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Abstract

Finite sets of market data may not suffice to determine Pareto-improving
policies.
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When competitive markets fail to exhaust gains from trade, the question

arises whether it is possible to design policies that induce a Pareto improve-

ment. The transfer paradox, introduced by Leontieff,1 illustrates the difficul-

ties implicit in policy design: without information about fundamentals that

are unobservable, such as individual preferences, the prediction of the welfare

effects of economic policy is far from obvious.

The theory of general equilibrium with incomplete markets argues that

the problem of policy identification is, indeed, of interest: Geanakoplos and

Polemarchakis (1986) showed that, when individuals face uninsurable risks,

there exist, typically, policies of asset reallocation (which subjects the design

of the policy to the same financial constraints that bind the individuals in

the competitive market) that make every individual in the economy ex-ante

better off.2

Early literature on the empirical structure imposed by the competitive

equilibrium hypothesis at the aggregate level was understood to imply that

the difficulties associated with the identification of Pareto-improving poli-

cies were insurmountable: the Sonnenschein-Mantel-Debreu theorem3 was

understood to imply that no information about individual (unobservable)

preferences could be elicited from aggregate data.

Very perceptively, however, Brown and Matzkin (1990 and 1996) intro-

duced an element that was missing in the discussion of the empirical impli-

cations of the competitive equilibrium model: the effects of perturbations to

individual endowments yield testable restrictions on the graph of the equi-

librium correspondence of a standard exchange economy. This idea was ex-

ploited by Chiappori et al (2004), Matzkin (2005) and Carvajal and Riascos

1Leontieff (1936). Donsimoni and Polemarchakis (1994) stated the paradox in a general
setting; Turner (2004) finds bounds on the amount of trade that is required, at equilibrium,
for the transfer paradox to arise.

2This result, which had been suggested by Stiglitz (1982), was later refined by Citanna
et al. (1998) and it was extended to other types of policy by Citanna et al. (2001).

3Sonnenschein (1974), Mantel (1974), Debreu (1974); see also Mas-Colell (1977).
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(2005), to show that, in economies without uncertainty, the graph of the

equilibrium correspondence can be used to identify individual preferences.

The argument for identification extends to economies with uncertainty

and an incomplete asset market, as was shown by Kübler et al (2002) and

Carvajal and Riascos (2006); but the extension requires the observation of

relatively open subsets of the graph of the correspondence.

Here, we show that finite data sets of equilibrium information may be

insufficient for the identification of Pareto improving policies, let alone of

preferences. We restrict our attention to the types of policies considered

by the original argument of Geanakoplos and Polemarchakis (1986), and

show that finite data sets need not suffice for the identification of individual

marginal utilities of income in different states of the world.

The intuition for this failure of identification of Pareto-improving asset

reallocations is straightforward: Pareto-improving policies exist when mar-

ket incompleteness allows the vectors of marginal utilities of revenue across

states of the world of different individuals to diverge from co-linearity even

at equilibrium. But, with vectors of marginal utilities of revenue that are

neither identified nor collinear, Pareto-improving policies are unclear: on the

basis of observed data, a profile of preferences in which the policy leaves at

least one individual worse off cannot be ruled out.

1 Not everything will do

Consider a finite, two-period economy with uncertainty. Suppose that there

are I individuals, S states of nature and L commodities, with commodity 1

acting as numèraire, and that there are A < S linearly independent numèraire

assets. Denote asset payoffs in state s by rs ∈ RA.

Let U be the class of all strongly concave and strictly monotone C2 func-

tions v : RL
++ → R.
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For individual i, contingent on state s, endowments are ei
s À 0 and

preferences are ui
s ∈ U . There is no date-zero consumption, so a consumption

plan is x = (xs)
S
s=1. Ex-ante preferences are U i(x) =

∑S
s=1 ui

s(xs).

Let ps ∈ P = {p ∈ RL
++ : p1 = 1} be commodity prices contingent on

state s, and let p = (ps)
S
s=1. Denote asset prices by q, and let zi be individual

i’s portfolio of assets.

If (q, p, (zi, xi)I
i=1) is a financial markets equilibrium of this economy,

then, generically in the space of economies, there exists a redistribution of

individual asset holdings that makes every individual in the economy ex-

ante better off (Geanakoplos and Polemarchakis, 1986). That is, for some

(dzi)I
i=1, with

∑
i dzi = 0, it is true that, for all i, dU i =

∑
i dui

s > 0, where

dui
s is the (spot) general equilibrium welfare effect resulting from revenue

transfers (rsdzj)I
j=1 at spot equilibrium (ps, (x

j
s)

I
j=1) in exchange economy

(uj
s, e

j
s + rsz

j(1, 0, ..., 0))I
j=1.

Suppose that, after asset markets have closed, a planner who knows the

asset market and who has observed asset prices, q, and individual portfolios,

(zi)I
i=1, but who does not know the fundamentals of the economy, namely

state-contingent endowments and preferences, attempts to design one such

asset redistribution. From an application of the transfer paradox, it follows,

with minor qualifications, that this task is impossible: the appropriate policy

is not identified from observation of data from the asset markets alone.

