
HAL Id: hal-01262115
https://hal.inria.fr/hal-01262115

Submitted on 26 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Validation of Formal Specifications through
Transformation and Animation

Atif Mashkoor, Jean-Pierre Jacquot

To cite this version:
Atif Mashkoor, Jean-Pierre Jacquot. Validation of Formal Specifications through Transformation and
Animation. Requirements Engineering, Springer Verlag, 2017, 22 (4), pp.433-451. �10.1007/s00766-
016-0246-6�. �hal-01262115�

https://hal.inria.fr/hal-01262115
https://hal.archives-ouvertes.fr

Validation of Formal Specifications through
Transformation and Animation

Atif Mashkoor
Software Competence Center Hagenberg GmbH,

Hagenberg, Austria
firstname.lastname@scch.at

Jean-Pierre Jacquot
Université de Lorraine & LORIA,

Vandœuvre-lès-Nancy, France
firstname.lastname@loria.fr

Abstract—A significant impediment to the uptake of formal
refinement-based methods among practitioners is the challenge
of validating that the formal specifications of these methods
capture the desired intents. Animation of specifications is widely
recognized as an effective way of addressing such validation.
However, animation tools are unable to directly execute (and thus
animate) the typical uses of several of the specification constructs
often found in ideal formal specifications. To address this problem
we have developed transformation heuristics that, starting with an
ideal formal specification, guide its conversion into an animatable
form. We show several of these heuristics, and address the need to
prove that the application of these transformations preserves the
relevant behavior of the original specification. Portions of several
case studies illustrate this approach

Keywords—Formal methods, Requirements specifications, Vali-
dation, Animation, Event-B

I. INTRODUCTION

To be correct, a requirements document must be both
complete and consistent. The former property concerns the fact
that the document references all the important requirements.
The latter property concerns the fact that no requirement
contradicts another one.

While there is no mathematical answer to the issue of
completeness, formal techniques can be effectively used to
determine the consistency of requirements [1]. During this
process, requirements are specified using mathematics- and
logic-based notations. There are operative definitions of the
notions of verifiability and soundness for texts using such
notations. The consistency of the requirements can then be
assessed with the help of techniques like theorem proving and
model checking.

However, when a document is written in a formal or
semi-formal language, a third property must also be checked:
validity. It concerns the fact that the formal specification
expresses the actual customer’s requirements. This property
can best be attained by involving customers in the formal
modeling process.

Traditionally, software engineers distinguish between veri-
fication and validation. The former activity checks that a text
enjoys some given formal, provable, properties. The latter ac-
tivity checks that the artifact answers the customer’s needs. As

The writing of this article is partly supported by the Austrian Ministry
for Transport, Innovation and Technology, the Federal Ministry of Science,
Research and Economy, and the Province of Upper Austria in the frame of
the COMET center SCCH.

verification is mathematically based, it has been the main focus
of designers of formal methods so far. Current frameworks
provide many tools and techniques to help developers produce
verified texts, but far less to help produce validated texts.

As compared to validation, verification of a specification is
a well-defined process. It ensures that involved expressions do
not contradict with each other and maintain certain properties.
Additionally, we also have a set of well-engineered assistant
tools at our disposal. Theorem provers like ACL2 [2], PVS
[3], HOL [4] and Isabelle [5], and model checkers like BLAST
[6], NuSMV [7], PRISM [8] and SPIN [9] are already well-
established in the industry and have been successfully used in
several industrial projects [10], [11], [12], [13].

Casting requirements into predicates allows one to use
proof techniques to assess the consistency. Formalisms, such
as Z [14], B [15] or Event-B [16], provide us with further help
through the notion of refinement which breaks huge proofs into
many smaller ones. Yet, writing the specification and showing
its consistency requires a considerable amount of interaction,
efforts, and technical skills and know-how. As non-technical
stakeholders usually lack these skills and know-how, it is
very difficult to integrate such stakeholders into the modeling
process unless the formal model is presented to them in a
comprehensible form.

The case with validation is different. First, it is highly
subjective. Second, we have fewer tools available for it. Third,
even the available tools, particularly those which can execute a
model, like CoreASM [17], Asmeta tool-set [18], VDMTools
[19], or ProB [20] have limitations such as unsupported
constructs, unbounded expressions, or purely implicitly defined
functions and operations.

The tools which are most helpful to validate a specification
rely on creating, running and evaluating scenarios on a formal
model. Among those, animation is a process of executing a
specification by invoking its operational semantics. It is mainly
an automated process where an animator reveals the behavior
of a formal specification either textually or graphically. This
technique is similar to structure exploration technique [21]
where a formal model containing collection of constraints is
fed to an analyzer. The analyzer then explores the model by
generating sample structures and check properties of the model
by generating counterexamples. This technique of validation
is appealing even for non-technical stakeholders. However, the
catch is that not all specifications are directly animatable; some
need to be transformed to achieve execution [22], [23]. During

the process of transformation, the non-nimatable expressions
are replaced by equivalent but animatable counterparts. Then
the question is: are these transformations sound enough so that
the judgments made on such transformed specifications can be
considered trustworthy as far as validation is concerned?

The main aim of this work is to introduce an animation
process based on behavior-preserving transformations for val-
idation of formal specifications. Like an intractable proof can
be broken down into a sequence of many smaller proofs, the
validation of a specification can also be associated with its
refinement-based development steps. This methodology then
provides us with means to check the compliance of a formal
specification, that in its initial form may not be animatable due
to the inherent non-executable nature of its contents, to actual
customers’ requirements.

To determine the full-correctness of formal specifications,
we employ the framework VTA [24] in which specifications
are first checked for consistency and then animated. VTA relies
on theorem provers and model checkers for analyzing the
consistency of specifications. Once a specification is verified,
it then proceeds for validation by animation. During the ani-
mation process, the specification that contain non-animatable
traits is transformed to achieve its execution in such a way that
its behavior can be analyzed and reasoned about. The result
of the whole correctness-assessment process is a specification
which is both verified and validated.

We aim to reap benefits of this methodology in two ways.
First, this methodology enables early detection of requirements
problems (say, misunderstanding about a certain behavior).
Second, users can be involved in the process of checking the
correctness right from the start. Users can join the validation
part during the animation process, while leaving the technical
proving to the technical experts.

The paper is organized as follows: We first present a brief
overview of the VTA framework in section II. Section III dis-
cusses the difference between classes of specifications. Section
IV discusses how the class of a specification can be changed.
Section V presents some transformational heuristics along with
their semantics. Section VI demonstrates the application of
transformations on three case studies. Section VII presents an
evaluation of the proposed animation process. Section VIII
provides some related work. Finally, the paper is concluded
with some proposed future work.

II. VTA

VTA (Verify-Transform-Animate) is a framework for rig-
orous verification and validation of requirements specifications
written in a formal refinement-based method. One of the
major roles of refinement is to break the verification process
into small assessments and to integrate it with the stepwise
development process of the specification. VTA, powered by
the techniques of verification, transformation and animation,
is based on the same principle. VTA allows the correctness
of a specification to be assessed throughout the development
process.

The flow through the steps of the VTA framework is shown
within the rectangle in Figure 1. It consists of the following
steps:

1) Formally specify the requirements by grouping them
into observation levels,

2) Verify the specification:
a) Discharge all Proof-Obligations (POs), and
b) Perform model checking when needed,

3) Transform each non-animatable element of the spec-
ification:

a) Choose the matching heuristic from the list,
b) Check that its applicability conditions hold,
c) Prove its application, and
d) Apply the heuristic,

4) Validate the specification by its animation. If an
unacceptable behavior is encountered, modify the
requirements and restart from step one.

Fig. 1. The VTA framework: structure of a refinement step

A. Observation-level-driven formal modeling

In VTA, an abstract requirements model is transformed into
a formal specification through a technique that is based on
observation levels [24]. An observation level is defined as a
focus on a specific part of the model describing a unique aspect
such as a specific protocol or a physical decomposition of the
system. Grouping refinements into observation levels provides
a specification with a super-structure which eases the under-
standing of the model. This arrangement reflects either the
“natural” structure of the system being modeled, particularly
when there are physical components, or of its behaviors, i.e.,
the evolutions of its state. This break-down facilitates both
comprehension and animation of formal requirements. With

2

this approach, the important properties are introduced at the
desired level of observation. Each observation level contains
one or several refinements. We recommend animation of at
least one refinement per observation level. Our rationale is that
observation levels are correlated to fundamental characteristics
of models which have strong impacts on behaviors. Checking
that the specified behaviors are the valid ones, and that there is
no bad emerging behavior, is of particular importance. Please
see [25] for the detailed discussion.

B. Verification

The next step of our proposed framework is based on
verification of specifications. While verifying a specification,
both deductive verification and model checking are important.
The VTA framework supports the usage of both verification
techniques where appropriate. We firmly believe that verifica-
tion must be the starting step because there is no point in the
validation of an inconsistent specification.

C. Transformation

As soon as the specification is verified, we prepare it for
animation. If some unsupported features of the language or
non-executable elements, such as non-constructive definitions,
are encountered, they are transformed using the proposed
heuristics (discussed in section V).

If a problem is discovered, we inspect it and try to match
the case with the list of heuristics. This inspection and match-
ing practice includes checking if the heuristic’s application
condition holds. The application of a heuristic may raise a
PO. We are then required to justify this application. This
justification can either be provided in the form of a formal
proof (discharge of the PO) or by a rigorous argument that the
application of the heuristic would not alter the behavior of the
specification.

