CC). Each of the valid cable

configuration exhibits a different set of tensions in the ca-

bles together with different kinematics capabilities. Note

that even a perfect knowledge of the cable lengths it is im-

possible to determine what is the current cable configura-

tion as it depends on the history of the system [21] and that

a cable configuration may have from 1 to 6 cables.

From a control viewpoint the concept of cable configu-

ration is usually ignored although it has a high influence on

the behavior of the robot. An alternative for a trajectory

has been proposed in [27]: instead of being passive with

respect to the cable configuration the trajectory is split in

several parts for each of which a specific cable configura-

tion is chosen and is guaranteed to be reached by imposing

on the cables that are not part of the cable configuration to

be slack, this being obtained by choosing as desired length

value ||AiBi|| + ∆ρ where ∆ρ is large enough to ensure

that in spite of the control and model errors the cable length

ρ will be larger than ||AiBi||. Clearly whenever possible

the selected CC should have 6 cables under tension to en-

sure full controlability of the robot.

The purpose of this paper is to propose criterion to deter-

mine the best CC with 6 cables under tension. The purpose

of these criterion will be basically to state how much we

may disturb the robot (in different meanings) while keep-

ing it in the same CC. However these criterion do neither

take into account the mechanical stability of the platform

which is another topic [4], [7] or its dynamics [9], [33].

II. Ranking criteria for cable configuration

A. Determining the valid cable configurations

For a given pose it is easy to determine all valid CC with

6 cables: we consider each possible CC, solve the linear

system (2) and store as valid CC only the one with pos-

itive tensions for all cables. For a time-dependent trajec-

tory which is described by time functions we have exhib-

ited an algorithm that allow to determine time intervals (and

therefore part of the trajectory) for which a given CC is

valid [17]. As an example we consider a circular trajectory

for the robot that will be presented in section IV-A and fig-

ure 2 shows the circular arcs for which the various CC are

valid.
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Fig. 2. The possible CC on a circular trajectory. The arc have the same

radius but have been enlarged in order to show the different CC

B. First criteria for selecting the CC

Possible criterion for selecting the best CC may be based

on kinematic properties. For example we may consider both

for a pose, a trajectory or a surface:

• the minimum of the maximum of the cable tensions

• the minimum of the maximum positioning error. Assum-

ing bounded errors ∆ρ on the measurements of the ρ we

may evaluate their effects on the positioning errors ∆X by

using the relation ∆ρ = J−1∆X

However we may adopt another point of view which is more

related to the size of the disturbance that we may apply on

the robot at a nominal pose with the CC being still valid.

B.1 For a pose

For a pose we propose as ranking criteria for the ro-

bustness of a CC the minimal radius of the singularity-free

sphere centered at the pose X0 for which the CC is valid for

any point included in the sphere under the assumption that
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the platform orientation is constant. This ranking criteria

clearly characterize how much it is possible to move away

from the current pose while keeping the same CC.

We define a pose on the sphere as

X = X0 + ru

where r is the sphere radius and u an arbitrary unit vector.

The tension of cable i is established with Cramer’s theorem

as

τi =
|J−T

i |
|J−T|

where J−T
i is the matrix obtained by substituting column i

of J−T by the wrench F . Consequently a pose will lie on

the sphere with maximal radius if one of the two following

condition hold:

1. |J−T
i | = 0

2. |J−T| = 0
These conditions may be simplified. Indeed consider the

matrix M that is obtained by removing the ρ in the de-

nominator of the elements of J−T. It is easy to show that

|J−T| = |M|/∏j=6

j=1
ρj . Therefore the determinant of J−T

cancels at the same place than the determinant of M and

both determinants have the same sign as the ρ are positive.