Proposition 1. Information from asset markets does not identify Pare- to-

improving policies. Let (dzi)I
i=1 be an asset redistribution:

∑
i dzi = 0); if

for each state there is at least one individual whose income and utility are

perturbed (namely, rsdzi 6= 0 and dui
s 6= 0), then there exists an alternative

ex-ante economy, ((ũi
s, ẽ

i
s)

S
s=1)

I
i=1, that

1. cannot be ruled out on the basis of observed data: this economy has a

financial markets equilibrium, (q̃, p̃, (z̃i, x̃i)I
i=1), that is consistent with
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the observed data in the sense that q̃ = q and, for every individual,

z̃i = zi; and

2. yields the opposite welfare effects for the given policy: letting Ũ i(x) =∑
s ũi

s(xs), the ex-ante welfare effects of the given policy are, for each

individual i, dŨ i = −dU i.4

Proof. By construction, for each individual i, contingent on state s, marginal

utility of revenue is λi
s > 0 such that Dui

s(x
i
s) = λi

sps, while for some λi
0 > 0,∑

s λi
srs = λi

0q. Also, psx
i
s = pse

i
s + rsz

i and qzi = 0.

Define bi
s = − 1

λi
s
dui

s. For each s, since
∑

i dzi = 0, it follows that
∑

i b
i
s =

0 and, hence, by Donsimoni and Polemarchakis (1994), there exists an ex-

change economy (f i
s ∈ U , ωi

s À rsz
i(1, 0, ..., 0))I

i=1 and a pair (p̃s, (x̃
i
s)

I
i=1)

such that (i) (p̃s, (x̃
i
s)

I
i=1) is (spot) equilibrium for economy (f i

s, ω
i
s)

I
i=1; (ii)

Df i
s(x̃

i
s) = p̃s; and (iii) as a consequence of revenue transfer (dωi

1,s = rsdzi)I
i=1,

spot welfare effects are df i
s = bi

s.

Define ũi
s(x) = λi

sf
i
s(x) and ẽi

s = ωi
s − rsz

i(1, 0, ..., 0).

By construction, p̃sẽ
i
s +rsz

i = p̃sω
i
s and Dũi

s(x̃
i
s) = λi

sp̃s. Also,
∑

s λi
srs =

λi
0q,

∑
i x̃

i
s =

∑
i ẽ

i
s and

∑
i z

i = 0, so (q, p̃, (zi, x̃i)I
i=1) is a financial markets

equilibrium for the alternative economy.

On the other hand, for each s,

∑
s

dũi
s =

∑
s

λi
sdf

i
s =

∑
s

λi
sb

i
s = −

∑
s

λi
s

dui
s

λi
s

= −
∑

s

dui
s.

Hence, for a given asset reallocation, all the information available from

the markets that have actually been open fails to distinguish the true econ-

4For dŨ i, let dũi
s be the (spot) general equilibrium welfare effect, for individual i,

resulting from revenue transfers (rsdzj)I
j=1 at spot equilibrium (p̃s, (x̃j

s)
I
j=1) in exchange

economy (ũj
s, ẽ

j
s + rsz

j(1, 0, ..., 0))I
j=1, and let dŨ i =

∑
s dũi

s.
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omy from an alternative one in which the same reallocation has the opposite

welfare effects. In particular, the information does not distinguish an econ-

omy in which the policy is Pareto-improving from one in which it is Pareto

impairing.5

This basic result is subject to criticism if it is plausible to assume that

a planner may have available information from commodity markets for: (i)

multiple equilibria of the economy, or (ii) a longer history of observed data.

2 Multiple observations

Suppose now that, after asset markets have closed, when the asset redistribu-

tion is to be designed, the planner knows not only the prices and quantities of

the markets that have been open, but also future state-contingent commodity

prices, individual endowments and individual consumption plans. Suppose,

furthermore, that multiple observations are available. When this data set

is sufficiently rich so as to allow identification of individual income effects,

Kübler et al (2002) and Carvajal and Riascos (2006) have shown that, under

regularity conditions, unobserved fundamentals, namely preferences, can be

recovered. In order to identify income effects, however, these arguments re-

quire the observation of relatively open subsets of the equilibrium manifold,

which rules out the possibility of finite data sets. The question we address

here is whether finite data allow for identification of policies, even if not of

preferences.

Suppose that there are T observations: a data set is a sequence of prices

from all markets, individual plans for all variables, and individual endow-

5It should be noticed that this analysis assumes that individual endowments are un-
known. This is necessary in the argument only for the purpose of satisfying nonnegativity
constraints, and neither the fact that observed prices are part of a financial equilibrium
for the constructed economy, nor the fact that welfare effects go in opposite directions for
both economies depend on the exact value of the constructed endowments.
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ments in all states, (qt, pt, (zi,t, xi,t, ei,t)I
i=1)

T
t=1.

6 Assume that xi,t
s À 0 and

xi,t′
s 6= xi,t

s , when t′ 6= t, for every i, every t and every s.