D. Animation

Once the transformations have been applied, the specifica-
tion should now be animatable. Animation would demonstrate
the behavior of the specification. If the demonstrated behavior
is as per expectations then we have the verified and validated
specification in our hands. However, if this is not the case
and a closer look at the specification has revealed deviations
from the intended behavior, then we need to go back to the
initial specification to correct the unacceptable behavior. This
triggers a loop, i.e., re-proving, re-application of heuristics,
and re-animation until the specification conforms to actual
requirements.

The animation cycle stops when all the scenarios that were
designed from the informal requirements have been executed
and the behavior of the specification has been approved by
stakeholders.

First two steps are out of scope of this paper. Rest of the
paper will focus only on transformation and animation steps
of the VTA framework.

III. ANIMATABILITY VERSUS PROVABILITY

Animatability and provability are distinct characteristics
of a specification. Both depend on intrinsic properties of
models and on the power of the tools used. Animatability is
particularly dependent on the tools. Therefore, a specification
may fall into one of four classes shown by Figure 2.

Fig. 2. Classes of specifications

Just as a faulty program can be executed, an incorrect
specification can also be animated. Of course, neither would
be an admissible solution to the problem at hand. However, ob-
servations of the program’s execution can provide developers
with precious insights later contributing towards the correct
solution. Likewise, animation that reveals a specification to
be invalid provides guidance to the developers on how the
specification needs correction.

Some important ingredients, often found in formal speci-
fications are among the list of constructs which render these
specifications non-animatable. For example, non-constructive
definitions, infinite sets or complex quantified logic expres-
sions make specifications non-animatable. As animation, by
nature, heavily depends on tools, so any limitation of the
tool will also be a restriction on the class of animatable
specifications.

One can always try to produce from the start a spec-
ification which belongs to the animatable class “Provable
and animatable.” However, this is not a good idea for wo
main reasons. The first reason is that the specifier should
avoid overspecification [26]. The second reason concerns the
refinement principles that encourage us to use liberally abstract
definitions, non-determinism, and small refinement steps [27].

A well-written specification can later, of course, be brought
to the right class for the sake of animation. However, during
the process of bringing specifications into an animatable class,
the elements which are necessary to discharge POs may be
altered or even suppressed. By compromising on proofs, we
are at a risk of generating inconsistent specifications. In fact,
sometimes we cannot prove within the formal rules of the
given formal method that a transformation does not modify
the original behavior. This implies that the provability of
these transformations must be asserted through other means.
In such cases, the mathematical tradition of providing rigorous
and convincing arguments as a paper-and-pencil proof of the
preservation of the behavior for each transformation heuristic
can be followed.

IV. RENDERING A SPECIFICATION ANIMATABLE

We may have to change the form of a specification to
make it animatable. We do this primarily by reformulating its
expressions and adding some constructive elements to it. The
techniques to do this (depicted by Figure 3) are the following.

3

Fig. 3. Types of class changing techniques

A. Approximation

Approximation is a standard technique to modify a model
so that the transformed model is not only close to the original
model but also has better computational properties. For our
purpose, we look for approximations which can be efficiently
executed. In our transformations, we use two types of approx-
imations: under-approximation and over-approximation. The
former is the idea of taking a reasonable subset of the original
model, whereas the latter takes a superset. These approxima-
tion techniques are based on abstract interpretation [28] and
are often used to address state explosion problems in model
checking.

Under-approximation can be used to address the problem of
non-termination. This is a specific kind of termination which is
based on enumeration of values. When a formula is based on
an unbounded value an animator may continue enumerating
it indefinitely. Consequently, animation fails. Restricting the
enumeration within finite bounds addresses the problem. In
other cases, where a formula is constituted of complex and
composite data structures, such as sequences or lists, the
technique of over-approximation can be exploited to simplify
the formula and achieve its execution. For instance, a list,
which is a total function on an interval of integers, can be
over-approximated by a partial function on integers.

The rationale of using approximation for model checking
is applicable here as well. For example, if some property exists
in the abstract (over-approximate) specification then it holds in
the concrete specification. However, if the property does not
hold in the former, we do not know if the latter violates this
property.

B. Refinement

Refinement is an established formal activity to transform
an abstract formal specification into a concrete executable
program. When possible, VTA uses refinement to transform
non-executable high-level non-constructive formulas and ex-
pressions into lower-level animatable and executable elements.

When a specification is refined, we need to prove the
abstract-refinement relationship between the two models. This
amounts to establish two properties:

1) The refined model maintains the invariant of the
abstract model. We must prove that the refined guards
are stronger than the original. Furthermore, the re-
sulting actions do not lead to an incorrect state in the
abstract specification. We must also prove that the
new events are refinement of the SKIP event (i.e.,
the “do-nothing” event).

2) The new events do not introduce a divergence. Tech-
nically, we must prove there is no infinite chain of
new events.

C. Rewriting

Rewriting is the process of replacing either some sub-terms
or the whole formula with equivalent terms. In VTA, term
rewriting is used to simplify non-animatable complex formulas
to make them animatable. Application of this technique is
fruitful for formalisms such as B or Z, where generalized
substitutions are used to describe state modifications. Ani-
mators often find it difficult to compute the state transition
relation if it contains dynamic functions whose parameters are
passed non-deterministically at runtime and depend upon the
computations performed by guards. As a solution, the non-
computable formula is then partly or completely rewritten by
its equivalent counterpart in set algebra or Conjunctive Normal
Form (CNF).

D. Inlining

Inline/macro expansion is an optimization technique to
replace a call of a function by its body. While writing
specifications, this is a common practice to use functions for
readability and simplifying proofs. A function based on a case-
analysis has multiple definitions and cannot be enumerated
straightforwardly, thus, failing the execution of the incorporat-
ing specification. This problem can be solved by using inline
expansion technique, i.e., to replace the function call by its
body. Thus, enumeration is no longer required and the animator
proceeds with its normal operation.

Inline expansion, in fact, is based on two previously
defined transformation techniques: rewriting and refinement.
It is rewriting because the function call is being replaced
by its body which means semantically both expressions are
equivalent. Of course, proper care has to be exerted with the
use of the involved variables. It can be defined as refinement
since the PO of enabledness preservation (see Section V-B)
which must be discharged, requires us to prove that if a
transition is enabled in the transformed specification then it
should also be enabled in the intial specification, and vice-
versa. Formally, the enabledness preservation PO is defined
by a conjunction where the first formula is a standard Event-B
PO for event refinement:

∀Sa, Ca, Sr, Cr, Va, Vr, xa, xr.Aa∧Ar∧Ia∧Ir ⇒ (Gr ⇒ Ga)

∧

∀Sa, Ca, Sr, Cr, Va, Vr, xa, xr.Aa∧Ar∧Ia∧Ir ⇒ (Ga ⇒ Gr)

Where Sa, Ca, Sr and Cr represent sets and constants
of the abstract and refined specifications respectively. Va and
Vr denote variables of the abstract and refined specifications
respectively. xa and xr represent local variables of the abstract
and refined state transition relation respectively. Aa, Ar, Ia,
Ir, Ga, Gr are axioms, invariants and guards of the abstract
and refined specifications respectively.

4

V. TRANSFORMATIONAL HEURISTICS AND THEIR
SEMANTICS

From the general principles used to make a specification
animatable, we can design practical heuristics tailored to a
specific specification language and a specific animation tool.
The transformational heuristics ensure that behaviors observed
during the animation of a transformed specification are spec-
ified in the original non-animatable specification, possibly at
the expense of other formal properties such as provability. The
correctness of heuristics and of their application then becomes
an issue at two levels. At the usage level, users must be
confident that they chose and applied an adequate heuristic.
At the formal level, we must guarantee that the behaviors of
the transformed model are the same as those of the original
model. We address this issue of correctness using a two-step
approach.

a) Step 1: We present the heuristics using a pattern and
give rigorous arguments to justify their use. We assume that
they are applied to an already verified formal text. The pattern
is shown in Figure 4.

Fig. 4. The heuristic pattern

For each heuristic, we first describe the symptom, i.e.,
what indication from the animator of its inability to execute
a specification would prompt the use of this heuristic. It also
indicates the construct of the model, such as axiom, guard,
or transition statement, where the problem lies and which is
susceptible to modification. The transform explains how the
original statement must be transformed in order to be ani-
matable. Each transform is based on the execution techniques
discussed in Section IV. Caution is the description of the
applicability conditions, the assumptions to check, the possible
effects, and the precautions to follow. In the justification part,
we provide a rigorous argument about the validity of the
transformation.

b) Step 2: We define a formal semantics of transfor-
mations to give a proof of soundness of their application.
The proof indicates under which conditions both the original
and transformed specifications are behaviorally equivalent, i.e.,
provided same values, the same sequences of state transitions
can be followed on both specifications.

Animating a specification is all about observing the behav-
ior of a model, i.e., its evolution during its execution. Then,
the property we want to assure is: “what is observed on the
animation of the transformed specification would have been
observed on the animation of the initial specification.” Two

further points should be noted. First, we can restrict the relation
to a form of inclusion of behaviors rather than a strict equality.
We can “lose” behaviors (e.g., by restricting some ranges),
but we cannot “add” behaviors (e.g., by allowing transitions).
Second, during an animation, we can look only at two things:
the enabledness status of all transitions, and the values of state
variables. So, we should express the relationship with these
two features of the execution.

A. The heuristics

During our experimentation with valuation-based anima-
tors, such as Brama [29], we have encountered ten kinds
of impediments to animation of formal specifications, and
designed heuristics to deal with each of tem. In the interest
of brevity, in this paper we discuss four of them in detail, and
summarize the other six. The reader is referred to [30] for a
detailed description of all ten of them.