Hence this matrix can be used in place of J−T. A similar

reasoning may be used for |J−T
i |. With this simplification

and under our constant orientation assumption an analytic

form may be obtained both for |J−T
i | and |J−T|. We will

consider each condition separately. For the first condition

we have to determine in turn for each cable the maximum

of r under the constraints |J−T
i | = 0 and ||u|| = 1. To

solve this optimization problem we define the Lagrangian

function H

H = r + α|J−T
i |+ β(||u|| − 1) (3)

If the components of u are (X1, X2, X3) the maximum of

r will be obtained if

∂H

∂r
= 0

∂H

∂α
= 0

∂H

∂β
= 0

∂H

∂Xi

= 0 ∀i ∈ [1, 3] (4)

which is a square system of 6 equations. We have

∂H

∂r
= 1 + α

∂|J−T
i |
∂r

= 0

hence α cannot be 0 as usually ∂|J−T
i |/∂r will is not 0.

However as this quantity has usually have a relatively large

value any α will be small. We have also

∂H

∂Xi

= α
∂|J−T

i |
∂Xi

+ 2βXi = 0

As α is small it may be assumed that β will also be small.

The other unknown of the system are the Xi’s that have to

lie in the range [-1,1] and r that can also be bounded (e.g.

r cannot be such that all Bi points are outside the vertically

lifted convex hull of the A). Hence all the unknowns of the

problem may be bounded and the system (4) may be solved

in a guaranteed manner with interval analysis.

We may proceed in the same way if we are looking at

the singularity free condition by substituting J−T
i by J−T

(this has to be done only once as the denominator of τi is

identical for all cables).

Note that it is possible to remove the constraint ||u|| −
1 = 0 by choosing

u = (sin(β1) cos(β2), sin(β1) sin(β2), cos(β1))

with β1 ∈ [0, π] and β2 ∈ [0, 2π] that will lead to a system

of 5 equations. However our trials have shown that this sys-

tem is more difficult to solve than the one we have chosen.

B.2 For a trajectory with a constant orientation

We assume that the translation parameters of the pose

(i.e. the coordinates of C) are analytical functions of the

bounded time t i.e. xc = f1(t), yc = f2(t), zc = f3(t).
The coordinates of Bi in the absolute frame are

OBi = OC+CBi

as the orientation is assumed to be constant CBi is a con-

stant vector and consequently the coordinates of Bi can be

expressed as time functions. Our ranking criteria will be

the minimal radius of a sphere centered at any pose on the

trajectory so that the given CC is valid.

A preliminary check is to use the algorithm described

in [17] for verifying if the trajectory may be completed

with the same CC. To solve this optimization problem we

use the same approach than for a pose except that we

consider now time as an additional unknown. Hence we

end up with a system of 7 equations in the 7 unknowns

r,X1, X2, X3, α, β, t. However we have to consider that:

• the system may not have a solution and the minimal ra-

dius is obtained for one of the extreme value of t
• the system may provide a solution that lead to the max-

imal radius while the minimal one of is obtained at one of

the end point of the trajectory
Hence to obtain the minimal radius it is necessary to use the

algorithm described in the previous section for both end-

point of the trajectory.

Note that as for the pose case all the unknowns may be

bounded and interval analysis is an appropriate tool to find

the roots of the system.

B.3 For a surface with a constant orientation

We assume that the translation parameters of the pose

(i.e. the coordinates of C) are analytical functions of two

bounded parameters t1, t2, i.e. xc = f1(t1, t2), yc =
f2(t1, t2), zc = f3(t1, t2) i.e. the robot moves on a sur-

face. The coordinates of Bi in the absolute frame are

OBi = OC+CBi
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as the orientation is assumed to be constant CBi is a con-

stant vector and consequently the coordinates of Bi can be

expressed as functions of the two parameters. Our ranking

criteria will be the minimal radius of a sphere centered at

any pose on the surface so that the given CC is valid for any

pose within the sphere.