Suppose that after asset markets have closed for the economy with en-

dowments (ei,T )I
i=1, and the observed equilibrium is (qT , pT , (zi,T , xi,T )I

i=1),

a Pareto-improving asset redistribution has to be designed. Suppose that

it is known that every observation in the data set reflects financial markets

equilibrium: for all t, it is known that (qt, pt, (zi,t, xi,t)I
i=1) is an equilibrium

for the economy with endowments (ei,t)I
i=1. Suppose also that, for every s,

(pT
s , (xi,T

s )I
i=1) is a regular equilibrium of (spot) economy (ui

s, e
i,T
s + rsz

i,T )I
i=1.

We next show that if individual preferences are unknown, with some qual-

ification, even all this information fails to identify Pareto-improving policies:

one can find a second profile of preferences, also consistent with the data,

with the property that any policy that is Pareto-improving in the first pro-

file makes at least one consumer worse-off if real preferences are the second

profile.

Denote by λi,t
s > 0 the marginal utility of revenue for individual i in state

s, for the t-th observation on the data set. By definition, Dui
s(x

i,t
s ) = λi,t

s pt
s.

Also, let λi,t
0 > 0 such that

∑
s λi,t

s rs = λi,t
0 qt.

Proposition 2. Suppose that for every individual, i, there exists a solution

((ki,t > 0)T
t=1, ((µ

i,t
s )S

s=1)
T−1
t=1 )

to the system of inequalities

ki,tDui
s(x

i,t
s ) · (xi,t

s − xi,T
s ) < µi,t

s , t ≤ T − 1;

µi,t
s < ki,T

∑
j 6=i λj,T

s

λi,T
s

Dui
s(x

i,T
s ) · (xi,t

s − xi,T
s ), t ≤ T − 1;

µi,t′
s < µi,t

s + ki,tDui
s(x

i,t
s ) · (xi,t′

s − xi,t
s ), t, t′ ≤ T − 1, with t 6= t′.

6Here, pt = (pt
s)

S
s=1, xi,t = (xi,t

s )S
s=1, and ei,t = (xi,t

s )S
s=1.
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Then, Pareto-improving policies are not identified by the data: there exist,

for every individual and state, state-contingent preferences, ũi
s ∈ U , that

1. cannot be ruled out on the basis of observed data: for each observa-

tion, ((qt, pt, (zi,t, xi,t)I
i=1) is a financial markets equilibrium for econ-

omy ((ũi
s, e

i,t
s )S

s=1)
I
i=1); and

2. yield opposite aggregate ex-ante welfare effects for every asset redistri-

bution at observation T : for every (dzi)I
i=1 such that

∑
i dzi = 0, it

is true that
∑

i dŨ i,T = −∑
i dU i,T .7 Moreover, if there are only two

individuals in the economy, ex-ante welfare effects are (dŨ1,T , dŨ2,T ) =

−(dU2,T , dU1,T ).

Proof. From a solution to the corresponding system of inequalities for each

individual, it follows from lemma 1 (see Appendix 1) that there exist state-

contingent preferences ũi
s ∈ U such that:

1. For every observation t ≤ T − 1, the gradient at xi,t
s satisfies

Dũi
s(x

i,t
s ) =

ki,t

ki,T
Dui

s(x
i,t
s );

2. In an open neighborhood of xi,T
s , the function satisfies

ũi
s(x) =

∑
j 6=i λ

j,T
s

λi,T
s

ui
s(x).

Fix t ≤ T − 1. Let λ̃i,t
s = ki,t

ki,T λi,t
s , for all i and all s = 0, ..., S. Given

7Here, dU i,T =
∑

s dui,T
s and dŨ i,T =

∑
s dũi,T

s , where dui,T
s and dũi,T

s are the welfare
effects for individual i, resulting from revenue transfers (rsdzj)I

j=1 at spot equilibrium
(pT

s , (xj,T
s )I

j=1) in exchange economies (uj
s, e

j,T
s + rsz

j,T )I
j=1 and (ũj

s, e
j,T
s + rsz

j,T )I
j=1,

respectively.
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condition 1 above, we have that

Dũi
s(x

i,t
s ) =

ki,t

ki,T
Dui

s(x
i,t
s ) =

ki,t

ki,T
λi,t

s pt
s = λ̃i,t

s pt
s,

while

∑
s

λ̃i,t
s rs =

∑
s

ki,t

ki,T
λi,t

s rs =
ki,t

ki,T

∑
s

λi,t
s rs =

ki,t

ki,T
λi,t

0 qt = λ̃i,t
0 qt,

from where ((qt, pt, (zi,t, xi,t)I
i=1) is an equilibrium for ((ũi

s, e
i,t
s )S

s=1)
I
i=1).

To see that ((qT , pT , (zi,T , xi,T )I
i=1) is an equilibrium for ((ũi

s, e
i,T
s )S

s=1)
I
i=1),

let λ̃i,T
s =

∑
j 6=i λ

j,T
s , for all i and s = 0, ..., S; observe that, by condition 2,

Dũi
s(x

i,T
s ) =

∑
j 6=i λ

j,T
s

λi,T
s

Dui
s(x

i,T
s ) =

∑

j 6=i

λj,T
s pT

s = λ̃i,T
s pT

s ,

while

∑
s

λ̃i,T
s rs =

∑
s

∑

j 6=i

λj,T
s rs =

∑

j 6=i

∑
s

λj,T
s rs =

∑

j 6=i

λj,T
0 qT = λ̃i,T

0 qT .