Table I contains the list of symbols used in the following
sections.

Symbol Meaning Symbol Meaning
| Such that ∩ Intersection
∃ There exists ∀ For all
→ Total function 7→ Partial function
∈ Element of ⊆ Subset of
N Set of natural numbers N1 Set of +ve natural numbers
P Power set 7→ Maplet
� Domain restriction � Total injection
⇔ Logical equivalence ⇒ Logical implication
∧ Logical conjunction ∨ Logical disjunction
6= Not equal to = Equal to
:= Becomes equal to :| Becomes such that
> Greater than ∅ Empty set
B Boolean × Cartesian product

TABLE I. THE SYMBOL TABLE

Heuristic 1: Generalize expressions involving complex it-
erations

This heuristics is motivated by the difficulty of iterating
over complex nested predicated expressions. Such expressions
come occur when models use types such as lists or trees.

Symptom: Failure of an animator to build iterators of a
predicate. The problem lies often with list-like types.

Transform: Take the super-set of the expression.

Original var = {x|∃n.n ∈ N1 ∧ x ∈ 1..n→ y}

Transformed var ∈ P(N 7→ y)

Caution: This transformation loosens the constraints on the
values, some of which maybe essential to the behavior. For
instance, the property that all integer numbers between 1
and the length of the sequence belong to the domain of the
function. An animator may not ensure any more that this
property holds. The burden of the check is passed onto the
input of the values. It must be ensured that animation is
performed on a shared set of values between the original and
transformed specifications.

Justification: On the subset of shared values, that is, those
values respecting the constraints left out by the generalization,

5

both specifications must have the same behavior. Two cases
must be considered:

• the value is associated with a constant: it does not
change during the animation and it keeps its proper-
ties,

• the value is associated with a variable: at least one of
the POs in the initial specification deals with proving
that the result of the computation belongs to the set.
Since the initial specification is verified, the values in
the modified specification have the same property.

This is an example of abstraction because the transformed
formula is an abstraction of the original one. In abstraction
framework, this technique is known as over-approximation.

Heuristic 2: Avoid expressions involving mapping of vari-
ables in substitutions

Some animators have difficulty with computing set values
defined by comprehension. This can often be overcome by
rewriting as Cartesian product.

Symptom: Failure of an animator to compute sets of tuples in
substitutions. The problem lies in substitutions of the model.

Transform: Rewrite the substitution to avoid mapping.

Original {x, y.x ∈ X ∧ y ∈ Y |x 7→ y}
Transformed {x ∈ X|x} × {y ∈ Y |y}

Justification: The transformation is simply rewriting of the
initial expression as a formula in set algebra. This heuristic
can also be used in guards and axioms.

Heuristic 3: Inline the function definition in events

Some formal methods do not distinguish between functions
defined as finite maps and functions defined by an analytical
expressions. The latter are defined as constants using axioms
which can not be assigned a value by enumeration-based
animators.

Symptom: Failure of an animator to assign the start up values
to complex functions. The problem is associated with the
axioms of the model which define analytical functions.

Transform: Substitute function calls by their inline equivalent

Original (in axiom) ∀x.x ∈ S ⇒ f(x) = expression(x)

Original (in transition) f(v)

Transformed (in axiom) true

Transformed (in transition) Add a new guard v ∈ S and
replace f(v) with expression(v)

Caution: All occurrences of f in the specification must be
replaced; be consistent when replacing formal parameters by
actual values.

Justification: This is the case of refinement. In a mathematical
context, the value f(v) is equal to its definition expression
where v has been substituted to x; both expressions are
interchangeable.

Heuristic 4: Replicate transitions which use functions
defined “by cases”

Some formal methods do not support conditional constructs
such as if-then-else. Specifiers must define functions with
“cases” through axioms written as disjunctive formulas.

Symptom: Same as Heuristic 3 plus a case analysis.

Transform:

Original (in axiom) ∀x.x ∈ S ⇒ (p(x) ⇒ f(x) =
expression(x) ∧ q(x)⇒ f(x) = expression′(x))

Original (in transition)

Transition A

WHERE ...f(v)...THEN ...f(v)...END

Transformed (in axiom) true

Transformed (in transitions)

Transition A1

WHERE ... grdCase1 p(v) THEN ... END

Transition A2

WHERE ... grdCase2 q(v) THEN ... END

Caution: This heuristic must be followed by the application
of Heuristic 3. Check that all cases have been covered. Be
particularly careful if the function is applied to several different
actual parameters; this may require several applications of this
heuristic.

This heuristic entails a major surgery in a specification. A
blind application may introduce many copies of state transition
relations. By grouping several functions into one transforma-
tion, it is possible to reduce the number of duplications.

Justification: This is a case of refinement. The predicates
used in “by case” definitions are equivalent to guards in state
transitions. They have the same form and are used for the
same purpose. The state transition relations A1 and A2 are
the copies of A, except for the new guard, their union is
equivalent to A. Hence, the transformed specification has the
same behavior as the original specification.

The six other heuristics are summarized below.

Removing the finite axioms. Such axioms are introduced
in specifications just to discharge the related POs; however,
they do not not alter the behavior of the specification. Hence,
it is safe to remove them.

Specifying the finiteness of a quantified domain. For example,
if the range is of natural numbers, specifying a finite range

6

between a minimum and a maximum. This is the issue of
decidability that is a common animation problem. Our solution
to fix it by stating that any variable, parameter, or constant can
only take finitely possible values is a standard solution for such
problems.

Explicitly providing the typing information of all variables
and constants used in a predicate. While proving theorems,
provers can automatically infer the typing information of
involved variables and constants; however, this is not the case
with valuation-based animators which explicitly require this
information to set up the iteration process.

Avoiding dynamic function computation in substitutions. This
heuristic is similar to Heuristic 2 and requires the same
treatment: rewriting.

Complex invariant predicates. Invariants are conditions that
must be adhered by the behavior of a specification. In the
case of failure to be able to compute then, either they can
be rewritten like heuristic 2 or can also be removed from the
specification under the assumption that they already have been
taken care of during the verification process.

Introduction of observation variables. These variables are re-
quired due to the limitation of the communication protocol
between the animator and the external graphical environment,
such as Adobe Flash, which has limited support for data
structures. Our solution in this case is to transform the unsup-
ported output values by external graphical environment into
the supported ones.

B. Formal semantics of transformations

The transformational heuristics proposed in VTA actually
modify the original specification. Therefore, we need to show
that, as far as animation is concerned, what is observable on
the transformed specification would have been observable on
the original specification.

Our work is based on a kind of trace semantics where we
consider sequences of states and transitions. In the following,
Specx denotes a specification. The basic elements of the
semantics are then:

State: a mapping of names from set N to values from set V ,
constrained by the invariant (variables) or axioms (constants)
of the specification

S = N → V ∧ ∀s.s ∈ S ⇒ Inv(s)

Event: a transition from one state to another defined with
the help of a guard Ge and a state transition Ue

e = When Ge(s, v) Then Ue(s, v) End

where s denotes the state and v denotes the non-deterministic
values (i.e., parameters) used by the event. We note the firing
of an event as

s
e(v)−→ t

Behavior: a sequence of states and event firing, starting
from an initial state

b ∈ seq(S × E × P(V)× S) ∧
∀i.i ∈ dom(b)⇒ (Pr4(b(i)) = Pr1(b(i+ 1)) ∧

Pr1(b(i))
Pr2(b(i))(Pr3(b(i)))−→ Pr4(b(i))

where Pri denotes the ith projection of the quadruples. We
note Bp as the set of all behaviors of the specification Specp.

Relation: the two compared specifications may not have
exactly same events, so we need to introduce a relation
between events, Rel, defined as:

∀e′.e′ ∈ Events(Spect)⇒
∃e.e ∈ Events(Speco) ∧ e′ 7→ e ∈ Rel

∀e.e ∈ Events(Speco)⇒
∃e′.e′ ∈ Events(Spect) ∧ e′ 7→ e ∈ Rel

where Events(Spec) denotes the set of all events of the
specification Spec.

Shared state: a state where all the variables common to
both specifications have the same values:

S′o = {s.s ∈ So|Nt ∩No � s}
S′t = {s.s ∈ St|Nt ∩No � s}
Sc = S′o ∩ S′t

Shared behaviors: the behaviors which go through the same
sequence of states by firing events related by Rel. Let us
denote Rel∗ the extension of Rel to behaviors where each
event in a behavior is related to the event at the same position
in the other one:

∀bo, bt.bo ∈ Bo ∧ bt ∈ Bt ∧ bo 7→ bt ∈ Rel∗ ⇔
(∀i.i ∈ dom(bo)⇒ (Pr2(bo(i)) 7→ Pr2(bt(i)) ∈ Rel))

The shared behaviors between two specifications Speco
and Spect, seen from the Spect perspective are defined as:

Bt
c = {bt|bt ∈ Bt ∧ (Rel∗−1[{bt}] ⊆ Bo)}

Behavior preservation: a specification Spect preserves the
behavior of Speco if all the behaviors observed on Spect are
shared behaviors. This intuitive definition is slightly too broad
and should be qualified on two aspects. First, the starting
state must be a shared state. Second, all non-deterministic
parameters must be admissible in both specifications. This
property is expressed by the following predicates:

validParam(v, s, e, Rel) = Ge(s, v)∧
e ∈ ran(Rel)⇒ (∃e′.e′ ∈ Rel−1[{e}] ∧Ge′(s, v)) ∧
e ∈ dom(Rel)⇒ (∃e′.e′ ∈ Rel[{e}] ∧Ge′(s, v))

validParam∗(b, Spec,Rel) =
∀ (si, ei, vi, ti).(si, ei, vi, ti) ∈ b⇒

validParam(vi, si, ei, Rel)

So, the formal definition of behavior preservation is:

Spect
B∼|Rel Speco ,

∀bi.bi ∈ Bt ∧ s1 ∈ Sc∧
validParam∗(bi, Speco, Rel)⇒ bi ∈ Bt

c

This definition then needs to be connected to what is actu-
ally observed during an animation: which events are enabled
and what are the values in the states.

