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Summary. We propose a finite difference space semi-discretization of the stabilized
Bernoulli-Euler plate equation in a square. The scheme studied yields a uniform
exponential decay rate with respect to the mesh size.

1 Statement of the main result

Consider a square plate Ω = (0, π) × (0, π) subject to a feedback force dis-
tributed on a rectangular subdomain O = [a, b] × [c, d] of Ω. If χO denotes
the characteristic function of O, the stabilization problem considered reads: ẅ(t) +∆2w(t) + χO ẇ(t) = 0, x ∈ Ω, t > 0,

w(t) = ∆w(t) = 0, x ∈ ∂Ω, t > 0,
w(x, 0) = w0(x), ẇ(x, 0) = w1(x), x ∈ Ω.

(1)

It is well known (cf. [3]) that the energy E(t) = ||ẇ(t)||2L2(Ω) + ||∆w(t)||2L2(Ω)

of system (1) decreases exponentially. The aim of this paper is to propose a
space semi-discretization of this internal stabilization problem that ensures
an exponential decay of the discretized energy Eh(t) which is uniform with
respect to the mesh size. This is not a trivial issue because of the possible ap-
pearance during the approximation process of high frequency spurious modes
that cannot be damped by the feedback term. The appearance of such spu-
rious modes in the approximation by finite differences or finite elements of
control problems has been emphasized in several works (see, for instance [1],
[2], [6] and the review paper [7]). Various solutions to overcome this difficulty
have been proposed in the literature. The one followed in this paper is the
one based on the introduction of an artificial numerical viscosity term.

Let us now precise the numerical scheme proposed. Given N1 ∈ N, denote
by h = π/(N1 + 1), and assume that there exist integers a(h), b(h), c(h), d(h)
in {1, . . . , N1} such that
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a = a(h)h, b = b(h)h, c = c(h)h, d = d(h)h. (2)

Let wj,k denote for all j, k ∈ {0, N1+1} the approximation of the solution w of
system (1) at the point xj,k = (jh, kh). We use the standard finite difference
approximation of the laplacian, by setting for all j, k ∈ {1, . . . , N1}:

∆w(jh, kh) ≈ 1
h2

(wj+1,k + wj−1,k + wj,k+1 + wj,k−1 − 4wj,k) .

Set Vh = R(N1)
2

and let wh ∈ Vh be the vector whose components are the
wj,k for 1 ≤ j, k ≤ N1. In order to satisfy the boundary conditions in (1), we
impose that

∀k ∈ {0, . . . , N1 + 1} :

w0,k = wk,0 = wN1+1,k = wk,N1+1 = 0
w−1,k = −w1,k, wN1+2,k = −wN1,k,
wk,−1 = −wk,1, wk,N1+2 = −wk,N1 .

(3)

The matrix A0h representing the discretization of the bilaplacian with hinged
boundary conditions is defined via its square root A

1
2
0h given by(

A
1
2
0hwh

)
j,k

= − 1
h2

(wj+1,k + wj−1,k + wj,k+1 + wj,k−1 − 4wj,k) ,

for all 1 ≤ j, k ≤ N1. The finite-difference space semi-discretization for system
(1) studied in this paper reads then{

ẅj,k + (A0hwh)j,k + (χO ẇh)j,k + h2 (A0hẇh)j,k = 0, 1 ≤ j, k ≤ N1,

wj,k(0) = w0h, ẇj,k(0) = w1h, 1 ≤ j, k ≤ N1,
(4)

In the above equations, w0h and w1h are suitable approximations of the initial
data w0 and w1 on the finite-difference grid and χO ẇh denotes the vector of
Vh whose components are the ẇj,k if j and k are such that xj,k ∈ O, and 0
otherwise. The numerical viscosity term h2A0hẇh in (4) is introduced in order
to damp the high frequency modes. Our main result is the following.

Theorem 1. The family of systems defined by (3)-(4) is uniformly exponen-
tially stable, i.e. there exist constants C, α, h∗ > 0 (independent of h, w0h

and w1h) such that :

‖ẇh(t)‖2 +
∥∥∥A 1

2
0hwh(t)

∥∥∥2

≤ Ce−αt

(
‖w1h‖2 +

∥∥∥A 1
2
0hw0h

∥∥∥2
)
,

for all h ∈ (0, h∗) and all t > 0.