Now, let ΛT
s =

∑
i λ

i,T
s . Since, by condition 2 above, dpT

s is the same in

exchange economies (ui
s, e

i,T
s + rsz

i,T )I
i=1 and (ũi

s, e
i,T
s + rsz

i,T )I
i=1, it follows

that

dũi,T
s =

∑
j 6=i λ

j,T
s

λi,T
s

dui,T
s =

(
ΛT

s

λi,T
s

− 1

)
dui,T

s

and, hence,

∑
i

dũi,T
s = ΛT

s

∑
i

dui,T
s

λi,T
s

−
∑

i

dui,T
s = −

∑
i

dui,T
s ,
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because
∑

i dzi = 0 implies
∑

i
dui,T

s

λi,T
s

= 0. It then follows that

∑
i

∑
s

dũi,T
s =

∑
s

∑
i

dũi,T
s = −

∑
s

∑
i

dui,T
s = −

∑
i

∑
s

dui,T
s .

In the particular case of two individuals, with j 6= i, in a neighborhood

of xi,T
s , ũi

s = λj,T
s

λi,T
s

ui
s, while, by successive applications of Roy’s identity,

dui,T
s = λi,T

s (dps(e
i,T
s − xi,T

s ) + rsdzi(1, 0, ..., 0))

= λi,T
s (dps(x

j,T
s − ej,T

s )− rsdzj(1, 0, ..., 0))

= −λi,T
s

λj,T
s

duj,T
s ,

so
∑

s dũi,T
s =

∑
s

λj,T
s

λi,T
s

dui,T
s = −∑

s duj,T
s .

The assumption of the proposition guarantees the second order conditions

for the economy we construct, so it implies that the first order conditions are

not only necessary but also sufficient, as we need. This is required because we

need the ex-ante utility functions to be strongly quasiconcave: since we are

assuming additive separability of the ex-ante preferences, it does not suffice

for us to impose strong quasiconcavity of the state-contingent utility func-

tions, and we do require strong concavity; but then, since we construct the

alternative economy using local, noninfinitesimal perturbations of the norm

of the gradient of the original preferences (around the equilibrium consump-

tions for the observation where the policy has to be designed), we cannot

claim that the cardinal property is preserved automatically, and we need to

guarantee it by making up for these perturbations, at all other observed equi-

libria, uniformly across states (notice that, for all i, ki,t is independent of s);

a solution to the system of inequalities suffices for us to be able to preserve

strong quasiconcavity of ex-ante preferences after the perturbations.
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For every individual i, the system introduced by the proposition can be

rewritten as

ki,tλi,t
s pt

s · (xi,t
s − xi,T

s ) < µi,t
s , all s and t ≤ T − 1;

µi,t
s < ki,T

∑
j 6=i λ

j,T
s pT

s · (xi,t
s − xi,T

s ), all s and t ≤ T − 1;

µi,t′
s < µi,t

s + ktλi,t
s pt

s · (xi,t′
s − xi,t

s ), all s and t, t′ ≤ T − 1, with t 6= t′.

This system is a finite set of polynomial inequalities, so the set contain-

ing all the values of the variables that solve it is, by definition, a semi-

algebraic set (see Mishra, 1993). By the Tarski-Seidenberg theorem (see

theorem 8.6.6 in Mishra, 1993), its projection into the space of all variables

but ((ki,t)T
t=1, ((µ

i,t
s )S

s=1)
T−1
t=1 ) is itself semi-algebraic. This means that, given a

data set, there exists a finite set of polynomial inequalities on the (original)

vectors of marginal utilities of income, for all individuals that suffices for the

implication of the theorem. Since this application of the Tarski-Seidenberg

theorem does not immediately tell us how to find the quantifier-free equiv-

alent assumption (it only tells us that it exists, and that it defines a semi-

algebraic set), it is important to notice that the system introduced by the

theorem is linear on the quantified variables, so the problem of determining

whether it has a solution is equivalent to the first step of a linear program-

ming algorithm, and can be solved in finitely many steps (Blow et al, 2006).

Still, this does not rule out the possibility that there does never exist a solu-

tion to this system, in which case the theorem would be vacuous. Appendix

2 shows that this is not the case: two general conditions in which the system

has a solution are given in the appendix; they show that all the variables in

the system are used, and also that there may be cases in which conditions

are easy to check. For instance, if pT
s · (xi,t

s − xi,T
s ) ≤ 0, for all s and all

t ≤ T − 1, with strict inequality for some s and t, then the system does have

a solution for individual i. That is, if for each individual i and state s, bundle

xi,T
s is revealed preferred, in the ex-post sense, to every other xi,t

s , the system

10



has a solution and the data fails to identify Pareto-improving policies; this

is because, in this case, the required perturbations to the gradients are given

around the highest ‘observed’ indifference surfaces and, therefore, pose no

difficulty for strong concavity.