SameEnabledness expresses the idea that on the shared
states, events in both specifications have the same status

7

(enabled or not); formally, the guard of both events is true.

SameEnabledness(Spect, Speco, Rel) ,
(∀s, e, v.s ∈ Sc ∧ e ∈ Events(Speco)∧
validParam(v, s, e, Rel) ∧Ge(v, s)⇒
(∃e′.e′ ∈ Events(Spect) ∧ e′ 7→ e ∈ Rel ∧Ge′(v, s)))∧

(∀s, e′, v.s ∈ Sc ∧ e′ ∈ Events(Spect)∧
validParam(v, s, e′, Rel) ∧Ge′(v, s)⇒
(∃e.e ∈ Events(Speco) ∧ e′ 7→ e ∈ Rel ∧Ge(v, s)))

SameReachability expresses the fact that all states that
can be reached from a shared state in a specification can also
be reached in the other one.

SameReachability(Spect, Speco, Rel) ,
(∀s, t, e, v.s, t ∈ Sc ∧ e ∈ Events(Speco)∧
validParam(v, s, e, Rel) ∧ s

e(v)−→ t⇒
(∃e′.e′ ∈ Events(Spect) ∧ e′ 7→ e ∈ Rel ∧ s

e′(v)−→ t))∧
(∀s, t, e′, v.s, t ∈ Sc ∧ e′ ∈ Events(Spect)∧
validParam(v, s, e′, Rel) ∧ s

e′(v)−→ t⇒
(∃e.e ∈ Events(Speco) ∧ e′ 7→ e ∈ Rel ∧ s

e(v)−→ t))

SameClosure states the idea that a behavior with valid
parameters reaches only shared states from a shared state.

SameClosure(Spect, Speco, Rel) ,
∀s, t, e, v.s ∈ Sc ∧ t ∈ So ∧ e ∈ Events(Speco)

∧validParam(v, s, e, Rel) ∧Ge(v, s) ∧ s
e(v)−→ t⇒ t ∈ Sc

These definitions allow us to give the observation theorem:
if two specifications have the three preceding properties, the
first preserve the behavior of the second:

SameEnabledness(Spect, Speco, Rel)∧
SameReachability(Spect, Speco, Rel)∧
SameClosure(Spect, Speco, Rel)⇒

Spect
B∼|Rel Speco

Proof:

Let Speco be the original specification and Spect be
the transformed specification. Let Rel be the relation be-
tween these specifications. Let Bt = Behavior(Spect)
and Bo = Behavior(Speco). Let bt, bo.bt ∈ Bt ∧
bo ∈ Bo. Now if SameEnabledness(Speco, Spect, Rel) ∧
SameReachability(Speco, Spect, Rel)⇒ ∃Bc.bt, bo ∈ Bc

Same enabledness and reachability means specifications
share behaviors. However, some events may lead to non-shared
states, therefore we take closure to consider only the shared
states of both specifications, i.e.,

∀s, t, e, v.s ∈ Sc ∧ t ∈ So ∧ e ∈ Events(Speco)

∧ validParam(v, s, e, Rel) ∧Ge(v, s) ∧ s
e(v)−→ t⇒ t ∈ Sc

If the specification has also the same closure (i.e., no
transition leads to a non-shared state) in addition to the
same enabledness and reachability (shared behaviors) then the
specifications are behaviorally equivalent, i.e., any behavior
which is observed in the transformed specification would also
be observed in the original specification.

Therefore,

SameEnabledness(Spect, Speco, Rel)∧
SameReachability(Spect, Speco, Rel)∧
SameClosure(Spect, Speco, Rel)⇒

Spect
B∼|Rel Speco

VI. DEMONSTRATION OF THE APPROACH ON CASE
STUDIES

We applied the VTA framework to assess the correctness
of three specifications, all written in the Event-B specification
language [16]. The Event-B method is an offspring of the B
method [15] and is designed for system-level modeling and
analysis of large reactive systems. It uses set-theory and first-
order logic as the specification notation. It also uses the notions
of refinements (to represent systems at different levels of
abstraction) and theorem proving (to prove the consistency be-
tween various refinement levels). Its development is supported
by the RODIN platform [31]. For animation purposes, we used
the valuation-based animators Brama [29] and AnimB1.

An Event-B specification is composed of Contexts which
specify the static part of the requirements model and Machines
which specify the dynamic part of the model. The refinement
relation is called refinement between machines, and extension
between contexts. All machines have a special event, INITIAL-
ISATION, which specifies the initial state.

The first case study is about a land transport domain
model [32], [33]. The second case study is about the landing
system of an aircraft [34]. The third case study is about
a platooning system [35]. All case studies are available at
http://dedale.loria.fr.

The VTA framework explicitly requires all specifications
to be proven before proceeding with their animation. The
specifications are then animated by creating reasonable be-
havioral scenarios representing the protocols that would have
been observed in the reality. The animators are provided with
startup values accordingly.

Not all refinements are animated. Some refinements based
on small incremental steps are uninteresting from the anima-
tion’s point of view because they do not bring much informa-
tion in terms of new behaviors. At least one refinement per
observation level was subjected to animation. An interesting
point to note is that a specification may not be animatable
while its refinement may be; there is no monotonicity in
general.

The result of the application of heuristics is an animatable
specification. In the following, the application of heuristics on
formal specifications is presented in a before-after state clearly
indicating how the specification has been transformed. When
necessary, the application of heuristics is justified in the form
of a formal proof.

A. Case study 1: The land transport domain model

The specification in this case study is about modeling
of the land transportation domain. The term “transportation”

1http://www.animb.org

8

http://dedale.loria.fr

Fig. 5. Event-B model of the land transport domain [25]

refers to the movement of people or goods by vehicles from
one location to another. Many important transportation con-
cepts, such as vehicles, hubs (stations, junctions), connections
(paths, routes), and movement, appear in this definition of
transportation. They must be defined in the domain description.
In the specification, we also express properties that any system
working within the domain is expected to meet and maintain.

In this specification effort, the focus is on the formal
definition of domain’s laws, protocols and properties, rather
than on the implementation of a particular system. Refinement
is used to introduce new notions; the proof obligations (POs)
serve to guarantee the consistency of the model.

The domain model contains one abstract machine
Movement0 and its seven refinements. All machines of the
model are shown by green blocks. In parallel with machines,
two contexts are being refined. The first is the context Net,
which models the static properties of the network (its topology,
quantities associated with its elements, etc.). The second is
the context StartState which helps to set and prove the
INITIALISATION event of the machines. The contexts of
the model are shown by blue blocks. Extension between
contexts and refinement between machines are shown by single
arrow lines; whereas, the use of contexts by machines is
depicted in Figure 5 by dashed lines.

The development is structured into four different obser-
vation levels. The abstract model, the first two refinements
and the fifth refinement sit at the first observation level that
defines the travel protocol which means a vehicle can move
between two distinctive geographical points (hubs). Though
technically realized as the refinement of Movement4, the
fifth refinement step is logically situated at the first level of
observation; it introduces time and concerns only the events
at the first level. The third refinement belongs to the second
level of observation that decomposes the travel protocol into
further two sub-protocols crossing hubs and traversing paths.

The fourth refinement belongs to the third observation level
that decomposes the protocol of crossing a hub into further
sub-protocols of entrance in a hub, leaving a path, and waiting
to enter in a hub. The sixth and seventh refinements model
the fourth observation level that decomposes the protocol of
traversing a path into further sub-protocols of wait to enter on
a path, leaving a hub, moving on a path, and waiting to move
on a path. Machine Movement7 completes the introduction
of time into the model and concerns the events and situations
at this level.

This specification exhibits several properties which call for
animation as the mean to check their validity, namely:

• complex data with behavioral constraints (following a
route, for instance),

• protocols and iterations (travel as a sequence of hub
crossing and path traversing protocols, for instance),
and

• non-deterministic interaction between elements (au-
tonomous vehicles, for instance).

The second refinement of the model introduces the notion
of routes in the context Net2 as shown by the left hand side
of Figure 6. The constant routes is a set of sequences of
paths; a path is an edge in the graph between two hubs
(stations) which are the vertices. The set of routes is introduced
as follows:

seqPaths = {seq|∃n.n ∈ N1 ∧ seq ∈ 1..n� paths

∧finite(seq) ∧ card(seq) = n}

As sequence is not a primitive data type in Event-B data
structure, we must provide its definition. This definition uses
double quantification which the employed animator was unable
to support when we tried to animate the model. To make the
model animatable, we employ Heuristic 1 to transform the
axiom to use the following superset of its expression:

seqPaths ∈ P(N 7→ paths)

Since the type information of seqPaths has been changed,
the model properties pro1 and pro2 (see the left hand side of
Figure 6) expressed in terms of the original type information
may no longer hold. Actually, these properties state that valid
origin and destination hubs of a route are stations (and not
junctions), both hubs belong to the same network, both hubs
are connected to each other, and both hubs forbid cyclic
connections (it is a domain restriction to avoid infinite circular
paths). The properties use functions defined in previous refine-
ments, such as connectionOrigin/Destination and
obsNetHubs, which provide the connections and the hubs
of a network respectively. Both pro1 and pro2 are removed.
Hence, the specification is now animatable. Figure 6 shows the
context Net2 before and after the application of Heuristic 1.