In the above theorem and in the remaining part of this paper, we denote by
‖ · ‖ the Euclidean norm in Rm for various values of m. The proof of theorem
1 is based on the following frequency domain characterization for the uniform
exponential stability of a sequence of semigroups (see [4, p.162]).
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Theorem 2. Let (Th)h>0 be a family of semigroups of contractions on the
Hilbert space Vh and Ah be the corresponding infinitesimal generators. The
family (Th)h>0 is uniformly exponentially stable if and only if the two following
conditions are satisfied:
i) For all h > 0, iR ⊂ ρ(Ah), where ρ(Ah) denotes the resolvent set of Ah,
ii) sup

h>0,ω∈R
‖(iω −Ah)−1‖ < +∞.

2 Proof of Theorem 1

2.1 Abstract second and first order formulations

Let Uh = R(b(h)−a(h)+1)×(d(h)−c(h)+1) be the discretized input space, where the
integers a(h), b(h), c(h) and d(h) are defined by (2). If B0 ∈ L(L2(O), L2(Ω))
denotes the restriction operator defined by B0u = χO u for all u ∈ L2(O),
we introduce its finite-difference approximation B0h ∈ L(Uh, Vh) by setting
for all uh ∈ Uh : (B0h uh)j,k = uj,k if j and k are such that xj,k ∈ O, and 0
otherwise. The adjoint B∗0h ∈ L(Vh, Uh) of B0h is then defined for all wh ∈ Vh

by (B∗0hwh)j,k = wj,k for all j, k such that xj,k ∈ O.
The finite-difference semi-discretization (3)-(4) admits the following ab-

stract second order formulation:
ẅj,k + (A0hwh)j,k + (B0hB

∗
0hẇh)j,k + h2 (A0hẇh)j,k = 0, 1 ≤ j, k ≤ N1,

wj,k =
(
A

1
2
0hwh

)
j,k

= 0, j, k = 0, N1 + 1,

wj,k(0) = w0h, ẇj,k(0) = w1h, 0 ≤ j, k ≤ N1 + 1.
(5)

It can be easily checked that the sequence (‖B0h‖L(Uh,Vh)) is bounded and

that the eigenvalues of A
1
2
0h are

λp,q,h =
4
h2

[
sin2

(
ph

2

)
+ sin2

(
qh

2

)]
, for 1 ≤ p, q ≤ N1. (6)

A corresponding sequence of normalized eigenvectors is given by the vectors

ϕp,q,h =
(
ϕj,k

p,q,h

)
1≤j,k≤N1

, with components ϕj,k
p,q,h =

2h
π

sin (jph) sin (kqh).

In order to apply theorem 2, we write system (5) as a first order system.
Let us then introduce the space Xh = Vh × Vh, which will be endowed with

the norm ‖(ϕh, ψh)‖2Xh
= ‖ϕh‖2 +

∥∥∥A 1
2
0hψh

∥∥∥2

. Setting zh =
[
wh

ẇh

]
, equations

(5) can be easily written in the equivalent form

żh(t) = Ahzh(t), zh(0) = z0h,

where z0h =
[
w0h

w1h

]
and Ah ∈ L(Xh) is defined by
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Ah =
[

0 I
−A0h −h2A0h −B0hB

∗
0h

]
. (7)

It will be useful to introduce the operator A1h =
[

0 I
−A0h 0

]
∈ L(Xh) such

that

Ah = A1h −
[
0 0
0 h2A0h +B0hB

∗
0h

]
. (8)

We will also need in the sequel the spectral basis of the operator A1h. More-
over, it will be more convenient to number the eigenelements of A1h using
only one index m instead of the couple (p, q). To achieve this, let us first rear-
range the sequence of eigenvalues λp,q = p2 + q2, p, q ∈ N∗, of the continuous
problem in nondecreasing order to obtain a new sequence (Λm)m∈N∗ . Then, if

Λm = λp,q = p2 + q2, ∀ m ∈ N∗, ∀p, q ∈ N∗, (9)

then we set for all 1 ≤ m ≤ (N1)2, and for all 1 ≤ p, q ≤ N1:

Λm,h = λp,q,h, ϕm,h = ϕp,q,h. (10)

Let then N2(h) = (N1)2 =
(π
h
− 1

)2

be the number of nodes of the finite-
difference grid. If we extend the definition of Λm,h and ϕm,h to the values
m ∈ {−1, . . . ,−N2(h)} by setting

Λm,h = −Λ−m,h, ϕm,h = ϕ−m,h, (11)

then it can be easily checked that the eigenvalues of A1h are iΛm,h, where
1 ≤ |m| ≤ N2(h), and that an orthonormal basis of Xh formed by eigenvectors
of A1h is given by

Φm,h =
1√
2

− i

Λm,h
ϕm,h

ϕm,h

 , 1 ≤ |m| ≤ N2(h), (12)

We are now in position to apply theorem 2.