To solve this optimization problem we use the same

approach than for a pose except that we consider now

the parameters t1, t2 as additional unknowns. Hence we

end up with a system of 8 equations in the 8 unknowns

r,X1, X2, X3, α, β, t1, t2. As in the previous section the

system may not have a solution or one that leads to the

maximal radius. Hence it is necessary to use the algorithms

described in the previous sections with t1 and/or t2 set to

one of their extreme values.

Note that as for the pose case all the unknowns may be

bounded and interval analysis is an appropriate tool to find

the roots of the system.

C. Second criteria for selecting the CC

The previous criteria quantify the validity domain of a

given cable configuration CC1 with 6 cables. However it

does not prove that for any trajectory included in the va-

lidity domain the robot will always have the cable config-

uration CC1. Indeed the CC at a given time depends upon

the control law, its discrete-time implementation and the

time response of the coiling mechanism. For example we

have shown that these elements may lead to CC changes

when performing a trajectory that was theoretically feasi-

ble with a given CC both for non deformable cables [21] or

for elastic cables [20] and such changes were experimen-

tally observed. The previous criteria just allow to state that

the robot may not change instantaneously from a CC with

6 cables to another one with also 6 cables because this sit-

uation is possible only at a singularity. But we have also to

ensure that for given ρ, a given pose X and a 6 cable con-

figuration CC1 there is no other CC CC2 with less than 6

cables that is close enough from X so that a small distur-

bance may lead the robot from CC1 to CC2. Our ranking

criteria will be a yes/no answer to the question: for a nom-

inal pose X is there a solution to the forward kinematics of

any cable configuration with 1 to 5 cables derived from the

current CC in a ball centered at X with a fixed radius ?

For a given pose this amounts to show that all forward

kinematics (FK) for any combination of less than 6 cables

have no solution in a known neighborhood of X. Although

fully solving these FK problems is difficult and still not a

settled issue we benefit here from the fact that we are look-

ing only for pose within a bounded region and interval anal-

ysis will be appropriate.

D. Ranking criteria for uncertainty management

Real CDPR are submitted to uncertainties, namely in the

the location of the A and B points and on the real cable

lengths. We will assume in this section that these uncertain-

ties are all bounded. To reach a given pose X the controller

assume a knowledge of the location of the A,B and calcu-

late the corresponding cable lengths ρ that are executed so

that the cable reach the lengths ρr that differs from ρ by

at most ∆ρ. For the real robot the location of the i-th base

attachment point is Ar
i which differs from Ai by at most

∆A. Similarly the real Bi will be denoted by Br
i and dif-

fer from Bi by at most ∆Br. We will also assume that a

CC has been chosen and that the cable lengths of the cables

not part of the CC have a length that ensure their slackness.

When the cable control is executed the platform moves to-

ward a pose Xr that is a FK solution of the robot whose pa-

rameters are Ar, Br, ρr . We will also assume that when

moving towardX the robot starts with the CC and that there

is no change of CC during the motion so that Xr is close

to X. The problem we address is to determine if CC is still

valid at the pose Xr whatever are the Ar, Br, ρr in their

respective ranges.

A first problem is that Xr is not known and must only be

such that

ρrj = ||Ar
jB

r
j || (5)

where Br
j is a function of Xr. In the same manner the ma-

trices J−T
i , J−T are no more scalar matrices. Furthermore

when expressed as functions of the unknowns their deter-

minants are very large expressions that cannot be used. As

we want to check if the tensions in the cables of the CC are

always positive whatever are the values of Ar, Br, ρr the

problem amounts to verify if for any cable in the CC the

following condition does not hold:

∃Ar ∈ Âr, Br ∈ B̂r, ρr ∈ ρ̂r

such that |J−T
i ||J−T| ≤ 0

where the hated quantities indicates intervals. Using the

minimal parametrization of X this problem has 48 un-

knowns (6 for Xr, 18 for the Ar
i , 18 for the Br

i and 6 for

the ρri ) with only a single inequality to verify but we don’t

have to determine all the poses that may satisfy the inequal-

ity as finding a a single one will be sufficient. We will detail

in section IV-D how interval analysis may be used to check

the inequality.

