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Abstract. Motivated by uncertainty in the value of the interest rate,
we study discounted zero-sum stochastic games with unfixed discount
factor. Our general goal is to obtain a power series expansion of the
value of the game with respect to the discount factor around its nominal
value. We consider a specific but important class of stochastic games –
completely mixed stochastic games. As an illustrative example we take
tax evasion model.
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1 Introduction

The present work is motivated by uncertainty in the value of the interest rate.
We consider the discounted stochastic game and pose a question what happens
with the value of the game if the interest rate, or equivalently, the discount
factor, deviates from its nominal value. In the spirit of the perturbation analysis
[2], we try to find efficient algorithms for computation of some initial coefficients
of the power series of the value of the game with respect to the discount factor.

The perturbation analysis of stochastic games with respect to the discount
factor appears to be very challenging in its full generality (see e.g., [7, 11]).
Therefore, in this work we limit ourselves to a specific but important class of
stochastic games – completely mixed stochastic games. In particular, in the case
of completely mixed stochastic games the value of the game has a Taylor series
expansion at the vicinity of zero discount factor.

Our approach is based on generalization of the Shapley value iterations [9]
from the field of real numbers to the field of power series. Such an approach was
successfully used before for Blackwell optimality in Markov decision processes
[6], for singularly perturbed Markov decision processes [1] and for Blackwell equi-
librium [3] in stochastic games with perfect information or switching controller
games [4]. It is interesting to observe that in the present setting each Shapley
value iteration produces an exact new coefficient in the Taylor series of the game
value.
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The structure of the paper is as follows: In the next section we define the dis-
counted stochastic game and provide necessary background material on stochas-
tic and matrix games. In Section 3 we study the case of completely mixed stochas-
tic games. In Section 4 we provide an illustrative example of the tax evasion
model. Finally, in Section 5 we give conclusions and discuss open problems.

2 Background on Discounted Stochastic Games and

Matrix Games

The notion of stochastic game was first introduced by Shapley in 1953 [9]. Fol-
lowing [9], we consider two-person zero-sum stochastic games on infinite time
horizon and discounted payoff. The game has a finite set of positions, called
states. For each state there are two finite sets of actions for the first and the
second player, respectively. Each pair of actions corresponding to the same state
defines the immediate reward for both players as well as the probabilities of tran-
sitions to the other states. At each step the players simultaneously choose actions
and receive corresponding rewards. After that the system immediately moves to
the next state with respect to the probability distribution defined by chosen pair
of actions. Let us next formally define the two-person zero-sum stochastic game
(an interested reader can find much more information on stochastic games in the
book by Filar and Vrieze [5]).

Definition 1. A system with the following structure is called two-person zero-
sum stochastic game Γ :

1. there are two players, P1 and P2 (also called “the first player” and “the
second player”, respectively);

2. S = {1, 2, .., n} is a finite set of states of the game;
3. Ai(s) = {1, 2, ..,mi(s)} represent sets of actions of ith player with respect to

the current state s ∈ S;
4. the function r(s, i, j) represents immediate rewards for player 1, and −r(s, i, j)

is the immediate reward for player 2. Here s ∈ S, i ∈ A1(s), j ∈ A1(s), which
means that the game is currently in state s and the players choose actions i
and j, respectively. One usually denotes the matrix of immediate rewards in
state s by R(s).

5. Transition probabilities p(s′|s, i, j) : s, s′ ∈ S, i ∈ A1(s), j ∈ A2(s) where
p(s′|s, i, j) is the probability of transition from state s to state s′ given that
players 1 and 2 choose actions i ∈ A1(s), j ∈ A2(s), respectively. It is as-
sumed that the transition probabilities and the immediate rewards are known
to both players.

A strategy for a player is a rule of selecting an action at each step of the
game. In general, strategies can depend on complete history of the game until the
current stage. Such strategies are called behavioural strategies. We are looking
at the simpler class of strategies called stationary strategies which depend only
on the current state s and not on how s has been reached.
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Definition 2. A stationary strategy of a player is a function from the state space
to the set of probability distributions on player’s action set. A strategy is called
pure or deterministic when for each state of the game the player deterministically
choose exactly one action with probability 1.