3 Multiple observations and rationalizability

Literature on the empirical content of theories distinguishes two problems:

rationalizability (existence) and identification (uniqueness) of fundamentals

consistent with observed data and theory. Typically, theoretical work con-

centrates on only one of the two problems and, in particular, literature on

identification takes rationalizability for granted (e.g. Kübler et al (2002),

Carvajal and Riascos (2006)). So far we have done the same: we have as-

sumed the existence of a profile of preferences that explains observed data

and have concentrated on finding a second profile which (i) is consistent with

the data too, and (ii) gives welfare effects that are opposite to the ones given

by the original profile, for any policy. This is a nonidentification result, by

(i), which is stronger and of particular interest, because of (ii); yet it still

assumes rationalizability.

One can study the rationalizability and identification problems simulta-

neously: consider the question of whether a data set can be rationalized by

two profiles of preferences with the property that any policy that is Pareto

efficient in one of them makes at least one individual worse off, if the real

preferences are the alternative profile.

In order to answer this question, it suffices that we substitute the as-

sumption that for some known preferences, ((ui
s)

S
s=1)

I
i=1, it is true that every

(qt, pt, (zi,t, xi,t)I
i=1) is an equilibrium for the economy ((ui

s, e
i,t
s )S

s=1)
I
i=1), by

an alternative condition on the data set that suffices to imply the existence

of that first profile of preferences.
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If one assumes that the data set does not directly violate equilibrium

conditions,8 then, using Theorem 2 in Matzkin and Richter (1991), it suffices

that there exist λi,t
s > 0 and ui,t

s , for all individual, state and observation, such

that ui,t′
s < ui,t

s + λi,t
s pt

s · (xi,t′
s − xi,t

s ), whenever t 6= t′, and λi,t
0 qt =

∑
s λi,t

s rs.
9

The importance of this assumption is that all these conditions, (includ-

ing the ones directly observed on the data) are polynomial inequalities, so by

adding them to the individual systems introduced by proposition 2, we have a

system that guarantees the existence of two profiles of preferences with oppo-

site aggregate ex-ante welfare effects for any asset reallocation. By appealing

again to the Tarski-Seidenberg theorem, it follows that this system can be

replaced by a finite set of conditions purely on the data set. By the results

obtained in appendix 2, it follows that such system is noncontradictory.

Corollary 1. There exists a finite,10 noncontradictory system of polynomial

inequalities that suffices for the existence of state-contingent preferences ui
s ∈

U and ũi
s ∈ U , for all i and s, satisfying that

1. for every t, observed (qt, pt, (zi,t, xi,t)I
i=1) is equilibrium for economy

((ui
s, e

i,t
s )S

s=1)
I
i=1;

2. for every t, observed (qt, pt, (zi,t, xi,t)I
i=1) is equilibrium for economy

((ũi
s, e

i,t
s )S

s=1)
I
i=1;

3. for every asset reallocation, (dzi)I
i=1, it is true that

∑
i

∑
s dũi,T

s =

−∑
i

∑
s dui,T

s .

Suppose that a planner has available a finite data set of prices, profiles of

endowments and trades. He may ask whether the data set can be explained

by the Walrasian model and, if so, whether it can be used to identify a

8That is, if pt
s(x

i,t
s − ei,t

s ) = rsz
i,t, qtzi,t = 0,

∑
i xi,t

s =
∑

i ei,t
s and

∑
i zi,t = 0.

9That the T -th observation can be taken as a regular equilibrium follows from Brown
and Sannon (2000).

10In (RA × PS × ((RL
++ × RL

++)S × RA)I)T .
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Pareto-improving policy. The corollary says that it may well happen that

the answer to the second part of the question is negative, although the answer

to the first part is affirmative.

4 Long histories of data

Suppose now that, unlike in the previous sections, the economy evolves over

a horizon of T periods, and that what one observes is the evolution of prices

over one competitive equilibrium path. We now argue that in this setting

the non-identification result extends, and that it is stronger in the sense that

it requires no qualification.

Let Σ be a finite tree of events. Denote by ΣT the set of terminal nodes.11

For every node σ, let f(σ) be the set containing all its immediate successors.

Denote by ΣT−1 the set of pre-terminal nodes 12 Let σ0 be the initial node,

and for every σ 6= σ0, let b(σ) denote its immediate predecessor.

State-contingent preferences and endowments for individual i are ui
σ ∈ U

and ei
σ ∈ RL

++. At every non-terminal node σ, there is a finite set, Aσ, of

one-period numèraire assets: at σ′ ∈ f(σ), the return of asset a ∈ Aσ is ra
σ′ .

Denote rσ = (ra
σ)a∈Ab(σ)

.

At node σ, commodity prices are pσ and individual consumptions are xi
σ.

At non-terminal σ, commodity prices are qσ and individual portfolios are zi
σ.

Suppose that a planner observes an equilibrium (p, q, (xi, zi)I
i=1), and sup-

pose that at a given pre-terminal node σ, an asset redistribution is to be

designed after asset markets have closed (so all that remains in the economy

is one last period of trade in commodities).13 Does the information about all

11For simplicity, it is assumed that all histories leading to a terminal node have the same
number of nodes.

12That is, σ ∈ ΣT−1 if, and only if, f(σ) ⊆ ΣT .
13As before, suppose that for each σ′ ∈ f(σ), (pσ′ , (xi

σ′)
I
i=1) is a regular equilibrium of

(spot) economy (ui
σ′ , e

i
σ′ + rσ′z

i
σ)I

i=1.

