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Abstract—Cloud computing and Internet of Things (IoT)
represent two different technologies that are massively being
adopted in our daily life, playing a fundamental role in the
future Internet. One important challenge that need to be handled
is the enormous amount of data generated by sensing devices,
that make the control of sending useless data very important. In
order to face with this challenge, there is a increasing interest
about predictive approaches to avoid to send high spatio-temporal
correlated data. Belief Propagation (BP) algorithm is a method of
performing approximate inference on arbitrary graphical models
that is becoming increasingly popular in the context of IoT.
By exploiting BP, we can derive effective methods to drastically
reduce the number of transmitted messages, while keeping high
the data throughput in the global information system.

In this paper, we propose a BP approach in a hierarchical
architecture with simple nodes, gateways and data centers. We
evaluate the error bounding and propose a corrective mechanism
to keep a certain quality of the global information in the
architecture considered.

Keywords—IoT-based, Belief Propagation, Cloud.

I. INTRODUCTION

Recently, with the evolution of the Internet and related
technologies, there has been an evolution of a new emerging
paradigm, namely the Internet of Things (IoT) [2]. In IoT
scenarios, a large number of devices –and more in general
objects– are seamlessly connected to each another for informa-
tion sharing through the Internet. All these devices connected
to the IoT may be of heterogeneous types with respect to their
operational mode, and communication technologies. As one
of the main strengths behind the IoT paradigm, it is the high
impact on several aspects of everyday-life, from working to the
domestic fields. As an instance, domotics [13], e-health [7],
and smart cities [4], [9] are main application scenarios where
the IoT paradigm is expected to play a leading role in the next
future.

From the above considerations, and due to the huge amount
of heterogeneous devices, information sharing among IoT
devices is one of the biggest challenges. Classic Internet
approaches need to be revised to address the complex re-
quirements imposed by IoT. This asks for the development
of intelligent algorithms for routing [1], information sharing
security [6], [5], novel network paradigms [8], [14], [16],
new services [11], [15], and advanced techniques for data
fusion [3].

A few related works have addressed the issue of forwarding
data among IoT devices, by modelling the IoT network as
a Bayesian network [3], [10], [12]. Under this hypothesis,
Bijarbooneh et al. [3] present an adaptive sensing belief prop-
agation algorithm, where each node updates its belief about
the environment status by incorporating its local measurement
with the beliefs of its neighboring nodes and the belief obtained
in the past. Finally, a cloud-based network architecture allows
reducing energy consumption for data fusion and storage tasks
through a carefull selection of the set of IoT nodes involved
in the distributed estimate of the environment status.

In this paper, we address the connectivity issue among IoT
heterogeneous devices for data sharing, under the hypothesis of
Bayesian network i.e. . We assume each IoT device represents
a node in the IoT network with some sensing and processing
capabilities. Moreover, these devices may be located at differ-
ent places across the globe. They are connected to the Internet,
althgough the rate of data transfer, and the supported security
level may be different. Each node needs to get information
about its local environment, in order to perform some task
and/or to provide this information to a higher decision level.
As an instance, an IoT node deployed in a domestic network
may need information about current and future usage of some
limited resources, like energy or communication bandwidth, to
orchestrate their comsumption with the help of the opther IoT
devices controlling specific appliances. Data exchange among
devices allows a single node to increase its own knowledge
of global information and optimize the scheduling of the tasks
that it has to accomplish with the usage of a shared resource.

In this paper, we present a data sharing approach based
on Pearl’s Belief Propagation (BP) algorithm in the IoT
context with a cloud-based architecture. BP is an iterative
technique mainly used for solving inference problems. In the
IoT context, the belief of a device (e.g., a sensor node) is
the data measurement. The BP infers the measurements of
other neighboring devices, especially in cases where the data
is missing. Moreover, the BP technique allows to correct the
errors that can occur in the data propagation. At each run,
the BP provides to the devices both spatial and temporal
cooperation. Indeed, in BP-based approaches, each sensor node
determines its belief by incorporating its local measurement
with the beliefs of its neighboring nodes, as well as its beliefs
obtained in the past run. Then, at each run, we assume a node
is able to (i) reduce the own distortion level (i.e., estimation
error on global information), and (ii) provide an update of the
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Figure 1: IoT network model with several subnetworks. The
main entities are: IoT devices, equipped with sensing in-
strumentation, that selectively send data to the gateway and
implement the BP algorithm, the gateways, and the cloud.

global information to be shared with other neighboring nodes.

This paper is organized as follows. Section II describes the
reference cloud-based architecture for the IoT scenario. Due
to the heterogeneity of the IoT devices, we assume a multi-
network scenario with a plethora di interconnected devices. In
Section III we present our technique based on BP algorithm,
for data sharing in a noisy IoT scenario. The presence of
errors along the message reconstruction phase occurring at
each receiver node can be mitigate through our BP’s algorithm.
Finally, conclusions are drawn at the end of this paper.

