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Abstract. Spatial normalization is one of the most important steps
in population based statistical analysis of brain images. This involves
normalizing all the brain images to a pre-defined template or a pop-
ulation specific template. With multiple emerging imaging modalities,
it is quintessential to develop a method for building a joint template
that is a statistical representation of the given population across dif-
ferent modalities. It is possible to create different population specific
templates in different modalities using existing methods. However, they
do not give an opportunity for voxelwise comparison of different modal-
ities. A multimodal brain template with probabilistic region of inter-
est (ROI) definitions will give opportunity for multivariate statistical
frameworks for better understanding of brain diseases. In this paper, we
propose a methodology for developing such a multimodal brain atlas us-
ing the anatomical T1 images and the diffusion tensor images (DTI),
along with an automated workflow to probabilistically define the differ-
ent white matter regions on the population specific multimodal template.
The method will be useful to carry out ROI based statistics across differ-
ent modalities even in the absence of expert segmentation. We show the
effectiveness of such a template using voxelwise multivariate statistical
analysis on population based group studies on HIV/AIDS patients.

Keywords: Multimodal brain atlas, Probabilistic white matter parcel-
lation map, HIV, DTI-T1 brain template

1 The need for a probabilistic multimodal atlas

The growth in brain imaging data across different modalities gives an opportu-
nity to understand the disease progression and make correlations across them.
Statistical analysis across different modalities and across population require spa-
tial normalization. All the brain images are often normalized to a pre-defined
template, for example the ICBM-152 or MNI template. However in [1] and [2],
the authors have shown that choosing a generic template biases the statistical
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results. For example, if one intends to do statistical analysis on a population
of children, choosing an MNI template will involve an unintended scaling of all
the brain images in the population adding a bias to the results. Moreover the
generic MNI-T1 template is not a statistical representation of the population
under consideration. The importance of multimodal brain atlases is discussed in
detail in [3]. We support the need of such a multimodal template by comparing
two groups of population. One of the groups comprises 18 healthy controls with-
out any episodes of neurological disorder and another group of 30 patients with
HIV associated neurocognitive disorder.

Some of the most common atlases being used today for spatial normalization
are the ICBM (International Consortium of Brain Mapping), the MNI (Montreal
Neuroimaging Institute) atlas and the FMRIB58 FA atlases. The ICBM initia-
tive has provided the neuroimaging community with a number of brain atlases.
The three atlases which we will like to discuss here are the nonlinear version
of ICBM T1 atlas, ICBM DTI-81 atlas and the white matter parcellation map
(WMPM) [4]. It should be noted that though the atlases are in the MNI co-
ordinate space, they are not necessarily built with the same population. Thus,
the DTI atlas and the T1 atlas do not represent the variability across differ-
ent modalities in the same population and so are not suited for a multimodal
statistical analysis. There are two different versions of the ICBM T1 template.
The first one was built in 2001 using an affine registration which was followed
by another one built in 2009 using affine and nonlinear image registration. The
2009 version presents a more detailed outline of different brain structures as
compared to its previous version 1. Some of the drawbacks of the present ICBM
atlases are as follows,

1. The DTI atlas was affinely aligned with the 2001 affine version of ICBM T1
template.

2. For creating the DTI atlas, scalar averaging of tensor elements was per-
formed.

3. The DTI-81 data is normalized using an affine registration which increases
the chances of misalignment of different brain structures.

4. The ICBM DTI-81 and ICBM 152 nonlinear atlases are independent atlases
in their own right. However, the atlases cannot be used for a multimodal
study because they are not aligned in the same geometrical space.

In the following sections, we present an automated workflow to build a multi-
modal brain atlas using DTI and T1 images. Unlike the ICBM atlases, this atlas
is in the same coordinate space which allows voxelwise comparison across the
two modalities. In addition to the multimodal template we also present a method
to probabilistically transfer the white matter labels in our template space. This
opens further room for ROI based statistics on white matter region. Out of many
possible applications to the presented atlas, we illustrate the applicability and
relevance of the method by building a multimodal template to compare groups
of HIV/AIDS patients with controls.

1 The ICBM family of templates are available for download at http://www.loni.usc.
edu/atlases/Atlas_Detail.php?atlas_id=5
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Fig. 1. Workflow for generating joint T1 and DTI brain atlas. Registrations and the
corresponding transforms are color matched