13



prices and quantities, past, present and future, and even counterfactual (from

states that did not or will not occur) identify Pareto improving interventions?

Proposition 3. Market information does not identify Pareto improving poli-

cies. That is, let (p, q, (xi, zi)I
i=1) be a financial markets equilibrium for

economy ((ui
σ, e

i
σ)σ∈Σ)I

i=1; there exist individual state-contingent preferences

ũi
σ ∈ U , for all i and all σ, that

1. cannot be ruled out on the basis of observed data: observed (p, q, (xi,

zi)I
i=1) is a financial markets equilibrium for ((ũi

σ, e
i
σ)σ∈Σ)I

i=1 too; and

2. give opposite aggregate welfare effects for any asset reallocation: for ev-

ery preterminal node, σ ∈ ΣT−1, and every asset reallocation (dzi
σ)I

i=1,
14

it is true that

∑
i

∑

σ′∈f(σ)

dũi
σ′ = −

∑
i

∑

σ′∈f(σ)

dui
σ′ .

Proof. The argument is similar to the proof of proposition 2, so details are

omitted. For each i, let λi
σ be the marginal utility of income at equilibrium

in state σ. Define the new preferences by

ũi
σ(x) =

∑
j 6=i λ

j
σ

λi
σ

ui
σ(x).

When there are only two consumers, the stronger implication that the

equilibrium information fails to distinguish an economy in which a policy

is Pareto-improving and one in which it is Pareto-impairing still applies.

Importantly, this result requires no qualification, since utility perturbations

14As before,
∑

i dzi
σ = 0
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are given globally without compromising strong concavity. An immediate

extension follows.

Corollary 2. Suppose that for every individual i, there are state-independent

preferences ui ∈ U such that state-contingent preferences are ui
σ = πi

σu
i

for some πi
σ > 0. Let (p, q, (xi, zi)I

i=1) be a financial markets equilibrium

for (ui, (πi
σ, e

i
σ)σ∈Σ)I

i=1. There exist individual state-independent preferences

ũi ∈ U and state weights π̃i
σ > 0 that

1. cannot be ruled out on the basis of observed data: observed (p, q, (xi,

zi)I
i=1) is a financial markets equilibrium for (ũi, (π̃i

σ, e
i
σ)σ∈Σ)I

i=1; and

2. give opposite aggregate welfare effects for any asset reallocation: for

every preterminal node, σ ∈ ΣT−1, and every asset reallocation (dzi)I
i=1,

it is true that 15

∑
i

∑

σ′∈f(σ)

π̃i
σ′dũi

σ′ = −
∑

i

∑

σ′∈f(σ)

πi
σ′dui

σ′ .

Proof. Define λi
σ as in the previous proof, and let ũi = ui and

π̃i
σ =

∑
j 6=i λ

j
σ

λi
σ

πi
σ.

5 Concluding remarks

If an economy is nonstationary, observation of all market information does

not suffice to identify Pareto-improving policies. There exists a profile of

15Here, dui
σ− and dũi

σ′) are, respectively, individual i’s welfare effects resulting from
revenue transfer (rσ′dzj)I

j=1, at spot equilibrium (pσ′ , (x
j
σ′)

I
j=1), in exchange economies

(uj , ej
σ′ + rσ′z

j(1, 0, ..., 0))I
j=1 and (ũj , ej

σ′ + rσ′z
j(1, 0, ..., 0))I

j=1.

15



preferences which would have yielded the exact same equilibrium information,

but for which any reallocation policy would have opposite effects: if it is

Pareto-improving in the real economy, there is at least one individual who is

made worse off in the other economy. The intuition is that one equilibrium

is not enough to pin down the vector of marginal utilities of income at the

terminal nodes for each individual. One can shuffle and add these vectors

across individuals and still respect observed market behavior. The fact that

one cannot rule out these different profiles of marginal utilities is relevant

when they are not collinear, which is the condition under which Pareto-

improving reallocations exist in the first place. The result is then most

meaningful: the same feature of the equilibrium that explains the existence

of Pareto-improving policies implies that it is impossible to identify one such

policy.

When the data set is a series of equilibrium prices and endowments

for a two-period economy, the problem is more restrictive and the non-

identification results are weakened. This is so, because the shuffling and

addition of marginal utilities of income implies non-infinitesimal perturba-

tions to the (norm of the gradient of) utility functions at the points where

policy is to be attempted. When multiple equilibria have to be rationalized,

these perturbations must be local. But then, since we have additively sep-

arable preferences, the necessity to guarantee concavity weakens the result.

In this paper, we guarantee concavity via a system similar to Afriat inequal-

ities. It follows that there do exist conditions on the data under which one

can ensure the existence of multiple rationalizations yielding different welfare

effects for any policy.

In both settings, when identification fails, market performance is less

questionable on grounds of its inefficiency. Granted, there may be Pareto-

improving policies, but market information does not suffice for their design.