The most important effect of the application of Heuristic
1 is the invalidation of all proofs, either in Net2 or in
Movement2 and their subsequent refinements, which relied
on the essential property of sequences:

9

CONTEXT
Net2

EXTENDS
Net1

CONSTANTS
paths, routes, isRoute, seqPaths

AXIOMS
typ1 paths ⊆ Connections
typ2 seqPaths = { seq | ∃ n . n ∈ N1 ∧ seq ∈ 1..n � paths ∧

finite (seq) ∧ card(seq) = n}
typ3 isRoute ∈ seqPaths→ B
typ4 routes = {sp | sp ∈ seqPaths ∧ isRoute(sp) = TRUE}

pro1 ∀r.r∈seqPaths ∧
((connectionOrigin(r(1)) ∈ stations ∧
connectionDestination(r(card(r)))∈stations∧
(obsNetHubs[{connectionOrigin(r(1))}] ∩
obsNetHubs[{connectionDestination(r(card(r)))}] 6= ∅) ∧
(∀i . i∈2..card(r) ∧ connectionDestination(r(i−1)) = connectionOrigin(r(i)))
∧ connectionOrigin(r(1)) 6= connectionDestination(r(card(r))) ∧
(∀i1, i2 . i1∈1..card(r) ∧ i2∈1..card(r) ∧ i1 6= i2⇒
connectionOrigin(r(i1)) 6= connectionOrigin(r(i2)))
∧ (∀ i1 , i2 . i1∈1..card(r) ∧ i2∈1..card(r) ∧ i16= i2
⇒ connectionDestination(r(i1)) 6=
connectionDestination(r(i2)))) ⇔ isRoute(r) = TRUE)

pro2 ∀c.c∈Connections⇒
(connectionDestination(c)∈stations ∧ connectionOrigin(c) ∈ stations⇒
(∃r. r∈routes ∧ connectionOrigin(c) = connectionOrigin(r(1)) ∧
connectionDestination(c) = connectionDestination(r(card(r)))))

END

CONTEXT
Net2

EXTENDS
Net1

CONSTANTS
paths, routes, isRoute, seqPaths

AXIOMS
typ1 paths ⊆ Connections
typ2 seqPaths ∈ P(N 7→ paths)

typ3 isRoute ∈ seqPaths→ B
typ4 routes = {sp|sp∈seqPaths ∧ isRoute(sp) = TRUE}

END

Fig. 6. The context Net2 before (left) and after (right) the application of Heuristic 1

∀s.s ∈ seqPaths⇒ dom(s) = 1..card(s)

Proof of application of Heuristic 1: Animation requires
us to provide actual values for seqPath. Since seqPath
is a constant, we just need to ensure that the actual values
conform to the axioms of the original Net2. Then, since
the Movement2 machine is verified, we are garanteed that
animation will only reach shared legal states.

B. Case study 2: The landing gear system

The second case study deals with the specification of a
Landing Gear System (LGS) of an aircraft. The LGS is in
charge of maneuvering landing gears and associated doors.
The LGS is composed of 3 landing sets: front, left and
right. Each landing set contains a door, a landing-gear and
associated hydraulic cylinders. The main parts of the LGS are
as following:

1) a mechanical part that contains all the mechanical
devices and the three landing sets,

2) a digital part including the control software,
3) and a pilot interface.

The corresponding Event-B model specifies the pilot inter-
face, the digital part, and the mechanical and hydraulic parts
of the system. Additionally, it describes the hardware (gears,
doors, sensors, lights, electro-valve, etc.), the normal working
of the hardware and software, and the safety properties (normal
and emergency modes).

As shown by Figure 7, the Event-B model of the landing
gear system contains one abstract machine LandingSystem
and its four refinements, all shown by green blocks. In parallel
with machines, two contexts ContextInit and Hardware

are also being refined. The former contains the information
necessary to set and prove the INITIALISATION event
of the machines. The latter contains the description of the
hardware configuration and status, such as description of
landing sets as front, left and right, and handle states as
up and down. Additionally, the context CockpitHardware
contains the description of the pilot interface and the context
Phase_Ident contains the information regarding readings
of the sensors. The contexts of the system are shown by blue
blocks. Extension between contexts and refinement between
machines are shown by single arrow lines, whereas the use of
contexts by machines is depicted by dashed lines.

Figure 7 also shows three levels of observations. The
abstract model sits at the first observation level that deals
with the status of the plane: ready to land or fly. The first,
second and third refinement of the model belongs to the
second observation level that deals with the movement of the
mechanical elements of the landing gears (doors, legs, locks,
etc.). The fourth refinement sits at the third observation level
that was introduced when we wanted to model the reading of
the sensors.

An interesting feature of the LGS case study is a re-
quirement that the maneuvers can be interrupted and reversed
at any time. So, exercising the events which model the
reversal is an important part of the validation. One such
event, restore_up, introduced in the third refinement,
LandingSystem_3, updates the related variables using the
following pattern:

var :| var′ ∈ LANDING SETS → SENSOR OUTPUTS∧
(∀g.g ∈ LANDING SETS)⇒ (var′(g) = sfalse))
or
var :| var′ ∈ LANDING SETS → SENSOR OUTPUTS∧
(∀g.g ∈ LANDING SETS)⇒ (var′(g) = strue))

10

Fig. 7. Event-B model of the landing gear system [25]

where sfalse and strue model the binary information sent by
the sensors.

During animation, the animator fails to execute these
substitutions due to its inability to dynamically map variables
to each other. We then rewrote the actions using Heuristic 2
as following to achieve their execution.

var := LANDING SETS × {sfalse}
or
var := LANDING SETS × {strue}

Figure 8 shows the event restore_up before and after
the application of Heuristic 2.

C. Case study 3: The platooning system

The third case study deals with the specification of a
platooning system. Platooning is a mode of moving where
vehicles are synchronized and follow one another closely. A
platoon can be seen as a road-train where cars are linked by
software, instead of hardware. Platooning has several potential
uses in an urban mobility system: augmenting throughput,
herding unused cars to stations, or running transient buses,
for instance.

Several platooning control systems are being developed
and experimented. One locally developed is based on Situated
Multi-Agent (SMA) theory. Each car has its own local control
algorithm which uses a perception/decision/action loop; the
platooning behavior is an emerging property [36], [37].

An Event-B specification of the local model has been
written [35], [38], [39]. Contrary to the first case study, the
structure of the development in this case study can be inter-
preted as a sequence of refinements toward an implementation.
Each refinement decomposes some events to make explicit a
part of the general computation.

The Event-B model of the specification is presented by
Figure 9. The specification consists of five machines (four
refinements):

• Platoon: defines platoons and sets the basic safety
property. It contains only one event, all_move,
where all vehicles change positions while keeping safe
distance.

• Platoon 1: decomposes the event into one which
moves the leader vehicle and one which moves the
followers. This organizes the basic “iteration along the
platoon” of each move.

• Platoon 2: computes the length of each basic move.
This leads to the introduction of kinematic functions
in the contexts and to the refinement of move events
into several ones, each corresponding to a different
situation (whether the maximum and minimum speeds
are reached or not). This models the action part of the
SMA.

• Platoon 3: introduces the notion of decision of the
SMA model into the specification. Two events, one for
the leader, and one for the followers, are introduced
and integrated in the control loop.

• Platoon 4: introduces the notion of perception which
allows decision events to be refined so the actual
computation of the parameters of the control law
(acceleration) can be performed.

Although the last refinement is very close to an implemen-
tation, in spirit if not in form, yet we decided to use animation
to validate the specification for several reasons. The first was
curiosity as the heavy use of functions was challenging, the
second was to compare the results of the animation with the
results of simulations that had been previously made, and the
last was to confirm that a certain “formal approximation” was
legitimate.

The last reason is a consequence of using discrete tools
to model what is inherently continuous. In this case, all POs
were discharged, assuming one property, namely x(y/z) =
(xy)/z, holds. True in R, this property is false in N. However,
the difference becomes actually negligible when numerators
are much bigger than denominators. Animation with realistic
values gives insight on the validity of the “approximation” and
on the solidity of the model.

The context of the model contains the notions of speed
and acceleration. Several constants and axioms have been
introduced into the context to help introducing the kinematics
of a platooning system. The definition of the kinematics is
comprised of complex mathematical functions and definitions
which are non-animatable. Their non-animatability is primarily
due to the complex definition of the functions. It does not allow
the assignment of a single start-up value to the constant for
animation. In fact, some of the functions are based on multiple
definitions, each corresponding to a different case.