Theoretically the proposed approach may be extended to

trajectory or surface but has not be implemented.

III. Implementations

A. Interval analysis

Solving the system that result from the optimization

problem is performed by using our interval analysis library

ALIAS. This library allows to calculate exactly (i.e. with

an arbitrary accuracy) all solutions of a system of equations

that lie within a bounded region, called the search space.

Without going into the details (that may be found in [12],

[13], [23], [24]) the solving principle is first based on the

4
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interval evaluation of the equations: being given intervals

for the unknowns W (which define a box in the unknowns

space) and a function of these unknowns f(W) the inter-

val evaluation of f is an interval [U, V ] that is guaranteed

to satisfy that for all vectors W whose components all lie

in the corresponding intervals we have U ≤ f(W) ≤ V .

There are several methods for computing such an interval

evaluation, all having the drawback that U may be un-

derestimated (i.e. the minimum of f over the intervals is

larger than U ) and/or V may be overestimated (i.e. the

maximum of f over the intervals is larger than V ). How-

ever the differences between U, V and the minimum, max-

imum decrease with the size of the input intervals. Such an

overestimation occurs when there are several occurrences

of the same variable in f . A typical example of overes-

timation is to consider f = x − x when x ∈ [−1, 1] as

f([−1, 1]) = [−1, 1] − [−1, 1] = [−2, 2] that indeed in-

clude the solution 0 but with a large overestimation.

Clearly if U > 0 or V < 0, then f cannot cancel for

any point in the box. The second component of an inter-

val analysis algorithm is the branch and bound scheme. In

this scheme we have a list L of box(es) which has, at the

start of the algorithm, a single element, the search space

and an index i initialized to 1. The algorithm look at the

i-th box in the list and calculate the interval evaluation of

each equation of the system for this box. If for each of

these evaluations we have U < 0 and V > 0, then we bi-

sect the box in two by selecting one of the unknowns and

splitting its current interval at the mid-point. This process

creates two new boxes that are stored at the end of L and

the index i is incremented. If U > 0 or V < 0 then the

index i is incremented. After each bisection the size of the

box decreases so that we may use the third tool of interval

analysis which is the Kantorovitch theorem. It states that if

some conditions, that may be calculated with interval anal-

ysis, are fulfilled, then the box includes a single solution of

the system and that this solution may be obtained by using

the Newton-Raphson scheme with as initial guess the cen-

ter of the box. If this theorem is fulfilled for a given box we

have determined a solution of the system and the index i is

incremented. The algorithm completes when the index i is

larger than the number of elements in L. Such an algorithm

cannot miss a solution and will usually provide all the so-

lutions in the search space unless the numerical accuracy is

not high enough (in this case it is necessary to extend the

floating point arithmetic and numerous packages allow to

do it).

This principle may be extended to deal with inequality.

For example if the problem is to check if f(W) ≤ 0 a box

will be deleted from the list L if U > 0 and a solution will

be found if V ≤ 0.

IV. Examples

A. The robot

As test example we consider a CDPR with 8 cables. The

coordinates of the A,B points are provided in tables I,II

and are derived from the robot presented in [10].

A1 A2 A3 A4

x -7.175120 -7.315910 -7.302850 -7.160980

y -5.243980 -5.102960 5.235980 5.372810

z 5.462460 5.472220 5.476150 5.485390

A5 A6 A7 A8

x 7.182060 7.323310 7.301560 7.161290

y 5.347600 5.205840 -5.132550 -5.269460

z 5.488300 5.499030 5.489000 5.497070

TABLE I. Coordinates of the A points (in meter)

B1 B2 B3 B4

x 0.503210 -0.509740 -0.503210 0.496070

y -0.492830 0.350900 -0.269900 0.355620

z 0.000000 0.997530 0.000000 0.999540

B5 B6 B7 B8

x -0.503210 0.499640 0.502090 -0.504540

y 0.492830 -0.340280 0.274900 -0.346290

z 0.000000 0.999180 -0.000620 0.997520

TABLE II. Coordinates of the B points in the mobile frame (in meter)

B. First and second criteria

In this section the orientation of the platform is assumed

to be such that the axis vectors of the reference and mobile

frame coincide.