Open questions remain: our setting does not consider Markovian econo-
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mies; we do not consider policies other than asset reallocation; by the quali-

fication of the result in the case of multiple observations, our results cannot

say what happens as one increases, asymptotically, the number of observa-

tions in a neighborhood of the equilibrium where policy is to be designed;

finally, our results do not say whether or not a mechanism can be designed

in order to elicit information about the consumers’ preferences.

Appendices

Appendix 1: Non-infinitesimal perturbation of a strongly

concave function

Lemma 1. Fix u ∈ U , Λ ∈ R++ and take a finite sequence (xt)T
t=1 in RL

+,

such that xt 6= xt′ for t 6= t′. Let ((kt > 0)T
t=1, (µ

t)T−1
t=1 ) solve the system

ktDu(xt) · (xt − xT ) < µt, all t ≤ T − 1;

µt < kT ΛDu(xT ) · (xt − xT ), all t ≤ T − 1;

µt′ < µt + ktDu(xt) · (xt′ − xt), all t, t′ ≤ T − 1, with t 6= t′.

There exists ũ ∈ U such that:

1. for every t ≤ T − 1, Dũ(xt) = kt

kT Du(xt);

2. there exists ε > 0 such that, for all x ∈ Bε(x
T ), ũ(x) = Λu(x).

Proof. For every t ≤ T − 1, define vt = Λu(xT ) + µt

kT . By construction,

Λu(xT ) < vt + kt

kT Du(xt) · (xT − xt), all t ≤ T − 1;

vt < Λu(xT ) + ΛDu(xT ) · (xt − xT ), all t ≤ T − 1;

vt′ < vt + kt

kT Du(xt) · (xt′ − xt), all t, t′ ≤ T − 1, with t 6= t′.

As in Matzkin and Richter (1991), define h : RL → R+, as h(x) =
√
‖x‖2 + 1

17



−1. Function h is C2 and strongly convex, satisfies that h(x) = 0 only for

x = 0, and the value of all its partial derivatives always lies in [0, 1).

Since T is finite, there exists γ > 0 such that

Λu(xT ) < vt +
kt

kT
Du(xt) · (xT − xt)− γh(xT − xt),

and

vt′ < vt +
kt

kT
Du(xt) · (xt′ − xt)− γh(xt′ − xt),

for all t, t′ ≤ T − 1, t 6= t′. Further, restrict γ to

0 < γ < min
l≤L,t≤T−1

kt

kT

∂u

∂xl

(xt).

Now, for each t ≤ T − 1, define φt : RL → R by

φt(x) = ut +
kt

kT
Du(xt) · (x− xt)− γh(x− xt),

while φT : RL → R is given by φT (x) = Λu(x). Notice that every φt function

is strictly concave, whereas, for each t ≤ T − 1 and every l ∈ {1, ..., L},

∂φt

∂xl

(x) =
kt

kT

∂u

∂xl

(xt)− γ
∂h

∂xl

(x− xt) >
kt

kT

∂u

∂xl

(xt)− γ > 0.

Define ũ : RL
+ → R by ũ(x) = min{φ1(x), ..., φT (x)}. Function ũ is

continuous, strongly concave, strictly monotone and differentiable almost

everywhere. Differentiability everywhere can be obtained as in Chiappori

and Rochet (1987). By continuity, for each t there exists εt > 0 such that,

for all x ∈ Bεt(x
t), u(x) = φt(x).
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Appendix 2: Solutions to the system in Proposition 2

Some general cases in which the system introduced in proposition 2 has a

solution are presented here.

Fix an individual, i, and define Λt
s =

∑
j 6=i

λj,t
s

λi,t
s

. For the sake of simplicity,

ignore, from now on, the superindex i. Define

M t
s = {t′ ≤ T − 1 : Dus(x

t
s) · (xt′

s − xt
s) < 0}

and

P t
s = {t′ ≤ T − 1 : Dus(x

t
s) · (xt′

s − xt
s) > 0}.

Perturbation to the gradients at all t

Define

Mt = {s : Dus(x
t
s) · (xT

s − xt
s) < 0},

Pt = {s : Dus(x
t
s) · (xT

s − xt
s) > 0},

M = {(s, t) : t ≤ T − 1 ∧Dus(x
T
s )(xT

s − xt
s) < 0},

P = {(s, t) : t ≤ T − 1 ∧Dus(x
T
s )(xT

s − xt
s) > 0},

and denote

Lt
s = max

t′∈P t
s

Λt′
s (us(x

t′
s )− us(x

T
s ))− Λt

s(us(x
t
s)− us(x

T
s ))

Dus(xt
s) · (xt′

s − xt
s)

,

U t
s = min

t′∈Mt
s

Λt′
s (us(x

t′
s )− us(x

T
s ))− Λt

s(us(x
t
s)− us(x

T
s ))

Dus(xt
s) · (xt′

s − xt
s)

,

Lt = maxs∈Mt Λt
s, Ut = mins∈Pt Λt

s, U = min(s,t)∈M
Λt

s

ΛT
s
, and L = max(s,t)∈P

Λt
s

ΛT
s
.