In his paper [9], Shapley has shown that it is enough to consider only sta-
tionary strategies for the discounted stochastic games, so we restrict ourselves
to them.

Discounted payments are accumulating throughout the game. The first player
aims to maximize the β-discounted payoff, whereas the second player aims to
minimize it.

Definition 3. Given an initial state s0, a pair of stationary strategies (f, g) of
players 1 and 2, resp., and a discount factor β ∈ [0, 1), we define β-discounted
payoffs as follows:

[Jβ(f, g)](s0) =
∞
∑

t=0

βtEf,g
s0

[rt],

where t corresponds to discrete moments of time and rt is an immediate payoff
on a corresponding (tth) step of the game with respect to the initial state s0 and
strategies of the players.

Under this payoff one can define an equilibrium pair of strategies and the
value vector of the game.

Definition 4. A pair (f∗, g∗) such that

[Jβ(f, g
∗)](s) ≤ [Jβ(f

∗, g∗)](s) ≤ [Jβ(f
∗, g)](s),

for all f and g and for all s ∈ S, is called a pair of equilibrium strategies. The
vector Jβ(f

∗, g∗) is called equilibrium value vector, or game value vector and is
denoted by v.

One can view a zero-sum discounted stochastic game Γ (β) as a generalization
of static matrix game to a multistate and multistage situation. Indeed, assume
that |S| = N and m1(s) = |A1(s)|,m2(s) = |A2(s)| for each s ∈ S. Then we can
naturally define N matrix games that are in one-to-one correspondence with the
states of Γ (β):

R(s) = [r(s, a1, a2)]
m1(s),m2(s)
a1=1,a2=1

Now we can think of each state of a game as of a simple matrix game R(s) with
corresponding action sets A1(s), A2(s). Notice that actions of players determine
not only their rewards (as in the classical matrix game), but also probability
transitions p(s′|s, a1, a2) to the matrix game R(s′) that can be played at the
next step.

In his original paper [9], Shapley has shown that under the discounted payoff
criterion, there always exist an equilibrium pair of strategies, and the equilibrium
value vector v(f∗, g∗) is unique. More precisely, the following theorem takes
place:
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Theorem 1. (Shapley, 1953) The discounted, zero-sum, stochastic game Γ (β)
possesses the value vector v that is unique solution of the equations

v(s) = val[R(s,v)]

for all s ∈ S, where vT = (v(1), v(2), ..., v(N))T and

R(s,v) =

[

r(s, a1, a2) + β
∑

s′∈S

p(s′|s, a1, a2)v(s
′)

]

We call the following set of equations N (one equation per state of the game)
“Shapley equations”:

v(s) = val

[

r(s, a1, a2) + β
∑

s′∈S

p(s′|s, a1, a2)v(s
′)

]

, s ∈ S

In addition, we call the following map “Shapley operator”:

T : RN → R
N , T(xs) = valR(s,xs)

Shapley [9] has shown that this operator is a contraction with coefficient β. In
the above mentioned paper he has also shown how one can reduce the process of
solving stochastic game to solving several static matrix games. The idea of this
algorithm is based on the fact that the operator T is a contraction. The value
of the game is the unique fixed point of this operator, or, in other words, the
unique solution of the equation

x = Tx.

By simple iterations one can find the approximated value of the game. Let v0

be an arbitrary initial approximation. Then, by Banach fixed point theorem, the
sequence of approximations vk converges to the exact solution v of the game:

vk+1 = Tvk, k = 0, 1, ...

Notice that at each iteration we have to solve N matrix games. As we mentioned
in the previous section, the problem of solving a matrix game is of polynomial
complexity (e.g., is solvable by linear programming). We will call this algorithm
Shapley value iteration.