B.1 For a pose

We consider the pose (0,1,2) and (1,0,2) for this robot.

For (0,1,2) the following CC are valid: [1, 2, 3, 4, 5, 6], [1,

3, 4, 5, 6, 8], [2, 3, 4, 5, 6, 7], [3, 4, 5, 6, 7, 8]. For the first

criteria we look at each cable of the CC in turn to determine

the minimal distance between the current pose and a pose

such that the tension in the cable become 0 (|J−T
i | = 0).

We then look at the minimal distance between the current

pose and and a singular pose (|J−T| = 0). The ranking for

this first criteria will be the minimum of all these minima

for all cables, The solving of the optimization problem pro-

vide the following solutions for the minimal r, rmin (the

number in parenthesis indicates the cable number, d being

the singular condition):

5
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CC [1, 2, 3, 4, 5, 6] [1, 3, 4, 5, 6, 8]

r 4.4946264798 (1) 4.494269494(1)

2.9411453193 (d) 2.9452771 (d)

4.050982548(2) 0.759251662181 (3)

0.755452449 (3) 0.79751117 (6)

0.7600999421(5) 4.4942694944(7)

0.789817071 (4) 4.0509825480 (8)

rmin 0.755452449 0.75925166218

CC [2, 3, 4, 5, 6, 7] [3, 4, 5, 6, 7, 8]

r 4.0273984389 (2) 0.759563273849 (5)

3.005642354 (d) 3.00951266946 (d)

0.547094056 (4) 0.780833856164(6)

4.4946264798 (7) 4.0273984389697(8)

rmin 0.547094056081 0.759563273849

For (1,0,2) the following CC are valid: [1, 2, 5, 6, 7, 8], [1,

4, 5, 6, 7, 8], [2, 3, 5, 6, 7, 8], [3, 4, 5, 6, 7, 8]. For the first

criteria the solving of the optimization problem provides

the following solutions for the minimal r, rmin:

CC [1, 2, 5, 6, 7, 8] [1, 4, 5, 6, 7, 8]

r 2.940956688 (d) 2.9452947689(d)

4.977861655 (6) 0.5191414561 (6)

0.63930665576 (7) 0.6358634180(7)

0.607434554380417 (8)

rmin 0.60743455438 0.5191414561

CC [2, 3, 5, 6, 7, 8] [3, 4, 5, 6, 7, 8].

r 3.0087565393(d) 3.01281464529 (d)

0.5343214029 (5) 0.5324771755(5)

4.686335251 (6) 0.5606442268(6)

0.5699690786(8)

rmin 0.53432140 0.5324771755

The total computation time is 8mn and 26 seconds but note

however that the implementation is not optimal. Indeed as

soon as a possible value for rmin is found it may be used in

the remaining computation to eliminate boxes that may con-

tain solution (s) but will lead to a larger value than the cur-

rent estimation of rmin. We have just tried this method for

the configuration [1,2,5,6,7,8] where we have first the ca-

bles before considering the singularity condition: we have

noted that after solving for cable 6 the calculation time for

cable 7 decreases and even decreases much more signifi-

cantly for cable 8. As for the singularity condition the algo-

rithm exit almost immediatly. According to this experiment

we believe that we may reduce the total computation by a

factor of at least 10.

For both poses we have then considered the second crite-

ria and we have shown that there is no CC with less than 6

cables that may lead to a pose that belong to a ball of radius

0.03 centered at the pose.