Suppose that

1. L ≤ U;
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2. for all t ≤ T − 1 and all s, M t
s ∪ P t

s = {1, ..., T − 1};

3. for all t, [Lt,Ut] ∩⋂
s(L

t
s, U

t
s) 6= ∅.

and let

1. kT ∈ [L,U];

2. for all t ≤ T − 1 and all s, µt
s = Λt

s(us(x
t
s)− us(x

T
s ));

3. for all t, kt ∈ [Lt,Ut] ∩⋂
s(L

t
s, U

t
s).

By strong concavity, us(x
t′
s ) < us(x

t
s) + Dus(x

t
s) · (xt′

s − xt
s), for all s and

all t, t′ ≤ T , t 6= t′.

Fix s and t ≤ T−1. Since Λt
s > 0, we have that Λt

sDus(x
t
s)·(xt

s−xT
s ) < µt

s.

Then: if Dus(x
t
s)·(xT

s −xt
s) < 0, since kt ≥ Λt

s, then µt
s > ktDus(x

t
s)·(xt

s−xT
s );

if Dus(x
t
s) · (xT

s − xt
s) > 0, since kt ≤ Λt

s, then µt
s > ktDus(x

t
s) · (xt

s − xT
s ); if,

alternatively, Dus(x
t
s) · (xT

s − xt
s) = 0, then µt

s > 0 = ktDus(x
t
s) · (xt

s − xT
s ).

This yields the first equation of the system.

Again, since Λt
s > 0, we have that µt

s < Λt
sDus(x

T
s ) · (xt

s − xT
s ). Then: if

Dus(x
T
s ) ·(xt

s−xT
s ) > 0, since kT ≥ Λt

s

ΛT
s
, then µt

s < kT ΛT
s Dus(x

T
s ) ·(xt

s−xT
s ); if

Dus(x
T
s )·(xt

s−xT
s ) < 0, since kT ≤ Λt

s

ΛT
s
, then µt

s < kT ΛT
s Dus(x

T
s )·(xt

s−xT
s ); if,

alternatively, Dus(x
T
s )·(xt

s−xT
s ) = 0, then µt

s < 0 = kT ΛT
s Dus(x

T
s )·(xt

s−xT
s ).

This yields the second equation of the system.

Now, fix s and t, t′ ≤ T − 1, t 6= t′. If Dus(x
t
s) · (xt′

s − xt
s) > 0, since

kt >
Λt′

s (us(x
t′
s − us(x

T
s ))− Λt

s(us(x
t
s − us(x

T
s ))

Dus(xt
s) · (xt′

s − xt
s)

,

it follows by construction that µt′
s < µt

s + ktDus(x
t
s) · (xt′

s − xt
s). If, on the

other hand, Dus(x
t
s) · (xt′

s − xt
s) < 0, since

kt <
Λt′

s (us(x
t′
s − us(x

T
s ))− Λt

s(us(x
t
s − us(x

T
s ))

Dus(xt
s) · (xt′

s − xt
s)

,
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it follows again that µt′
s < µt

s + ktDus(x
t
s) · (xt′

s − xt
s). Finally, notice that

Dus(x
t
s) · (xt′

s − xt
s) = 0 does not occur, by assumption. This yields the third

condition of the system.

Perturbation to the gradients at T only

Suppose that there are s and s′ such that P T
s 6= ∅ and MT

s 6= ∅, and denote

that

L = max
s:P T

s 6=∅
max
t∈P T

s

us(x
t
s)− us(x

T
s )

ΛT
s Dus(xT

s ) · (xt
s − xT

s )

and

U = min
s:MT

s 6=∅
min
t∈MT

s

us(x
t
s)− us(x

T
s )

ΛT
s Dus(xT

s ) · (xt
s − xT

s )
.

Suppose that L < U . Let

1. kT ∈ (max{0, L}, U);

2. for all t ≤ T − 1 and all s, let µt
s = us(x

t
s)− us(x

T
s );

3. for all t, kt = 1.

Using strong concavity, the first and third conditions of the system are

immediate. Now, fix s and t ≤ T − 1. If Dus(x
T
s ) · (xt

s − xT
s ) > 0, then

kT >
us(x

t
s)− us(x

T
s )

ΛT
s Dus(xT

s ) · (xt
s − xT

s )
,

so µt
s < kT ΛT

s Dus(x
T
s ) · (xt

s − xT
s ). If Dus(x

T
s ) · (xt

s − xT
s ) < 0, then

kT <
us(x

t
s)− us(x

T
s )

ΛT
s Dus(xT

s ) · (xt
s − xT

s )

so µt
s < kT ΛT

s Dus(x
T
s ) · (xt

s − xT
s ). Finally, if Dus(x

T
s ) · (xt

s − xT
s ) = 0, then

us(x
t
s) < us(x

T
s ), so µt

s = us(x
t
s) − us(x

T
s ) < 0 = kT ΛT

s Dus(x
T
s ) · (xt

s − xT
s ).

This yields the second condition of the system.
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Notice that, by construction, for this case to apply it suffices that us(x
t
s) ≤

us(x
T
s ) whenever Dus(x

T
s ) · (xt

s − xT
s ) > 0. Notice also that the solution can

easily be given if P T
s = ∅, for all s, but MT

s′ 6= ∅ for some s′, or if MT
s = ∅,

for all s, but P T
s′ 6= ∅ for some s′.
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