
HAL Id: hal-01264687
https://hal.inria.fr/hal-01264687

Submitted on 29 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic implementation of TTEthernet-based
time-triggered avionics applications

Raul Adrian Gorcitz, Thomas Carle, David Lesens, David Monchaux,
Dumitru Potop-Butucaru, Yves Sorel

To cite this version:
Raul Adrian Gorcitz, Thomas Carle, David Lesens, David Monchaux, Dumitru Potop-Butucaru, et
al.. Automatic implementation of TTEthernet-based time-triggered avionics applications. DASIA
2015, Eurospace, May 2015, Barcelone, Spain. �hal-01264687�

https://hal.inria.fr/hal-01264687
https://hal.archives-ouvertes.fr


Automatic implementation of TTEthernet-based
time-triggered avionics applications

Raul Adrian Gorcitz⇤, Thomas Carle†, David Lesens‡, David Monchaux⇤, Dumitru Potop-Butucaru†, Yves Sorel†
⇤CNES - Centre National d’Études Spatiales

†INRIA - Institut National de Recherche en Informatique et en Automatique
‡Airbus Defence and Space

Abstract—The design of safety-critical embedded systems such

as those used in avionics still involves largely manual phases.

But in avionics the definition of standard interfaces embodied in

standards such as ARINC 653 or TTEthernet should allow the

definition of fully automatic code generation flows that reduce

the costs while improving the quality of the generated code,

much like compilers have done when replacing manual assembly

coding. In this paper, we briefly present such a fully automatic

implementation tool, called Lopht, for ARINC653-based time-

triggered systems, and then explain how it is currently extended

to include support for TTEthernet networks.

I. INTRODUCTION

The implementation of complex embedded software re-
lies on two fundamental and complementary engineering
disciplines: real-time scheduling and compilation. Real-time
scheduling covers1 the upper abstraction levels of the im-
plementation process, which determine how the functional
specification is transformed into a set of tasks and then
determine how the tasks must be allocated and scheduled onto
the resources of the execution platform in a way that ensures
functional correctness and the respect of non-functional re-
quirements. By comparison, compilation covers the low-level
code generation process, where each task (a piece of sequential
code written in C, Ada, etc.) is transformed into machine code,
allowing actual execution.

In the early days of embedded systems design, both high-
level and low-level implementation activities were largely
manual. However, this is no longer the case in the low level,
where manual assembly coding has been almost completely
replaced by the use of languages such as C or Ada and
compilers [1]. This shift towards high-level languages and
compilation allowed a significant productivity gain by ensuring
that source code is safer and more portable. As compiler
technology improved and systems became more complex in
both hardware and software, compilation has also approached
the efficiency of manual assembly coding, and in many cases
outperformed it. It is important to note here that the widespread
adoption of compilation that we see today was only possible
due to the early adoption of standard interfaces that allowed
the definition of economically-viable compilation tools (with
a large-enough user base). These interfaces include high-level
languages such as C, Ada, etc., relatively stable microprocessor
instruction set architectures (ISAs), and finally executable code
formats like ELF.

1Together with other disciplines such as systems engineering, software
engineering, etc.

The paradigm shift towards fully automated code gen-
eration is far from being completed at the system level.
Aspects such as the division of the functional specification into
tasks, the allocation of tasks to resources, or the configuration
of the real-time scheduler are still performed manually for
most industrial applications. Furthermore, research in real-time
scheduling has largely followed this trend, with most (but
not all) effort still invested into verification-based approaches
aimed at proving the schedulability of a given system (and
into the definition of run-time mechanisms improving resource
use).

This slow adoption of automatic code generation can be
traced back to the slower introduction of standard interfaces al-
lowing the definition of economically-viable compilers. Func-
tional specification languages such as Simulink, LabVIEW,
or SCADE have been introduced in the mid-1980s, which
allowed the gradual definition of techniques for the synthesis
of functionally-correct sequential or even multi-task embedded
code (but without real-time guarantees). The next major step
came in the mid-1990s, when execution platforms have been
standardized in fields such as avionics (IMA/ARINC 653) and
automotive (OSEK/VDO, then AUTOSAR). This second wave
of standardization already allowed the industrial introduction
of automatic tools for the synthesis of processor schedules or
network schedules.