The first complexity arose in the refinement Platoon_2
with the definition of the new_xpos function:

∀xpos0, speed0, accel0.
((xpos0 ∈ N ∧ speed0 ∈ 0..MAX SPEED∧
accel0 ∈MIN ACCEL..MAX ACCEL)⇒

(new xpos(xpos0 7→ speed0 7→ accel0) =
xpos0 + speed0 + (accel0/2)))

which models the kinematic law of computing a new position
of a vehicle based on its acceleration and speed. It was used in
some event guards in the following form and naturally could
not be computed because actual values were required by the

11

restore up =̂
REFINES

restore up
WHERE

grd1 all gear down gear position = all up
grd2 nominal mode operating mode = normal
grd3 abort command continuation mode = continue
grd4 all raised ∀g.g∈LANDING SETS⇒(gear movement(g) = locked up

∨ gear movement(g) = stored up)
grd5 handle down handle state = handle up

THEN
act1 door open door open :| door open’ ∈ LANDING SETS→

SENSOR OUTPUT ∧ (∀g. g∈LANDING SETS⇒
(door open’(g) = sfalse))

act2 all gears up gear position := all up
act3 all stored gear movement := {Front 7→ stored up, Left 7→ stored up,

Right 7→ stored up}
act4 normal mode operating mode := normal
act5 continue continuation mode := continue
act6 light maneveur off light maneuver := light off
act7 gear extended gear extended :| gear extended’ ∈ LANDING SETS →

SENSOR OUTPUT ∧ (∀g. g∈LANDING SETS⇒
(gear extended’(g) = sfalse))

act8 gear retracted gear retracted :| gear retracted’ ∈ LANDING SETS→
SENSOR OUTPUT ∧ (∀g. g∈LANDING SETS⇒
(gear retracted’(g) = strue))

act9 door closed door closed :| door closed’ ∈ LANDING SETS→
SENSOR OUTPUT ∧ (∀g. g∈LANDING SETS⇒
(door closed’(g) = strue))

act10 presurized circuit presurized :| circuit presurized ’∈ SENSOR OUTPUT
∧ (circuit presurized ’ = sfalse)

act11 switch analog switch :| analog switch’ ∈ SWITCH POSITIONS ∧
(analog switch’ =open)

END

restore up =̂
REFINES

restore up
WHERE

grd1 all gear down gear position = all up
grd2 nominal mode operating mode = normal
grd3 abort command continuation mode = continue
grd4 all raised ∀g.g∈LANDING SETS⇒(gear movement(g) = locked up

∨ gear movement(g) = stored up)
grd5 handle down handle state = handle up

THEN
act1 door open gear extended := LANDING SETS × {sfalse}

act2 all gears up gear position := all up
act3 all stored gear movement := {Front 7→ stored up, Left 7→ stored up,

Right 7→ stored up}
act4 normal mode operating mode := normal
act5 continue continuation mode := continue
act6 light maneveur off light maneuver := light off
act7 gear extended gear extended := LANDING SETS × {sfalse}

act8 gear retracted gear retracted := LANDING SETS × {strue}

act9 door closed door closed := LANDING SETS × {strue}

act10 presurized circuit presurized :| circuit presurized ’∈ SENSOR OUTPUT
∧ (circuit presurized ’ = sfalse)

act11 switch analog switch :| analog switch’ ∈ SWITCH POSITIONS ∧
(analog switch’ = open)

END

Fig. 8. The event restore_up before (left) and after (right) the application of Heuristic 2

animators instead of a calling a function in the context.

nxpos = new xpos(xpos(vehicle) 7→ speed(vehicle) 7→
magic accel)

where magic accel denotes a free variable for this refinement,
which will be replaced by a state variable further on down the
development. Using Heuristic 3, we rewrote the guards as

nxpos = xpos(vehicle) + speed(vehicle) + (magic accel/2))

Proof of application of Heuristic 3: The PO indicates
that the Gr ⇒ G must be proven.

nxpos = new xpos(xpos(vehicle) 7→ speed(vehicle) 7→
magic accel) (G)

The function new xpos is defined as:

new xpos(xpos0 7→ speed0 7→ accel0) = xpos0 +
speed0 + (accel0/2)

Inlining the definition of function into G with the corre-
sponding local variables:

nxpos = xpos(vehicle) + speed(vehicle) +
(magic accel/2)) (Gr)

Therefore, Gr ⇒ G.

The most important complication came with another kine-
matic function new_xpos_max that calculates the position of
a vehicle when its speed has already reached the maximum. It
is quite similar to new_xpos, except there is a case definition,

Fig. 9. The Event-B model of the platooning system [35]

i.e., either the particular vehicle is accelerating or not:

∀xpos0, speed0, accel0.
((xpos0 ∈ N ∧ speed0 ∈ 0..MAX SPEED∧
accel0 ∈MIN ACCEL..MAX ACCEL)⇒

(accel0 = 0⇒ new xpos max
(xpos0 7→ speed0 7→ accel0) =
xpos0 +MAX SPEED)∧
(accel 6= 0⇒ new xpos max
(xpos0 7→ speed0 7→ accel0) =
xpos0 +MAX SPEED−
(((MAX SPEED − speed0)×
(MAX SPEED − speed0))/(2/accel0))))

The events using new_xpos_max function had to be dupli-
cated (Heuristic 4), one with the guard accel=0 and the other
with its negation.

The prime example of such cases is the event move1_max

12

which is shown by Figure 11. The guard3 of the original
event calculates the new speed of a vehicle as:

nspeed = new speed(speed(vehicle) 7→ magic accel)

The speed is then checked against the maximum allowed speed
guard4 and consequently a new position for the vehicle is
determined in guard5 as:

nxpos = new xpos max(xpos(vehicle) 7→ speed(vehicle)
7→ magic accel)

To solve the issue, the cases defined to calculate
new_xpos_max are broken down into two events, each cater-
ing for one particular case. Figure 12 shows the transformed
move1_max event.

The original and the transformed context Context_2 that
tells which functions have been relocated to machines are
shown by Figure 10.

move1 max =̂
REFINES

move1
ANY

magic accel, nspeed, nxpos
WHERE

grd1 vehicle = 1
grd2 magic accel ∈ MIN ACCEL..MAX ACCEL
grd3 nspeed = new speed(speed(vehicle)7→magic accel)
grd4 nspeed > MAX SPEED
grd5 nxpos = new xpos max(xpos(vehicle)7→

speed(vehicle)7→magic accel)
WITH

var1 magic xpos vehicle = nxpos
THEN

act1 vehicle := vehicle+1
act2 xpos(vehicle) := nxpos
act3 speed(vehicle) := MAX SPEED

END

Fig. 11. The event move1_max before the application of Heuristics 3 & 4

Proof of application of Heuristic 4: The PO needs to be
proved is

Ge(v)⇒ ∃e′.e′ ∈ Rel[{e}]∧G′e′(v)∧ (∀e′.G′e′(v)⇒ Ge(v))

The non-animatable expression is the following:

nxpos = new xpos max(xpos(vehicle) 7→ speed(vehicle)
7→ magic accel)(Ge)

The function new xpos max is defined as:

If accel0 = 0⇒
new xpos max(xpos0 7→ speed0 7→ accel0) =
xpos0 +MAX SPEED

else if accel0 6= 0⇒
new xpos max(xpos0 7→ speed0 7→ accel0) =
xpos0 +MAX SPEED−
(((MAX SPEED − speed0)∗
(MAX SPEED − speed0))/(2/accel0))

Inlining the definition of function into Ge while splitting
it into G′ and G′′

G′ states:

grd′ magic accel 6= 0
grd5 nxpos = xpos(vehicle) +MAX SPEED−

(((MAX SPEED − speed(vehicle))∗
(MAX SPEED − speed(vehicle)))/(2 ∗magic accel))

G′′ states:

grd′′ magic accel = 0
grd5 nxpos = xpos(vehicle) +MAX SPEED

Therefore, G′ ∨G′′ ⇒ Ge(v).

The major breakthrough of the animation activity was the
discovery of oscillation in the platoon, i.e., the propagation of a
wave inside the platoon without stabilization. The last vehicles
of the platoon had to adjust their acceleration frequently while
the ones in the front run smoothly. Animation shows that this
specification needs to be improved on this account as this is
an undesirable feature.

VII. EVALUATION OF THE ANIMATION PROCESS

Breuer et al. [40] listed three qualitative measures that
can be used to evaluate any animation process. In addition to
completeness, they mention coverage, i.e., how many language
constructs are handled; efficiency, i.e., how quickly is an
animation process is performed; and sophistication, i.e., how
many of the animation processes actually terminate.

In addition, [41] provides further criteria to strengthen the
evaluation of an animation process, i.e., interactivity, trans-
parency and operational equivalence. Interactivity is the idea
that a user should be able to interact with the animator in order
to perform better exploration of the specification. Transparency
is directly related to the intermediate transformations that
help achieve animations of specifications. Finally, operational
equivalence of an animator is ensured when its performed
operations are equivalent to the specification, instead of its
achieved refinements.

The VTA framework meets most of the stipulated criteria
for a desirable animation process. As described in this paper,
we are able to compensate for an animation tool’s inability to
execute specifications. For example, if a specification language
construct is not supported by a tool, we promote its rewriting
into an equivalent formula that not only extends its coverage
but also contribute towards its efficiency and sophistication.
Our heuristics that deal with the simplification of formulas,
providing missing types, inlining function values, etc., also
help achieve efficiency and sophistication.

VTA not only increases the interactivity of users with tools
by proposing heuristics but with the help of provided seman-
tics one can also reason about transparency of the proposed
transformations. In some cases, transformations are identity
functions, so they are highly transparent. However, in case of
non-supported elements where specifications need to undergo
some structural reordering and optimizations, our proposed
semantics provide a basis to argue about the soundness and,
consequently, transparency of transformations.