2.2 Checking the assumptions of theorem 2

To prove condition i) in theorem 2, we use a contradiction argument. Suppose

that there exist
[
ϕh

ψh

]
∈ Xh and ω ∈ R such that: Ah

[
ϕh

ψh

]
= iω

[
ϕh

ψh

]
. Then,

by using the definition (7) of Ah, we easily obtain that ψh = iωϕh and that[
ω2 −A0h − iω(h2A0h +B0hB

∗
0h)

]
ϕh = 0.

By taking the imaginary part of the inner product of this last relation with
ϕh, we get that ϕh = 0, and thus ψh = 0. Therefore, for all ω ∈ R, iω cannot
be an eigenvalue of Ah. Thus, condition i) in theorem 2 holds true.
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Now, we check condition ii) of theorem 2. Once again, we use a contradiction
argument. Let us thus assume the existence for all n ∈ N of hn ∈ (0, h∗),

ωn ∈ R, zn =
[
φn

ψn

]
∈ Xhn

such that

‖zn‖2 =
∥∥∥A 1

2
0hn

φn

∥∥∥2

+ ‖ψn‖2 = 1 ∀ n ∈ N (13)

‖iωnzn −Ahn
zn‖ → 0. (14)

To obtain a contradiction, the idea is to decompose zn into a low frequency
part and a high frequency part. Then, thanks to the numerical viscosity intro-
duced in the scheme, we prove that the high frequency part tends to 0. Finally,
we conclude by using a result on the uniform observability of low frequency
packets of eigenvectors.
More precisely, for 0 < ε < 1 and h ∈ (0, h∗), we define the integer

M(h) = max
{
m ∈ {1, . . . , N2(h)} | h2(Λm)2 ≤ ε

}
, (15)

where the sequence (Λm)m∈N∗ defined in (9) constitutes the sequence of eigen-
values of the continuous problem. The eigenvalues Λm,h for 1 ≤ |m| ≤ M(h)
correspond to “low frequencies” and will be damped to zero by the feedback
control term B0hB

∗
0hẇh. The eigenvalues Λm,h for |m| > M(h) correspond to

“high frequencies” and will be damped by the numerical viscosity term. To
get the desired contradiction, we follow several steps.
Step 1
Let us prove the two relations

h2
n

∥∥∥A 1
2
0hn

ψn

∥∥∥2

+ ‖B∗0hn
ψn‖2 → 0, (16)

lim
n→∞

∥∥∥A 1
2
0hn

φn

∥∥∥2

= lim
n→∞

‖ψn‖2 =
1
2
. (17)

Relation (16) follows directly from (14) by taking the inner product in Xhn
of

iωnzn−Ahn
zn by zn and by considering only the real part. By using (14), (16),

(8) and the fact that the operators B0hn are uniformly bounded we obtain
that ∥∥∥∥iωnzn −A1hn

zn +
[

0
h2

nA0hn
ψn

]∥∥∥∥ → 0. (18)

It can be easily that the sequence (ωn) is bounded away from zero for n large
enough(use a contradiction argument). Therefore, taking the inner product in

Xhn of (18) by
1
ωn

[
φn

−ψn

]
and by considering the imaginary part, we obtain

that limn→∞

∥∥∥A 1
2
0hn

φn

∥∥∥2

− ‖ψn‖2 = 0. This last relation and (13) yield (17).
Step 1 is thus complete.
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In order to state the second step, let us introduce the modal decomposition of
zn on the spectral basis of (Φm,hn

)1≤|m|≤N2(hn) of A1hn
. For all n ∈ N, there

exist complex coefficients (cnm)1≤|m|≤N2(hn) such that

zn =
[
φn

ψn

]
=

∑
1≤|m|≤N2(hn)

cnmΦm,hn
. (19)

The normalization condition (13) reads then∑
1≤|m|≤N2(hn)

|cnm|2 = 1. (20)

Step 2
In this step, we prove that the following relations holds true

ψn =
1√
2

N2(hn)∑
m=1

(
cnm + cn−m

)
ϕm,hn , (21)

∑
M(hn)<m≤N2(hn)

∣∣cnm + cn−m

∣∣2 → 0, (22)

∑
1≤|m|≤M(hn)

|ωn − Λm,hn |
2 |cnm|2 → 0. (23)