Let us also recall some useful facts about static matrix games. Each static
matrix game can be presented as a matrix M by identifying rows with pure
strategies of player 1 and columns with pure strategies of player 2. The element
M [a1, a2] of a matrix represents the reward r(a1, a2). Clearly, the first player
aims to maximize his payoff, whereas the second player aims to minimize his
cost. We assume that both players are rational. It is known that there always
exists a pair of equilibrium strategies (f∗, g∗) such that:

∀f, g : r(f, g∗) ≤ r(f∗, g∗) ≤ r(f∗, g).
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The value v = r(f∗, g∗) is called the value of the game and is known to be
unique. By solving a game one usually means finding its value (and, possibly,
optimal strategies). Solving a matrix game is not a trivial problem. There are
several approaches to it, and one of them is due to Shapley and Snow [10].

Theorem 2. (Shapley and Snow, 1950) If A is a matrix game and valA 6= 0,
then A has a square invertible submatrix Â, called a Shapley-Snow kernel, such
that:

– valA = val Â =
det Â

∑

ij adj Â[i, j]
;

– There is a pair of equilibrium strategies (x̂, ŷ) for Â which are also equilibrium
strategies for A (after inserting zeroes at corresponding entries) that satisfy

(x̂)T = (valA)1T Â−1, ŷ = (valA)Â−11,

where 1 = (1, .., 1)T .

Without loss of generality, we assume that all rewards of the game are strictly
positive and hence the value is positive as well, and so Shapley-Snow kernels are
always defined.

Following [11], let us call Shapley-Snow kernels, which are completely mixed,
cmv-kernels. It has been shown in [11] that they always exist in arbitrary matrix
game. From now we will consider only these kernels.

Despite the fact that this theorem has a theoretical value, in practice ma-
trix games are usually solved in other ways, e.g., by linear programming. In
particular, this implies that a matrix game can be solved in polynomial time.

3 Completely Mixed Stochastic Games

Consider a special class of stochastic games – completely mixed stochastic games.

Definition 5. Stochastic game is called completely mixed, if for each state s ∈
S, the Shapley matrix

R(s,v(β), β) =
[

rs,i,j + β
∑

l=1..N pls,i,jvl(β)
]|A1(s)|×|A2(s)|

i,j=1
, ∀s ∈ S

is completely mixed.

In other words, for each state s the cmv-kernel of the Shapley matrixR(s,v(β), β)
is the whole matrix per se. Clearly, in this case for each s ∈ S it is required that
|A1(s)| = |A2(s)|.

We can propose an easily verifiable condition to check if a stochastic game
is completely mixed for small values of the discount factor.

Assumption 1. Assume that we are given a game Γ (β) in which the static
matrix game at each state s ∈ S is completely mixed.
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The above assumption implies useful structural properties of the stochastic
game. Namely, we have

Lemma 1. Let Assumption 1 hold. Then, the stochastic game Γ (β) is com-
pletely mixed for the values of the discount factor β in some interval [0, δ) and
the value vector of the game possesses a Taylor series expansion in the vicinity
of β0 = 0 with the convergence radius R ≤ δ.

Proof. Since the set of completely mixed matrix games is open in the space of all
matrix games of the corresponding dimension [11], there exist a neighborhood
β ∈ ω = [0, δ), such that for all β ∈ ω and all states s ∈ S, the games defined
by R(s,v(β), β) are completely mixed. It then implies that for all β ∈ ω the
stochastic game Γ (β) is completely mixed as well.

It follows from the arguments in the proof of Lemma 4.1 in [11] that in this
case the value function v(β) of the stochastic game Γ (β) is analytic on β ∈ ω.
More precisely, the fact that the cmv-kernels of Shapley matrices do not change
in some neigbourhood of β = 0 is crucial here. In its turn, it is a consequence of
the completely-mixed assumption on the payoff matrices.

Thus, the value of the game can be represented as a Taylor series expansion
around zero for each state s, with the convergence radius 0 < R ≤ δ. �

Our goal is to find an approximation of the value function v(β) given by the
firstm terms of its power series expansion. We take a constant vector as an initial
approximation, e.g., v0(β) := 0. By vk(β) we denote the kth approximation of
v(β). Then the next approximation can be obtained as follows:

vk+1,s(β) =
det (R(s,vk(β), β))

∑r

i,j=1 adj (R(s,vk(β), β)) [i, j]
, ∀s ∈ S. (1)

Here adj (R(s,vk(β), β)) is the adjugate matrix of R(s,vk(β), β). Recall that
each entry of R(s,vk(β), β) looks as follows:

R(s,vk(β), β)[i, j] = rs,i,j + β
∑

l=1..N

pls,i,jvk,l(β).