2 Atlas construction

2.1 Joint T1 and DTI template

An unbiased T1 atlas is constructed using the methodology outlined in [5] and
[6]. In principle, a similar method can be used to make a DTI template from a
given population. However, in such a case the DTI template and the T1 template
will be in different spaces and a comparative study across different modalities
cannot be performed. For constructing a joint T1 and DTI template, we propose
a workflow that takes into account physically plausible transformations that
exists in the image space and across modalities. The workflow is shown in figure 1.
The dicom images were extracted using the MRIcron software into a nifti image
format. The diffusion weighted images (DWIs) are corrected for eddy currents
distortions and head motion using the FSL toolbox. N4ITK bias correction tool
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[7] was used for intensity bias correction in the T1 images. The undiffused (B0)
images and the T1 images are rigidly registered using FSL’s flirt tool using seven
degrees of freedom and mutual information cost function to take into account
the multimodality of the images. Seven degrees of freedom for the registration
takes into account the rigid motion of the head (rotation and translation) along
with the scaling of the voxels that is present due to differences in the field of view
of the B0 and the T1 images during image acquisition. The T1 images were first
aligned to the T1 template using an affine followed by a nonlinear registration
using LCC-demons algorithm [8]. The rigid transform between the subject’s B0
and T1 images, the affine and nonlinear deformation field are composed in order
to produce the net deformation field. The diffusion images are then resampled
into the T1 template image space using the composed deformation field. The
combined deformation field can be expressed using a displacement field (u). The
local linear transformation an be described as

T = I +
du

dx
,

where I is the identity matrix and du
dx Jacobian of the deformation field at the

point x. The Jacobian matrix can be decomposed into a rotation component R
and a deformation component P using the polar decomposition theorem. Using
singular value decomposition (SVD), the rotation matrix R ca be computed as

R = UV T ,

where F = UWV T is the singular value decomposition of the matrix F . The
diffusion gradient directions are then transformed to the new space using the
rotational component of the transformation for each voxel as

gv = RgT ,

where g is the diffusion gradient direction and gv is the transformed gradient
direction. The diffusion tensors are then estimated in the tensors are then esti-
mated in the template space using the algorithm presented in [9]. Once the diffu-
sion tensors are estimated, they are averaged using the Log-Euclidean framework
[10] to compute the DTI template. This workflow produces a combined T1 and
DTI template in a common geometrical space.

2.2 Probabilistic white matter

For computing ROI based statistical analysis, it is important to have an accurate
segmentation of the white matter regions. However, an accurate segmentation
is a difficult problem because of the partial volume effects in the images which
makes the segmentation task particularly difficult. In such a scenario it is desir-
able to have an automated probabilistic segmentation of the ROIs. A probabilis-
tic segmentation allows us to attach an additional level of accuracy depending
on how conservative one is in choosing the ROIs, thus mitigating the problems
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due to misregistration to certain extent. For generating a probabilistic parcella-
tion of the white matter, we used the celebrated ICBM-WMPM as a prior. The
WMPM is defined in the ICBM-DWI template space. he ICBM-DTI and the
ICBM-152 affine template are aligned and share the same geometric space. Thus
a registration using the ICBM-152 template will approximate a registration be-
tween the ICBM-DWI and the ICBM-152 nonlinear template. The workflow for
transferring the labels is shown in figure 2. The different steps involved in the
transferring the labels is enumerated as,

1. The ICBM-152 affine template is affinely aligned with the 2009 ICBM-152
nonlinear template.

2. The ICBM-152 nonlinear template (moving image) is registered with the
T1 image (fixed image) of each of the subject using an affine and nonlinear
registration. The target image for the registration is the T1 image

3. Similarly, the subject T1 image (moving image) is registered with the population-
specific template (fixed image) created before.

4. All the transformations are composed in the same order for each subject.
5. The respective transformations for each subject are applied to the the ICBM-

WMPM for transferring the labels.
6. All the transferred labels are averaged to produce the probabilistic parcella-

tion map.

All the anatomical T1 registrations are carried out using LCC-demons algorithm
in both the workflows.

3 Results

A total of 18 controls and 30 patients with HIV associated neurocognitive dis-
order (HAND) were chosen for the study. The images were acquired using a 1.5
T MRI scanner (GE Signa HDxt R©). T1-weighted images were acquired using a
magnetization prepared 3D Spoiled Gradient Recalled (SPGR) sequence (TR =
12.4 ms, TE = 5.2 ms, TI = 300 ms, flip angle = 18

◦
, FOV = 240 mm). The

T1 images have 256×256×248 voxels, with an isotropic voxel size of 0.6 mm.The
DTI data was acquired with 23 encoding gradient direction and one undiffused
B0 image . The diffusion weighted images has 256×256×26 voxels with sizes
0.9375×0.9375×5.5 mm3. The b-value for the acquisition was 700 s/mm2.

3.1 Multimodal template and probabilistic ROIs

Figure 3.1 shows the multimodal template. The different structures across the
two modalities T1 and DTI are in good agreement as shown in the figure. The
top row shows the FA template (in red-yellow) overlayed on the anatomical T1
image. In the bottom row we show good agreement between the DTI and T1
templates. A close-up shows the diffusion tensors in genu and spelnium of the
corpus callosum in detail. In order to facilitate ROI based statisitcs, all the 52
white matter labels defined in ICBM-WMPM are transferred to this population
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Fig. 2. Workflow for transferring white matter labels in ICBM-WMPM to a population
specific multimodal atlas. The ICBM DTI-81 and the ICBM 152-affine atlas are defined
in the same geometry. The ICBM-152 affine template is affinely registered with the
ICBM-152 nonlinear template. The ICBM nonlinear template is then registered with
each of the subject’s T1 image which is again registered with the population specific T1
templated The arrows show the registration paths and the corresponding registration
methods are shown above the arrows.

specific template. In figure 4 probabilistic ROIs for external and internal cap-
sule, middle cerebellar peduncle (MCP) and corpus callosum is shown. It also
shows a probabilistic iso-surface rendition of the MCP and corpus callosum. The
probability of a voxel being classified in a certain ROI is highest in the center
and decreases outwards as expected from blue to red. Such renditions can be
used for shape analysis of individual white matter structures.