C. Trajectories and surfaces

We consider now the circular arc of radius 1 described

by xc = cos(t), yc = sin(t), zc = 2 when t is restricted

to lie in the range [0, π/2]. The start point and end point of

this trajectory being (1,0,2) and (0,1,2) we deduce from the

previous paragraph that only [3,4,5,6,7,8] is a valid CC for

the whole trajectory. The solving algorithm regarding the

first criteria provides the solution:

cable 5 cable 6 cable 7 |J−T| = 0
r 0.94811 0.9722 4.4942 3.0085

For the start and end point the minimal r were re-

spectively 0.759563273849347 and 0.532477175518869.

Hence we deduce that the solving provide the maxi-

mal r and therefore the ranking criteria for this CC is

0.532477175518869.

Now if we look at the planar circle centered at (1,0,2) and

radius 0.4 the solving algorithm provides:

cable 5 cable 6 cable 8

r 0.1324778 0.16064 4.6332

0.932476 0.960643

and hence the index is 0.132477813874347.

D. Uncertainty criteria

The purpose of the criteria is to check if a given CC is

valid for a nominal pose X for which the nominal cable

lengths are ρ, assuming a given model for the A,B points.

For the real robot the coordinates of the A,B points may

have any value in the known intervals Âr, B̂r while the real

cable lengths lie in the known intervals ρ̂r. For testing the

validity of the CC we will check is there is any values of

Ar, Br, ρr in their respective ranges that verify

|J−T
i ||J−T| ≤ 0 (6)

for all cables involved in the CC. If this inequality hold for

at least one cable the mechanical equilibrium condition (2)

hold only for a negative tension the cable and therefore CC

is no more valid.

As unknown for this problem apart ofAr, Br, ρr we have

the coordinates CBm of the B in the mobile frame. To

parametrize the pose of the platform we use a redundant

parametrization with the coordinates of all B in the refer-

ence frame together with the coordinates of C in this frame.

This leads to a problem with 63 unknowns (18 for the A, 18

for CBm, 18 for the B, 3 for C, 6 for the ρ).

The motivation of this parametrization is the assumption

that the FK solution for any Ar, Br, ρr will be close to X

and this allow us to bound the values of these unknowns.

Furthermore we have the following constraints:

||Ar
jB

r
j ||2 = ||OBj +OAj||2 = (ρrj)

2 (7)

||CBj||2 = ||OC+OBj||2 = ||CBm
j ||2 (8)

for all cable j in the CC. We have also for all pairs of cables

(i, j):

||BiBj||2 = ||OBj −OBi||2 =

||CBm
j −CBm

i ||2 (9)

CBi.CBj = CBm
i .CBm

j (10)

6
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Hence we get 42 constraint equations together with inequal-

ity (6).

Another motivation to use this parametrization is that it

allows one to use a classical technique of interval analysis

whose purpose if to reduce the interval for the unknowns

without resorting to a bisection. For example consider the

relation ||Ar
jB

r
j ||2 = (ρrj)

2. If xa, ya, za and xb, yb, zb de-

note respectively the coordinates of Aj , Bj in the reference

frame the constraint may be written as

(xb − xa)
2 + (yb − ya)

2 + (zb − za)
2 = (ρrj)

2

which may be written as

(xb − xa)
2 = (ρrj)

2 − (yb − ya)
2 − (zb − za)

2

We proceed to the interval evaluation of the right hand-side

of this constraint to get the interval [U, V ]. If V is negative

the constraint cannot be satisfied. If U < 0, V > 0 then

(xb − xa)
2 must lie in the range [0, V ]. We deduce that

(xb − xa) ∈ [0,
√
V ] or (xb − xa) ∈ [−

√
V , 0]

or

xb ∈ xa + [0,
√
V ] or xb ∈ xa + [−

√
V , 0]