Each vk,l(β) is a rational function, continuous (and analytical) for β ∈ ω. Thus,
we can present it as a power series expansion

vk,l(β) =

∞
∑

i=0

aik,lβ
i.

Substituting this representation into the Shapley matrix, we obtain

R(s,vk(β), β)[i, j] = rs,i,j + β
∑

l=1..N

pls,i,j

(

∞
∑

i=0

aik,lβ
i

)

=

rs,i,j + β
∑

l=1..N

pls,i,j
(

a0k,l + a1k,lβ + a2k,lβ
2 + ...

)

=

rs,i,j + β
∑

l=1..N

pls,i,ja
0
k,l + β2

∑

l=1..N

pls,i,ja
1
k,l + β3

∑

l=1..N

pls,i,ja
2
k,l + ... (2)
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Let us define a reduction mod βm on the power series:

a(β) =

∞
∑

i=0

aiβ
i;

a(β) mod βm =

∞
∑

i=0

aiβ
i mod βm =

m
∑

i=0

aiβ
i.

It can be easily seen that if

a(β) mod βm = b(β) mod βm, c(β) mod βm = d(β) mod βm

then
(a(β) ± c(β)) mod βm = (b(β)± d(β)) mod βm, (3)

(a(β) · c(β)) mod βm = (b(β) · d(β)) mod βm. (4)

Now let us look at the formula of the value of a completely mixed matrix
game R(s,vk(β), β):

val (R(s,vk(β), β)) =
det (R(s,vk(β), β))

∑r

i,j=1 adj (R(s,vk(β), β)) [i, j]
. (5)

Firstly consider the numerator. Let us use the series representation of the
entries of the Shapley matrix. Then from the way of computing the determinant
it is easy to see that the numerator can be written as follows:

det (R(s,vk(β), β)) = c0k,s + c1k,sβ + c2k,sβ
2 + c3k,sβ

3 + ...

So, it can be represented as a power series expansion.
Now consider the denominator. Similarly, the sum of the elements of the

adjugate matrix is the sum of cofactors of the initial matrix, which are (up to
sign) determinants of its r − 1 submatrices. So the denominator can be written
as

r
∑

i,j=1

adj (R(s,vk(β), β)) [i, j] = d0k,s + d1k,sβ + d2k,sβ
2 + d3k,sβ

3 + ...

Note that from the definition of a completely-mixed game we have c0k,s 6= 0,

d0k,s 6= 0. Now vsk+1(β) can be expressed as a ratio of two power series:

vsk+1(β) = val (R(s,vk(β), β)) =
c0k,s + c1k,sβ + c2k,sβ

2 + c3k,sβ
3 + ...

d0k,s + d1k,sβ + d2k,sβ
2 + d3k,sβ

3 + ...
(6)

This is one of the key observations in our method. From now we will use the
fact that vsk+1(β) can be represented as

vk+1,s(β) =
Pk,s(β)

Qk,s(β)
,
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where Pk,s(β) and Qk,s(β) are power series of β:

Pk,s(β) = c0k,s + c1k,sβ + c2k,sβ
2 + c3k,sβ

3 + ...,

and
Qk,s(β) = d0k,s + d1k,sβ + d2k,sβ

2 + d3k,sβ
3 + ...

We shall show that if at some moment K we have calculated the value func-
tion expansion at β = 0 up to the m-th term, then at the next iteration we
get the next (m + 1)-st term of the expansion. Formally, we can formulate the
following statement.

Theorem 3. Let Γ (β) be a discounted stochastic game with unfixed discount
parameter β ∈ [0, 1) and let v(β) be its value function. Let Assumption 1 hold.
Then starting from v0 = 0, we can obtain K first terms of the Taylor series
expansion of v(β) at β0 = 0 after K iterations given by (1).