II. NETWORK MODEL

In our architecture, we consider different entities with
specific computational and communication capabilities and
functionalities. As illustrated in Figure 1 the IoT network
model may comprise several sub-networks (i.e., from 1 to
N ), associated with different applications. Indeed, due to the
huge amount of IoT devices, we assume each sub-network
is composed by IoT devices connected to each others for data
sharing, and a gateway that interacts with the “external world”.
The role of the gateways consists into relaying the messages to
the cloud, which is responsible of typical cloud-based services
(e.g., data fusion, storage, etc.).

Each device performs sensing and processing activities.
Our network model supports multi-hop routing, and the gate-
ways collect data and forward them to the cloud. To sup-
port high scalability of the architecture, gateways implement
publish-subscribe message passing mechanisms based on mes-
sage brokers. Depending on the device capabilities, publish-
subscribe mechanisms can be supported even at IoT node level.
In this scenario, we assume that each IoT node can be in two
states, either idle or active. A node is in a idle state, when it
disconnects its radio, and it cannot send and receive data. On
the other hand, a node is in active state when it can perform
sensing activities, and can send and receive messages.

Moreover presence of errors in the connectivity links
among IoT devices has to be accounted for. This can affect
communication reliability, and also cause packet losses. Packet
retransmission are then necessary to overcome packet errors

Figure 2: DAHMS’s proof of concept architecture

Figure 3: LOGON’s architecture

and losses. At the same time, the increase of message retrans-
missions affects energy consumption on each IoT devices, la-
tency in information sharing, and in the extreme case, network
congestion.

In order to keep low the effective number of retrans-
missions, each active sensor implements an error conceiling
strategy based on a BP message passing algorithm with a
twofold objective i.e., (i) to recover missing data through
the BP algorithm, and (ii) to reconstruct “incomplete” or
“corrupted” messages.

The proposed architecture has been adopted by the authors
in the design of the proof of concept of DAHMS and LOGON
projects, both funded by the Italian Ministery of Economic
Development in the framework “New Technologies for the
Made in Italy”, carried out at the Radiolabs research cen-
ter labs. DAHMS (Distributed Architecture Home Modular
Multifunctional Systems) scope is the improvement of the
quality of life and the degree of self-sufficiency of chronically
ill and elderly and disabled persons through the integration
of Home Automation and remote heathcare functionalities.
LogOn (Logistic Open Network) concerns the goods logistic
in historical art cities with high level of tourism economy.

Figure 2 and Figure 3 depict the set of technologies and
communication systems that are part of the DAHMS and
LOGON proofs of concept.



The Secure Mediation GateWay (SMGW) represents the
conjunction element among the devices within the Control
Room and on-board (vehicular) devices.

The on-board devices are able to send events and receive
commands from a set of control interfaces accessible both from
the Control Room, the vehicles, and also from mobile devices
(Android or iOS).

The information messages sent from each device follow
a publish/subscribe framework able to forward MQTT (MQ
Telemetry Transport) messages. MQTT is a messaging proto-
col working on the top of TCP/IP, that has been projected for
specific situations where low impact and limited bandwidth are
required. All the devices are equipped with MQTT and will be
in charge to forward informations about events or commands.
Through the federated system of SMGW, the informations
published via MQTT will be available in a seamless way
from each intraSMGW domain, as described in the architec-
tural scheme of SMGW. Within each domain, the devices –
Raspberry or Arduino equipped– are in charge of exchanging
event/commands and messages with the SMGW. Also, the
SMGW exports each message in a secure way towards all the
other SMGWs.

III. A BP TECHNIQUE FOR ERROR CORRECTION

In this section, we investigate the proposed BP technique in
IoT noisy scenarios. Our aim is to reduce the message errors
through an iterative algorithm that corrects and updates the
received data at each run. With regards to Figure 1, each device
is initiated in active mode, and transmits messages to its own
neighbors. A message is related to local data measurements,
sampled at a fixed time step. The global information, related
to a given sub-network, is then obtained from the contributions
coming from each IoT device within the subnetwork.

Let us assume that the distributed sensing system consists
of N IoT nodes, interconnected in various ways. Each IoT
node collects a set of data provided by several sensors. Our
scope is then to estimate the state X of the sensed environment
starting from the sets {Di} of data collected by the individual
nodes related to non overlapping regions {Ri}. Here X is
modeled as a dynamical Random Field. More in detail we
focus our attention to the case in which the dynamical (i.e.
temporal) behaviour of the system can be described by a linear
model, while the spatial behavior is described by a Markov
Random Field.