Consequently if the interval for xb is x̂b the only valid part

of this interval with respect to the constraint is

(x̂b ∩ (x̂a + [0,
√
V ])) ∪ (x̂b ∩ (x̂a + [−

√
V , 0]))

which may allow to reduce the size of x̂b. As for the de-

terminant of the matrices we just proceed to the interval

evaluation of their elements. Then classical methods of de-

terminant expansion are used to calculate the interval eval-

uation of the determinant with the drawback that we have a

large overestimation of the interval evaluation. But we use

another approach based on the test for checking the regu-

larity of an interval matrix (i.e. determining if there is at

least one singular matrix among the all the matrices of the

set) [28]. Basically this test amounts to calculate the sign of

the determinant of a finite number of scalar matrices which

are obtained by taking as elements the extreme values of the

elements of the interval matrix: if the sign is the same for

all determinants, then the interval matrix does not include

singular matrices. If this is the case, then it is sufficient to

select a scalar matrix in the set of interval matrix and to cal-

culate the sign of its determinant that will be the sign of the

determinant of any matrix in the set.

This algorithm has been used to check the robustness of

the CC [3,4,5,6,7,8] at the pose (0,1,2) for a possible error

on the location of the A of ± 5mm, an uncertainty on the ρ
of ± 5 mm and an uncertainty of ± 1 mm for the location

of the B. It was assumed that the B and C that may be

solution of the FK where located in a ball centered on their

nominal location with radius 5 cm. It was found that the

CC was always valid in a computation time of 9mn58s.

Theoretically this algorithm may be extended to deal

with a trajectory or a surface. For a trajectory the nominal

pose will be a time function and we will add the time as ad-

ditional unknown. For a given time interval we will be able

to calculate ranges X̂ for the nominal pose and B̂ for the

nominal B that will allow us to determine ranges ρ̂ for the

nominal ρ. For the other unknowns the ranges on CBm, A
will remain the same while the ranges for ρr will become

ρ̂+∆ρ and the ranges for B,C will become B̂, X̂ that will

be expanded by a value W = KMax(w(ρ̂ + ∆ρ), w(X̂))
where w denote the width of an interval and K is a safety

factor that can be conservatively chosen as 10. For ex-

ample if X̂ = [p, q] the range for C will be chosen as

[p−W, q +W ]. A similar method may used for a surface.

V. Conclusions

Determining the cable configuration of a suspended

CDPR is crucial for their command and safety as the CC

influences drastically the cable tensions and positioning ac-

curacy of the robot. A possible control strategy is to enforce

a selected cable configuration (by setting the lengths of the

cables not member of the CC so that they will be slack) to

avoid the disturbances due to CC changes. But the choice

of the CC shall take into account how robust is the CC. We

have defined as robustness indices:

• how far away the robot may move from its nominal pose

while keeping the same CC

• a binary index that is set to unsafe if there is in the vicinity

of the nominal pose a pose that may be reached with less

than 6 cables under tension

• a binary index that is set to unsafe if the CC is no more

valid when uncertainties on the geometry and control of the

robot are taken into account

We have then provided algorithms that allow one to cal-

culate all these indices. As possible extension we should

mention that the two first indices have been calculated by

assuming that the orientation of the platform remains con-

stant. This has allowed us to define the index as a length

but is not appropriate if the orientation of the platform may

change. For the robustness of the CC with respect to un-

certainties we have only implemented the algorithm for a

pose but shall investigate the case of a trajectory or a sur-

face. A similar work may be done for elastic cables that

may present as well slack cables. For large scale robot the

sagging of the cable may have to be taken into account.

The concept of cable configuration here shall be different

has such a cable is never slack (in the sense that it is always

submitted to a tension) but may contribute negatively to the

support of the platform (i.e. pulling downward). For such a

cable we may expect an even higher complexity as both the

inverse and forward kinematics are not yet mastered [11],

[15], [18], [30], [29]. Clearly the proposed indices should

be completed by other one that address the mechanical sta-
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bility of the CC.
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