Proof. Notice that when β = 0 we have

vk+1,s(0) =
c0k,s
d0k,s

.

In particular, if k = 0 and v0 = 0, we have that

v1,s = val(R(s, 0, β)) = val(R(s)) = vs(0). (7)

Let us now consider the derivative of orderm of the value function approximation

vk+1,s(β) =
Pk,s(β)

Qk,s(β)
.

We can think of vk+1,s(β) as a rational function of Pk,s(β) and Qk,s(β).

Similarly, the derivative v
(m)
k+1,s(0) is a rational function of Pk,s(0), P

(1)
k,s (0), ...,

P
(m)
k,s (0) and Qk,s(0), Q

(1)
k,s(0), ..., Q

(m)
k,s (0).

On the other hand, notice that P
(q)
k,s (0) = q!·cqk,s and Q

(q)
k,s(0) = q!·dqk,s. So, we

can say that vk+1,s
(m)(0) is a rational function of cqk,s and dqk,s, for q ∈ {0, ..,m}.

Therefore, the first m+ 1 terms of the Taylor series expansion of vk+1,s(β) are
completely defined by cqk,s and dqk,s, for q ∈ {0, ..,m}.

The latter means that if for some K ∈ N:

∀s ∈ S, ∀o, p > K :

Po,s(β) mod βm = Pp,s(β) mod βm,

Qo,s(β) mod βm = Qp,s(β) mod βm, (8)

then the first m+1 terms of the value function series expansion will not change
at all on the subsequent iterations:

∀s ∈ S, ∀o, p > K + 1 : vo,s(β) mod βm = vp,s(β) mod βm (9)
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On the other hand, recall that cqk,s and dqk,s for q ∈ {0, ..,m} are defined by
the corresponding Shapley matrix approximation, R(s,vk(β), β)[i, j]. Thus, if
K terms are comuted exactly, the (K +1)-st term will be exactly derived at the
next iteration. Invoking the principle of mathematical induction together with
the base (7), we conclude the proof of the theorem. �

The complexity of the proposed approach depends on the number of states,
on the number of possible actions at each state and, obviously, on the number
of terms of the expansion that we are looking for. Assume that we have N
states, at each state s ∈ {1, .., N} both of the players have rs possible actions,
and we want to compute K terms of the series expansion of each of the value
component. Observe that for each state s at each iteration we have to compute
the determinant and the adjugate of an rs×rs matrix. We can do this performing
O(r3s ) operations per iteration using Gaussian elimination. This means that in

general our algorithm requires O(K ·
∑N

s=1 r
3
s) operations.

4 Example: Tax Evasion Model

As it has been already mentioned, stochastic games is a powerful tool for model-
ing different real-life situations. They have applications in economics, evolution-
ary biology, computer networks etc. In this section we consider a simple model
of tax evasion as a simple example of a stochastic game application. This model
is inspired by [8], but we slightly simplify it in our work, since this particular
application is not the main objective of the present work. We propose a nu-
merical example, which is a two-states completely mixed game, and we find an
approximation in terms of power series using our technique described above.

We consider a situation where there are two agents with the opposite inter-
ests: the taxpayer and the auditor. The objective of the former is to pay as less
as possible, while the latter aims to collect as much money as possible. Each
time slot, say, each month, the taxpayer has to decide whether declare his in-
come honestly or not. In his turn, each month the auditor can decide whether
to trust the taxpayer or to audit. Hence both of the agents have two possible
behaviors. To motivate taxpayers to be honest, the auditor introduces a system
of penalties and rewards. Furthermore, there are two different possible states.
Normally, the taxpayer is assumed to be honest. In such a situation penalties
are lower, and rewards are higher. However, if the auditor suspects (based on
the experience of previous months) that the taxpayer is a cheater, then rewards
are lower and penalties are higher. Hence we have two different states: when the
taxpayer is presumed to be honest and when he is assumed to be suspicious.
Since the taxpayer can be “short-sighted” and the auditor can be oblivious or
subject to staff mobility, we feel that our setting of small unfixed discount factor
is particularly relevant in this model. Formally, we can describe the model as
the following stochastic game:

Player 1: auditor;
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Player 2: taxpayer;

Pure strategies of Player 1: to audit or not to audit (to trust);

Pure strategies of Player 2: to declare the income honestly or to cheat;

States of the game: State 1 (Good) – the taxpayer is presumed to be honest;
State 2 (Bad) – the taxpayer is presumed to cheat;

Payoffs: the amount of money that the taxpayer pays; it is defined by 3 constants:
n – normal tax; p – penalty for cheating; r – reward for being honest.