It is not always possible to maintain the operational equiv-
alence between the original and the transformed specification,

13

CONTEXT
Context2

EXTENDS
Context1

CONSTANTS
MAX SPEED, MIN ACCEL, MAX ACCEL,
initial speed , new speed, new xpos,
new xpos max, new xpos min

AXIOMS
typ01 MAX SPEED ∈ N1
typ02 MAX ACCEL ∈ N1
typ03 MIN ACCEL ∈ INT

pro01 MIN ACCEL < 0
pro02 initial speed ∈ 1..VEHICLES→

0..MAX SPEED
pro03 ∀ vehi0.(vehi0∈1..VEHICLES⇒ (∃ speed0.

(speed0 ∈ 0..MAX SPEED ∧
initial speed (vehi0) = speed0)))

pro04 new speed ∈ (0..MAX SPEED X
MIN ACCEL..MAX ACCEL)→ INT

pro05 ∀ speed1,accel1 .
(speed1∈0..MAX SPEED ∧ accel1∈
MIN ACCEL..MAX ACCEL⇒
new speed(speed1 7→accel1) =
speed1 + accel1)

pro06 new xpos ∈ (N X 0..MAX SPEED X
MIN ACCEL..MAX ACCEL)→ N

pro07 ∀ xpos0,speed0,accel0 . ((xpos0 ∈ N ∧
speed0 ∈ 0..MAX SPEED ∧
accel0 ∈ MIN ACCEL..MAX ACCEL)⇒
(new xpos(xpos07→speed07→accel0) =
xpos0 + speed0 + (accel0 / 2)))

pro08 new xpos max ∈ N X 0..MAX SPEED X
MIN ACCEL..MAX ACCEL→ N

pro09 ∀ xpos0,speed0,accel0 . (xpos0 ∈ N
∧ speed0 ∈ 0..MAX SPEED ∧
accel0 ∈ MIN ACCEL..MAX ACCEL⇒
((accel0 = 0 ⇒
new xpos max(xpos0 7→speed07→accel0)
= xpos0 + MAX SPEED) ∧
(accel0 6= 0⇒
new xpos max(xpos0 7→speed07→accel0) =
xpos0 + MAX SPEED −
(((MAX SPEED − speed0) ∗
(MAX SPEED−speed0))/(2∗accel0)))))

pro10 new xpos min ∈ N X 0..MAX SPEED X
MIN ACCEL..MAX ACCEL→ N

pro11 ∀ xpos0,speed0,accel0 . (xpos0 ∈ N ∧
speed0 ∈ 0..MAX SPEED ∧
accel0 ∈ MIN ACCEL..MAX ACCEL⇒
((accel0 = 0 ⇒
new xpos min(xpos07→speed07→accel0) =
xpos0) ∧ (accel0 6= 0⇒
new xpos min(xpos07→speed07→accel0) =
xpos0 − ((speed0 × speed0) /
(2 × accel0)))))

END

CONTEXT
Context2

EXTENDS
Context1

CONSTANTS
MAX SPEED, MIN ACCEL, MAX ACCEL,
initial speed ,

AXIOMS
typ01 MAX SPEED ∈ N1
typ02 MAX ACCEL ∈ N1
typ03 MIN ACCEL ∈ INT

pro01 MIN ACCEL < 0
pro02 initial speed ∈ 1..VEHICLES→

0..MAX SPEED
pro03 ∀ vehi0.(vehi0∈1..VEHICLES⇒

(∃ speed0 . (speed0 ∈ 0..MAX SPEED ∧
initial speed (vehi0) = speed0)))

END

Fig. 10. The context Context_2 before (left) and after (right) the application of Heuristic 3

for example, in case of refinement and approximation. In
the transformation process, one can lose certain behaviors,
for example, by restricting some inputs, but one can not
have additional behaviors such as new state transitions. We
have, therefore, introduced the notion of fidelity which, once
proved, ensures that observations made on the transformed
specification equate with the original specification.

VIII. RELATED WORK

The concept of specification animation is not a new one.
Program visualizations have been previously used for design-
ing, developing, monitoring and debugging software. Some
notable visualization environments spanning across different
areas of interest are graphics interface development [42],
visualization of concurrent processes [43], etc.

Executability of specifications is a controversial issue.
More than two decades ago, Hayes et al. [44] objected to the
idea of specification execution. They argued that executability
suppresses the expressiveness of a language and as far as
specifications are concerned, the latter quality of a specification
should be preferred over the former. In addition, they stated
that executable specifications can negatively affect implemen-
tations.

In response to these concerns, [45] replied that it is the
issue of correctness which is the major challenge in soft-
ware development and not the expressiveness of specification
languages. A technique like animation is, in fact, a very
powerful method to ensure that specifications are validatable
by customers as early as possible, thus, minimizing the chances
of software faults.

14

move1 max =̂
REFINES

move1
ANY

magic accel, nspeed, nxpos
WHERE

grd1 vehicle = 1
grd2 magic accel ∈ MIN ACCEL..MAX ACCEL
grd’ magic accel 6= 0
grd3 nspeed = new speed(speed(vehicle)7→

magic accel)
grd4 nspeed > MAX SPEED
grd5 nxpos = xpos(vehicle) +

MAX SPEED − (((MAX SPEED −
speed(vehicle)) × (MAX SPEED −
speed(vehicle))) / (2 × magic accel))

WITH
var1 magic xpos vehicle = nxpos

THEN
act1 vehicle := vehicle+1
act2 xpos(vehicle) := nxpos
act3 speed(vehicle) := MAX SPEED

END

move1 max zero =̂
REFINES

move1
ANY

magic accel, nspeed, nxpos
WHERE

grd1 vehicle = 1
grd2 magic accel ∈ MIN ACCEL..MAX ACCEL
grd ’’ magic accel = 0
grd3 nspeed = new speed(speed(vehicle)7→

magic accel)
grd4 nspeed > MAX SPEED
grd5 nxpos = xpos(vehicle) + MAX SPEED

WITH
var1 magic xpos vehicle = nxpos

THEN
act1 vehicle := vehicle+1
act2 xpos(vehicle) := nxpos
act3 speed(vehicle) := MAX SPEED

END

Fig. 12. The event move1_max after the application of Heuristics 3 & 4

Our approach addresses both issues. Our rules help specifi-
cations achieve their animation and at the same time we ensure
that they remain consistent. Our work can be seen as an exten-
sion of the approach presented in [46]. This work highlights
the steps of converting a formal problem specification to a
final program by applying semantics-preserving transformation
rules.

IX. CONCLUSION

We have presented an animation-based process for val-
idation of formal requirements specifications. The idea of
stepwise development is further enriched by a proposition of
an auxiliary animation step associated with (preferably) each
refinement.

One limiting factor associated with the technique of ani-
mation is that not all specifications are animatable, at least, not
directly. However, a specification can be “downgraded” into a
behaviorally-equivalent animatable specification. We have then
proposed several transformations to realize this idea. Naturally,
the validity of such a technique depends on semantics of the
transformations. We have then developed a specific formal
notion of fidelity, based on the behavior-preservation property
of a model, to guarantee that the transformations can be trusted.

Despite having transformation rules, animators may still
fail to execute a specification. For the validation of such spec-
ifications, the technique of simulation [47], where users can
safely complete the program generated form the specification,
best suits the purpose. In future, we plan to extend the VTA
framework in this direction. Implementation of the proposed
heuristics in the form of a tool is also a future work.

REFERENCES

[1] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw, “Automated consis-
tency checking of requirements specifications,” ACM Transactions on
Software Engineering and Methodology (TOSEM), vol. 5, no. 3, pp.
231–261, 1996.

[2] M. Kaufmann and J. S. Moore, “ACL2: An Industrial Strength Version
of Nqthm,” in Proceedings of the Eleventh Annual Conference on
Computer Assurance (COMPASS-96), 1996.

[3] S. Owre, J. M. Rushby, , and N. Shankar, “PVS: A prototype verification
system,” in 11th International Conference on Automated Deduction
(CADE), ser. Lecture Notes in Artificial Intelligence, D. Kapur, Ed.,
vol. 607. Saratoga, NY: Springer-Verlag, jun 1992, pp. 748–752.

[4] M. J. C. Gordon and T. F. Melham, Introduction to HOL: A Theorem-
Proving Environment for Higher-Order Logic. Cambridge University
Press, 1993.

[5] L. C. Paulson, Isabelle: a Generic Theorem Prover, ser. Lecture Notes
in Computer Science. Springer – Berlin, 1994.

[6] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar, “The Software
Model Checker BLAST: Applications to Software Engineering,” Int. J.
Softw. Tools Technol. Transf., vol. 9, no. 5, pp. 505–525, Oct. 2007.

[7] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “NuSMV 2: An OpenSource
Tool for Symbolic Model Checking,” in Computer Aided Verification,
ser. Lecture Notes in Computer Science, E. Brinksma and K. Larsen,
Eds. Springer Berlin Heidelberg, 2002, vol. 2404, pp. 359–364.

[8] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker, “PRISM:
A Tool for Automatic Verification of Probabilistic Systems,” in Tools
and Algorithms for the Construction and Analysis of Systems, ser.
Lecture Notes in Computer Science, H. Hermanns and J. Palsberg, Eds.
Springer Berlin Heidelberg, 2006, vol. 3920, pp. 441–444.

[9] G. J. Holzmann, “The Model Checker SPIN,” IEEE Trans. Software
Engineering, vol. 23, no. 5, pp. 279–295, 1997.

[10] R. Butler, J. Caldwell, V. Carreno, C. Holloway, P. S. Miner, and
B. Di Vito, “NASA Langley’s research and technology-transfer program
in formal methods,” in Computer Assurance, 1995. COMPASS ’95.
Systems Integrity, Software Safety and Process Security. Proceedings
of the Tenth Annual Conference on, Jun 1995, pp. 135–149.