3.2 Statistical analyses on HIV patients

A multimodal population specific brain atlas can be used for multivariate sta-
tistical analysis. As opposed to the univariate analysis, in this case it is possible
to combine information from different modalities which increases the statistical
power of the test. In univariate analysis like tract based spatial statistics (TBSS)
or voxel based morphometry, the focus of study is to find changes in a single
tissue type. In order to illustrate one possible application of such a multimodal
template, we use the FA images from the DTIs and log-Jacobian from the T1
registration. FA images contain information about the white matter integrity,
where as the logarithm of the Jacobian determinant of the deformation field
gives information about local volume shrinkage or expansion. For conducting
the statistical test, first a multimodal template is created as mentioned above.
All DTIs and T1 images are registered to the common template space. FA maps
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Fig. 3. The multimodal brain template. Top row: FA template overlayed on the T1
template. Bottom row: DTI template is overlayed on top of T1 template. The zoomed
section shows good alignment of diffusion tensors along the corpus callosum above and
below the ventricles.

are computed from the registered DTIs and the log-Jacobian maps are computed
from the deformation field resulting from T1 image registration. Thus, we have
a voxelwise multi-channel information. A non-parametric distribution free per-
mutation test is used for comparing the control group against the patients. The
test-statistic as suggested in [11] is used for the permutation test.

Tn1,n2
=

n1n2

n1 + n2

[
1

n1n2

n1∑
i=1

n2∑
j=1

||V1,i −V2,j|| −
1

2n2
1

n1∑
i=1

n1∑
j=1

||V1,i −V1,j||

− 1

2n2
2

n2∑
i=1

n2∑
j=1

||V2,i −V2,j||
]
,

where ||.|| is the Euclidean distance, n1 and n2 are the sizes of control and HAND
patients respectively. V and is the vector of two elements as described above.
We used 1000 random permutations to generate the distribution. The figure
5 compares the result of univariate analysis against the multivariate analysis.
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Fig. 4. Probabilistic ROIs for some of the representative white matter structures are
shown overlayed on the T1 image for anatomical reference. Bottom-right image shows
3D probabilistic iso-surfaces for corpus callosum and middle cerebral peduncle.

In the top row red-yellow and blue-lightblue shows the statistically significant
regions at 5% significance level for FA and log-Jacobian respectively. The bottom
row shows the significantly different regions for multivariate tests. It should be
noted that with the multivariate tests, we are able to detect more regions of
differences between the controls and HAND patients and thus attributing a
higher detection power to such multivariate treatment of images.

4 Conclusion

In this paper we have presented a novel workflow for creating a multimodal T1
and DTI template which can be used for population based statistical studies. In
our knowledge, there have been very few attempts in the past to perform group
study by fusing multiple modalities and making a true multimodal brain atlas.
The main idea of the paper is to combine the well accepted existing tools in order
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Fig. 5. Statistically significant regions of difference. Top row: Univariate results on
FA (red-yellow) and log-Jacobian (blue-lightblue) of the deformation field from T1
registration. Bottom row: Multivariate (red-yellow) statistical test. The images show
the test-statistic values between 0.95 and 1 corresponding to 5% significance level.

to make a workflow and suggest methods for multimodal statistical analysis. We
created a probabilistic atlas of white matter regions using the ROI definitions
from the WMPM labels. The multimodal atlas will have a wide variety of appli-
cations in the future. For example, one can use the probabilistic ROI definition
as a prior for manual segmentation. It will be possible to correlate measures
across different modalities giving us a better understanding of neuro-pathologies
and possibly seek for biomarkers. We already showed an illustration of the pos-
sible applications in the case of HAND patients. The multivariate framework
seems to have a higher detection power. However, the clinical relevance of these
findings remain to be seen. The methods presented in this paper can easily be
adopted to create any other population specific multimodal templates. However,
we are intending to make this atlas public for research purposes. In the future, it
will interesting to look into building a spatio-temporal population specific brain
atlases. Such an atlas will give deep insights into disease progression in case of
progressive neuro-degenerative diseases like AIDS, Alzheimer’s disease and ALS.
One of the major contributions of this work is that with the presented method,
it is possible to combine well accepted pre-existing tools for creating a popula-
tion specific multimodal brain atlas and use the same for multimodal statistical
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analysis.
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