The payoff is accumulated throughout the game with a discount parameter
β ∈ [0, 1).

We assume that in a “good” state the taxpayer receives a reward for being
honest in case if the auditor decides to check his income. He pays the penalty, if
he is found to be guilty. Moreover, in this case the auditor becomes more severe
and the game moves to the “bad” state, where the penalty is higher and the
reward for being honest is lower. However, if after moving to the “bad” state the
taxpayer becomes honest and the auditor notices this, the game moves back to
the “good” state. The payoffs and the transition probabilities can be expressed
with the help of the following tables:

Table 1. State 1 (Good)

Be honest Cheat

Audit n− r n+ p

(1, 0) (0, 1)

Trust n 0

(1, 0) (1, 0)

Let us now consider concrete numerical example. Let n = 5, p = 2, r = 2.
Then we have the following Shapley equations:

v1(β) = val

[

3 + β · v1(β) 7 + β · v2(β)
5 + β · v1(β) 0 + β · v1(β)

]

,

v2(β) = val

[

4 + β · v1(β) 9 + β · v2(β)
5 + β · v2(β) 0 + β · v2(β)

]

It is easy to check that when β is close to zero, both of the games at the
right-hand side are completely-mixed. On the one hand, the exact solution of
this game is given by the following system of equations:

v1(β) =
(3 + βv1(β))βv1(β)− (7 + βv2(β))(5 + βv1(β))

βv1(β) − βv2(β)− 9
,



Completely Mixed Stochastic Games 19

Table 2. State 2 (Bad)

Be honest Cheat

Audit n− r/2 n+ 2 · p

(1, 0) (0, 1)

Trust n 0

(0, 1) (0, 1)

v2(β) =
(4 + βv2(β))βv2(β)− (9 + βv2(β))(5 + βv2(β))

βv1(β)− βv2(β)− 10
. (10)

We see that even in this simple example the exact solution is not easy to compute
and to represent analytically.

On the other hand, we can apply our technique to easily find the solution as
a series expansion in the neighbourhood of zero. Using the system for symbolic
computations Maple, we obtain the following segments of the series:

v1(β) = 35/9+2890/729β+940969/236196β2+95458552/23914845β3+O(β4),

v2(β) = 9/2+1499/360β+593543/145800β2+762448589/188956800β3+O(β4).

5 Conclusion and Discussion

Motivated by uncertainty in the value of the interest rate, we study discounted
zero-sum stochastic games with unfixed discount factor. Our general goal is to
obtain a power series expansion of the value of the game with respect to the
discount factor around its nominal value. Even though we could not solve the
problem in its full generality, we considered a specific but important class of
stochastic games – completely mixed stochastic games. In this class of games we
show that the value vector can be expanded as a Taylor series near zero discount
factor and provide a generalization of the Shapley iterations to compute an initial
segment of the Taylor series. It is very interesting that iterations subsequently
produce exact values of the Taylor series coefficients. We illustrate our technique
on tax evasion model.

There is a number of very interesting open research questions. In the case of
completely mixed games, can the generalized Shapley iterations be adapted to
some nominal values of the discount factor different from zero? Our numerical
experiments indicate that such generalization is likely to be possible but there is
no any more nice term-by-term convergence. Then, how to estimate the radius of
convergence of the obtained power series? If the game is not completely mixed,
how one can compute the Puiseux series expansion of the value of the game?
In the general case, one needs to deal with the fractional power Puiseux series
expansions instead of the Taylor series.
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