[11] M. Kaufmann and J. Moore, “An industrial strength theorem prover
for a logic based on Common Lisp,” Software Engineering, IEEE
Transactions on, vol. 23, no. 4, pp. 203–213, Apr 1997.

[12] A. Cimatti, “Industrial applications of model checking,” in Modeling
and Verification of Parallel Processes, ser. Lecture Notes in Computer
Science, F. Cassez, C. Jard, B. Rozoy, and M. Ryan, Eds. Springer
Berlin Heidelberg, 2001, vol. 2067, pp. 153–168. [Online]. Available:
http://dx.doi.org/10.1007/3-540-45510-8 6

[13] J. Bormann, J. Lohse, M. Payer, and G. Venzl, “Model checking
in industrial hardware design,” in Proceedings of the 32Nd Annual
ACM/IEEE Design Automation Conference, ser. DAC ’95. New
York, NY, USA: ACM, 1995, pp. 298–303. [Online]. Available:
http://doi.acm.org/10.1145/217474.217545

[14] J. M. Spivey, Understanding Z: a specification language and its formal
semantics. Cambridge University Press, 1988.

[15] J.-R. Abrial, The B Book. Cambridge University Press, 1996.

15

http://dx.doi.org/10.1007/3-540-45510-8_6
http://doi.acm.org/10.1145/217474.217545

[16] ——, Modeling in Event-B: System and Software Engineering. Cam-
bridge University Press, 2010.

[17] R. Farahbod, V. Gervasi, and U. Glässer, “CoreASM: An Extensible
ASM Execution Engine,” Fundam. Inf., vol. 77, no. 1-2, pp. 71–103,
Jan. 2007.

[18] A. Gargantini, E. Riccobene, and P. Scandurra, “A Metamodel-based
Language and a Simulation Engine for Abstract State Machines,”
vol. 14, no. 12, pp. 1949–1983, jun 2008.

[19] J. Fitzgerald, P. G. Larsen, and S. Sahara, “VDMTools: Advances
in Support for Formal Modeling in VDM,” SIGPLAN Not.,
vol. 43, no. 2, pp. 3–11, Feb. 2008. [Online]. Available: http:
//doi.acm.org/10.1145/1361213.1361214

[20] M. Leuschel and M. Butler, “ProB: An Automated Analysis Toolset
for the B Method,” Journal Software Tools for Technology Transfer,
vol. 10, no. 2, pp. 185–203, 2008.

[21] D. Jackson, Software Abstractions: Logic, Language, and Analysis. The
MIT Press, 2006.

[22] A. Mashkoor, J.-P. Jacquot, and J. Souquières, “Transformation Heuris-
tics for Formal Requirements Validation by Animation,” in 2nd In-
ternational Workshop on the Certification of Safety-Critical Software
Controlled Systems (SafeCert’09), York, UK, 2009.

[23] A. Mashkoor and J.-P. Jacquot, “Stepwise validation of formal spec-
ifications,” in 18th Asia-Pacific Software Engineering Conference
(APSEC’11), Ho Chi Minh City, Vietnam, 2011.

[24] ——, “Utilizing Event-B for Domain Engineering: A Critical Analysis,”
Requirements Engineering, vol. 16, no. 3, pp. 191–207, 2011.

[25] ——, “Observation-Level-Driven Formal Modeling,” in High-
Assurance Systems Engineering (HASE), 2015 IEEE 16th International
Symposium on, 2015, pp. 158–165.

[26] B. Meyer, “On formalism in specifications,” Software, IEEE, vol. 2,
no. 1, pp. 6–26, Jan 1985.

[27] A. Mashkoor and J.-P. Jacquot, “Guidelines for Formal Domain Model-
ing in Event-B,” in High-Assurance Systems Engineering (HASE), 2011
IEEE 13th International Symposium on, 2011, pp. 138–145.

[28] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation
of fixpoints,” in POPL ’77: Proceedings of the 4th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages. New
York, NY, USA: ACM, 1977, pp. 238–252.

[29] T. Servat, “BRAMA: A New Graphic Animation Tool for B Models,” in
B 2007: Formal Specification and Development in B. Springer-Verlag,
2006, pp. 274–276.

[30] A. Mashkoor, “Formal Domain Engineering: From Specification to
Validation,” Ph.D. dissertation, Université de Lorraine, Jul. 2011.
[Online]. Available: http://tel.archives-ouvertes.fr/tel-00614269/en/

[31] J.-R. Abrial, M. Butler, S. Hallerstede, and L. Voisin, “An open
extensible tool environment for Event-B,” in Proceedings of the 8th
international conference on Formal Methods and Software Engineering,
ser. ICFEM’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 588–
605.

[32] A. Mashkoor, J.-P. Jacquot, and J. Souquières, “B Evénementiel
pour la Modélisation du Domaine: Application au Transport,” in Ap-
proches Formelles dans l’Assistance au Développement de Logiciels
(AFADL’09), Toulouse, France, 2009, pp. 1–19.

[33] A. Mashkoor and J.-P. Jacquot, “Domain Engineering with Event-B:
Some Lessons We Learned,” in Requirements Engineering Conference
(RE), 2010 18th IEEE International, Sept 2010, pp. 252–261.

[34] F. Boniol and V. Wiels, “The landing gear system case study,” in
ABZ 2014: The Landing Gear Case Study, ser. Communications
in Computer and Information Science, F. Boniol, V. Wiels,
Y. Ait Ameur, and K.-D. Schewe, Eds. Springer International
Publishing, 2014, vol. 433, pp. 1–18. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-319-07512-9 1

[35] A. Lanoix, “Event-B Specification of a Situated Multi-Agent System:
Study of a Platoon of Vehicles,” in 2nd International Symposium
on Theoretical Aspects of Software Engineering (TASE’08), Nanjing,
China, 2008.

[36] P. Daviet and M. Parent, “Longitudinal and Lateral Servoing of Ve-
hicles in a Platoon,” in Proceedings of the IEEE Intelligent Vehicles
Symposium, 1996, pp. 41–46.

[37] A. Scheuer, O. Simonin, and F. Charpillet, “Safe Longitudinal Platoons
of Vehicles without Communication,” INRIA, Research Report RR-
6741, 2008. [Online]. Available: http://hal.inria.fr/inria-00342719/en/

[38] S. Colin, A. Lanoix, O. Kouchnarenko, and J. Souquières, “Towards
Validating a Platoon of Cristal Vehicles using CSP‖B,” in 12th Interna-
tional Conference on Algebraic Methodology and Software Technology
(AMAST 2008), ser. LNCS, J. Meseguer and G. Rosu, Eds., no. 5140.
Springer-Verlag, Jul. 2008, pp. 139–144.

[39] ——, “Using CSP‖B Components: Application to a Platoon of Vehi-
cles,” in 13th International ERCIM Wokshop on Formal Methods for
Industrial Critical Systems (FMICS 2008), ser. LNCS. Springer-Verlag,
Sep. 2008.

[40] P. Breuer and J. Bowen, “Towards correct executable semantics for Z,”
in Z User Workshop, Cambridge 1994, ser. Workshops in Computing,
J. Bowen and J. Hall, Eds. Springer London, 1994, pp. 185–209.

[41] M. Utting, “Animating Z: interactivity, transparency and equivalence,”
in Software Engineering Conference, 1995. Proceedings., 1995 Asia
Pacific, 1995, pp. 294–303.

[42] E. Clemons and A. Greenfield, “The sage system architecture: A system
for the rapid development of graphics interfaces for decision support,”
IEEE Computer Graphics and Applications, vol. 5, pp. 38–50, 1985.

[43] G.-C. Roman and K. C. Cox, “A declarative approach to visualizing
concurrent computations,” Computer, vol. 22, no. 10, pp. 25–36, 1989.

[44] I. Hayes and C. Jones, “Specifications are not (necessarily) executable,”
Software Engineering Journal, vol. 4, pp. 330–338, November 1989.

[45] N. E. Fuchs, “Specifications are (preferably) executable,” Software
Engineering Journal, vol. 7, pp. 323–334, September 1992.

[46] H. A. Partsch, Specification and transformation of programs: a formal
approach to software development. New York, NY, USA: Springer-
Verlag New York, Inc., 1990.

[47] F. Yang, J.-P. Jacquot, and J. Souquières, “The case for using simu-
lation to validate Event-B specifications,” in Proceedings of the 2012
19th Asia-Pacific Software Engineering Conference - Volume 01, ser.
APSEC’12. Washington, DC, USA: IEEE Computer Society, 2012,
pp. 85–90.

16

http://doi.acm.org/10.1145/1361213.1361214
http://doi.acm.org/10.1145/1361213.1361214
http://tel.archives-ouvertes.fr/tel-00614269/en/
http://dx.doi.org/10.1007/978-3-319-07512-9_1
http://dx.doi.org/10.1007/978-3-319-07512-9_1
http://hal.inria.fr/inria-00342719/en/

	Introduction
	VTA
	Observation-level-driven formal modeling
	Verification
	Transformation
	Animation

	Animatability versus provability
	Rendering a specification animatable
	Approximation
	Refinement
	Rewriting
	Inlining

	Transformational heuristics and their semantics
	The heuristics
	Formal semantics of transformations

	Demonstration of the approach on case studies
	Case study 1: The land transport domain model
	Case study 2: The landing gear system
	Case study 3: The platooning system

	Evaluation of the animation process
	Related work
	Conclusion
	References