We incidentally recall that given a finite rectangular lattice
L = {(i, j), 1 ≤ i ≤ N1, 1 ≤ j ≤ N2}, a neighborhood
system associated with L is, by definition, a collection of
subsets η = {ηij} with the property that each subset ηij ,
namely the neighborhood of i, j, is such that:

• (i, j) ∈ ηij ,

• if (k, l) ∈ ηij , then (i, j) ∈ ηkl, ∀(i, j) ∈ L

It follows that a random field X is said to be a Markov
Random Field w.r.t. (L, η) if and only if:

P (X(i, j)/X(k, l), (k, l) ∈ L− {(i, j)}) =
= P (X(i, j)/X(k, l), (k, l) ∈ ηij − {(i, j)}) ,
∀(i, j) ∈ L.

Then, in the distributed estimation scheme we can take ad-
vantage of the Hammersley-Clifford Theorem, stating that the
joint distribution of a Markov Random Field w.r.t. (L, η) is of
the form

PX(x) =
1

Z
exp {−U(x)} , (1)

where Z is a normalizing constant and

U(x) =
∑

∀clique c

Vc(x), (2)

is the energy function, and Vc(x) is the potential associated
with clique c ∈ C.

The only constraint on the clique potential Vc(x) is that it
depends only on the restriction of x to C. Nevertheless, here
we focus our attention on those Markov Random Fields for
which the potential function consists only of a set of singleton
potentials, defined on single variables, and on a set of pairwise
potentials, defined on pairs of variable.

To derive the distributed state estimation model, here we
resort to the unified representation for both Bayesian Networks
and Random Markov Fields, constituted by the Factor Graphs.
Factor Graphs use factor nodes to describe the factorization
property of the joint distribution, as the one stated by the
Hammersley-Clifford Theorem.

At this aim, for sake of compactness of the notation,
without loss of generality, we assume that the sensor data Di

and Dj provided by the sensors respectively connected to the
i-th and j-th node cover two non-overlaping areas, and that
the overall state space X is the Cartesian product of the state
subspaces Xi associated to the environmental variables related
to the areas covered by the individual nodes.

By associating each node i of a sub-network, with a random
variable Xi that represents the local information, and by
considering a set of edges E, we can write the joint distribution
as:

PX(x) =
∏
i

ψi(xi)
∏

(i,j)∈E

ψij(xi,xj), (3)

where the function ψij() represents the message exchange
among node i and j. In practice, p(xi) represents the marginal
distribution of i-th node, and the BP allows the computation
of the marginal distribution at each node i.

From rate-distortion theory, given a one-dimensional ran-
dom variable X̂ (X) is the representation of X , so that

X̂ ∈
{
1, 2, ..., 2nR

}
, (4)

where R are the bits needed for the representation of X .

Then, the distortion function is a mapping

d : X × X̂ → R
+, (5)

from the set of source alphabet pairs X into the set of non-
negative real numbers. It measures the cost of representing
symbol x by x̂. Each node has the aim to minimize the own
distortion level. A distortion measure is said to be bounded if
the maximum value of the distortion is finite i.e.,

dmax := max
x∈X ,x̂∈X

d (x, x̂) <∞. (6)



For the distortion, we can assume a squared-error definition
i.e.,

d (x, x̂) = (x− x̂)T (x− x̂), (7)

from which we can derive the distortion between sequences
xn and x̂n as

d (xn, x̂n) =
1

n

n∑
i=1

d (xi, x̂i). (8)

It follows that the distortion associated with a (2nR, n) code
is defined as:

D = E [d (Xn, gn (fn (X
n)))] , (9)

where fn : Xn →
{
1, 2, ..., 2nR

}
, and gn :

{
1, 2, ..., 2nR

}
→

X̂n.

Finally, we can derive the information rate distortion
function R(D) for a source X with distortion measure d(x, x̂)
as:

R (D) = min I
(
X; X̂

)
, (10)

where I(X; X̂) is the mutual information. Notice that Eq. (10)
is subject to the following constraint

p ( x̂|x) :
∑

(x,x̂)
p (x) p ( x̂|x) d (x, x̂) ≤ D, (11)

that is, the minimization of the mutual information is over all
conditional distribution p ( x̂|x) for which the jointly distribu-
tion p(x, x̂) satisfies the expected distortion constraint.

From (9), the expectation value respect to the probability
distribution on X is as follows:

D =
∑

xnp (xn) d (xn, gn (fn (x
n))). (12)

Now, in order to solve previous equation, we need the esti-
mation of xi. This can be provided through the BP algorithm.
This is a message passing algorithm for the calculation of a
posteriori probabilities of nodes of a loop-free Factor Graph,
given a priori probabilities and observations. As known, the
BP algorithm is a graphical model to represent conditional
independence relations of large numbers of random variables.