Note that, roughly speaking, relations (21) and (22) show that the projection
of ψn on the high frequencies tends to 0 as n tends to +∞. Relation (21)
follows directly by taking the second component in (19) and by using (12).
On the other hand, by using (19) and the fact that Φm,h is an eigenvector of
A1h associated to the eigenvalue iΛm,h, we have

iωnzn −A1hnzn =
∑

1≤|m|≤N2(hn)

i (ωn − Λm,hn) cnmΦm,hn (24)

From (16) and (21) it follows that

h2
n

∥∥∥A 1
2
0 ψn

∥∥∥2

=
N2(hn)∑
m=1

h2
nΛ

2
m,hn

∣∣cnm + cn−m

∣∣2 → 0. (25)

Using the expression (6) of λp,q,h and that λp,q = p2 + q2 , it can be easily

checked that
4
π2
λp,q ≤ λp,q,h ≤ λp,q, for all 1 ≤ p, q ≤ N1, or equivalently

4
π2
Λm ≤ Λm,h ≤ Λm ∀ 1 ≤ m ≤ N2(h). (26)

Relations (25), (26) and (15) imply (22). On the other hand, relations (26)
and (25) clearly imply that there exists a constant C independent of h such
that
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h4
n

M(hn)∑
m=1

Λ4
m,hn

∣∣cnm + cn−m

∣∣2 ≤ Cε

M(hn)∑
m=1

h2
nΛ

2
m,hn

∣∣cnm + cn−m

∣∣2 → 0. (27)

On the other hand, a simple calculation shows that[
0

h2
nA0hnψn

]
=

∑
1≤|m|≤N2(hn)

h2
n

2
Λ2

m,hn

(
cnm + cn−m

)
Φm,hn , (28)

Relations (27) and (28) imply that[
0

h2
nA0hnψn

]
−

∑
M(hn)<|m|≤N2(hn)

h2
n

2
Λ2

m,hn

(
cnm + cn−m

)
Φm,hn → 0 (29)

By using (18), (24) and (29) it follows that∑
1≤|m|≤N2(hn)

i (ωn − Λm,hn
) cnmΦm,hn

+
∑

M(hn)<|m|≤N2(hn)

h2
n

2
Λ2

m,hn

(
cnm + cn−m

)
Φm,hn

→ 0.

Since the family (Φm,hn
) is orthogonal, the above relation implies (23).

Step 3
Consider the set

F =
{
n ∈ N | ∃m(n) ∈ Z, 1 ≤ |m(n)| ≤M(hn), and |ωn − Λm(n),hn

| < 1
8

}
.

In other words, F is constituted by those integers n such that ωn is located
in the “low frequency band”. We distinguish then two cases:

First Case: The set F is finite. Then, for the sake of simplicity, we
can suppose, without loss of generality, that F is empty. In this case, all
the elements of the sequence (ωn) are located in the “high frequency band”.
By using relation (23) in Step 2 and the above relation, we obtain that <∑

1≤|m|≤M(hn) |cnm|2 → 0, i.e. that the low-frequency part of ψn tends to 0.
Thus, the above relation, (21) and (22) in Step 2 imply that

ψn → 0 in H,

which contradicts (17).

Second case: The set F is infinite. Then, for the sake of simplicity,
we can suppose, without loss of generality, that F = N. In this case, all
the sequence ωn is located in the “low frequency band”. For all n ∈ N, we

introduce the set Fn =
{
m ∈ Z | 1 ≤ |m| ≤M(hn) and |ωn − Λm,hn | <

1
8

}
.
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Note that Fn is never empty (since it always contains m(n)) and represents
the collection of low frequency eigenvalues located near ωn. Set then ψ̃n =
1√
2

∑
m∈Fn

cnm ϕm,hn
. The definition of Fn, together with relation (23) of

Step 2 imply that ∑
m∈{1,...,N2(hn)}\Fn

|cnm|2 → 0. (30)

Using now relations (21) and (22) of Step 2, we see that (30) exactly states
that

‖ψn − ψ̃n‖ → 0. (31)

The above relation implies that ‖B∗0hn
(ψn− ψ̃n)‖ → 0. This relation together

with relation (16) of Step 1 show that

‖B∗0hn
ψ̃n‖ → 0. (32)

But on the other hand, applying lemma 3.2 in [5] on the uniform observability
of low frequency packets of eigenvectors (note that Ihn

(ωn) = Fn) , we get
the existence of δ > 0 such that for all n ∈ N, we have

‖B∗0hn
ψ̃n‖2 > δ2

∑
m∈Fn

|cnm|2. (33)

Gathering (30), (32) and (33), we finally obtain that ψ̃n → 0 in H. By using
(31), we obtain that ψn → 0 which contradicts (17). The proof of theorem 1
is now complete.
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