Since the BP algorithm is a message-passing technique
between nodes, and represents an update to the outgoing
message from i-th node to j-th neighboring node, we can
state that the message from i-th to j-th node related to the
local information xi is proportional to

mji(xi) ∝
∫
ψji(xj ,xi)ψj(xj)

∏
u∈Γj\i

muj(xj)dxj , (13)

where the incoming messages from previous iteration are
represented by muj . This equation represents the message
update operation that is performed in the BP’s algorithm.

Notice that the BP is capable to compute the exact
marginalization in the case of tree-structured graphical models,
and this means that (13) converges in a finite number of
iterations, limited to a superior bound, that is the length of
the longest path in the graph.

The BP algorithm starts with a “belief updating” phase,
where the a posteriori probabilities of the random variable
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Figure 4: Architecture of the IoT Bayesian network as a graph,
for the computation of the BP algorithm.

xi associated to the i-th node, i.e. BEL(xi), is computed
through the information about the evidence coming from the
neighboring nodes i.e., BEL(xi) = αµ(xi), where µ(xi)
represents the double contribution from “child” and “parent”
nodes w.r.t. the i-th node i.e.,

µ (xi) = λ (xi)π (xi) , (14)

with
λ (xi) =

∏
j

λxj (xi) , (15)

π (xi) =
∑

u1,...,un

P ( i|u1, ...,un)
∏
k

πxi
(xk), (16)

where j and k are the indexes for the child and parent nodes,
respectively. Figure 4 depicts a schematic of an IoT Factor
Graph, assumed as a graph with parent and child nodes with
respect to the xi node. The computation of the a posteriori
probability of the node xi, given all evidence except for the
information coming from the j-th child node, is obtained
through the parent-to-child message for the child node whose
information is excluded. The message from the i-th parent
node xi to the j-th child node yj is denoted as πyj

(xi), whose
expression is:

πyj (xi) = α
∏
m6=j

λym (xi)
∑

u1,...,un

P (xi|u1, ...,un)
∏
k

πxi (uk) .

(17)

Finally, the computation of the conditional probability of
the evidence coming from the children of xi given different
possible values for the random variable corresponding to the
i-th node is obtained through the message exchange from the
j-th child node to the k-th parent node as:

λxi
(ui) = β

∑
xi

λ (xi)
∑

uk;k 6=i

P (xi|u1, ...,un)
∏
k 6=i

πxi
(uk) .

(18)

In order to discuss the effects of propagation errors in-
troduced to the BP messages, we can consider multiplicative



error functions, which describe the difference between a true
message mji(xi) and its estimation i.e.,

m̂ji(xi) = mji(xi) · eji(xi), (19)

where mji represents the message from j-th to the i-th node,
and eji is the error function associated to the message mji.
Then, for the message error propagating from node j to node
i, we can apply a particular functional measure d(eji) defined
as:

d (eji) = max
xi,xj

√
eji (xi)

eji (xj)
, (20)

where e is the error function related to the information xi and
xj received from i-th and j-th node, respectively. Then, we
have that mji(x) = m̂ji(x)∀x, if and only if, log d(eji) = 0.

To facilitate our analysis, we can split (13) into two parts
i.e., (i) message products, and (ii) message convolution. In the
first part, we obtain:

Mji (xj) ∝ ψj (xj)
∏

u∈Γj\i

muj (xj), (21)

where as usual, the proportionality constant is chosen to nor-
malize M . We show the message error metric is additive, i.e.
that the errors in each incoming message add in their impact
on M . The second operation is the message convolution, and
we obtain:

mji (xi) ∝
∫
ψji (xj ,xi)ψj (xj)Mji (xj) dxj , (22)

where M is a normalized message or product of messages.
Notice that the log of d(eji) is additive, since for several
incoming messages m̂uj we have:

log d

(
M̂ji

Mji

)
= log d

(∏
euj

)
≤
∑

log d (euj). (23)

Finally, we can derive a minimum rate of contraction on
the errors. Let us consider the message from j-th to i-th node.
The error measure d(eji) is given by

d(eji)
2
= d

(
m̂ji

mji

)2

. (24)

subject to certain constraints, such as positivity of the messages
and potentials. From (24), we obtain two bounds:

d(eji)
2 ≤ d(Eji)

2
, d(eji)

2 ≤ d(ψji)
4
. (25)

IV. CONCLUSIONS

In this paper, we addressed an heterogenous IoT networks
scenario, with a plethora of devices for sensing applications.
The issue of data sharing and message correction in a multi-
hop IoT environment has been investigated through a Bayesian
approach. Specifically, a BP algorithm for message correction,
and information update has been presented in its infancy.
Future works will address the assessment of the proposed
algorithm in an extended simulated scenario.
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