The research community went farther and proposed real-
time implementation flows that automatically produced run-
ning real-time applications [2], [3] where the processor and
network schedules are jointly computed using a global op-
timization approach that results in better resource use. Of
course, more work is needed to ensure the industrial applicabil-
ity of such results. For instance, the aforementioned techniques
cannot handle all the complexity of IMA avionics systems,
which involve functional specifications with multiple execution
modes, multi-processor architectures with complex intercon-
nect networks, and complex non-functional requirements in-
cluding real-time, partitioning, preemptability, allocation, etc.

Our research objective is to bring fully automatic imple-
mentation to such complex embedded systems, and thus help
in improving the safety and efficiency of the resulting systems
while also improving the productivity of the design process.

In previous work [4], [5], [6] we have defined an automatic
implementation method and tool, called Lopht, which is able
to handle all the complexity elements of a realistic case study
provided by Airbus DS [4] (which includes all those men-
tioned above). Our tool uses advanced optimization algorithms



Figure 1. Lopht-based implementation flow for Time-Triggered Ethernet

which result in high resource use and low numbers of par-
tition/context changes. It fully automates the implementation
process, including the creation of tasks from the functional
specification, the full synthesis of ARINC 653 code (C/APEX
code for the partitions, including communication code, and
OS configuration for each computer), and the synthesis of
communication schedules for the system bus. Last, but not
least, Lopht is fast (like a compiler) and it is easy to trace
the cause of implementation errors. While designed to cater
for the needs of an avionics application, our tool has been
successfully applied to a transportation case study [6].

The purpose of this paper is to describe our ongoing work
aimed at extending Lopht to fully take into account one of
the avionics execution platforms considered by the Avionic-X
project for use in future space launchers [7]. The main differ-
ence between this execution platform and the ones already
handled by Lopht is the use of a Time-Triggered Ethernet
(TTE) communication network instead of a more classical bus.

Taking into account TTE amounts to interconnecting the Lopht
tool with the TTE network configuration toolset, and thus
building the fully automatic implementation flow of Fig. 1.

The remainder of the paper will first introduce Lopht (in
Section II) and TTE (in Section III), and then will explain how
the principles of our ongoing work on connecting the two.

II. THE LOPHT AUTOMATIC IMPLEMENTATION TOOL

Lopht is an off-line mapping tool for multi-processor
(distributed) systems designed to allow scheduling and code
generation for time-triggered platforms where all the proces-
sors and communication media share a common time base.

It adopts a compilation-like approach that uses advanced
off-line scheduling and compilation techniques designed to im-
prove resource use (and thus schedulability). Such techniques
are the use of pre-computed preemption, the exploitation of

2



execution conditions, the use of software pipelining, and post-
scheduling optimizations aiming at reducing the number of
partition switches.

As pictured in Fig. 1, Lopht takes as input a functional
specification and a non-functional specification. The functional
specification is a high-level data-flow synchronous (Scade)
program. It allows the representation of system tasks, their
execution conditions (modes), and their dependencies. These
programs are deterministic and have well-defined formal se-
mantics allowing formal analysis.

The non-functional specification comprises both platform-
independent and platform-dependent aspects. The platform-
independent requirements are those provided by control en-
gineering2 and by platform-independent systems engineering
analysis. Such constraints concern the real-time behavior of
the tasks (release dates, deadlines, periods), or the partitioning
of the application according to task criticalities. The platform-
dependent specification includes the architecture specification
(its resources and the interconnect topology), the worst-case
execution durations of the various tasks and communications
(WCETs and WCCTs), and other platform-dependent require-
ments such as task preemptability, allocation constraints, par-
titioning constraints. In our case, partitioning means ARINC
653 time partitioning, and the non-functional specification
may define the major time frame (MTF) of the system and
pre-defined allocations of computation windows. Lopht can
currently handle only communications over broadcast commu-
nication buses.

As pictured in Fig. 1, the first phase of the Lopht flow takes
this functional and non-functional specification and performs
a multi-processor real-time scheduling phase that produces a
scheduling table describing one hyper-period of the execution
of the system. This scheduling table defines:

• The allocation of tasks and communications to pro-
cessors and buses (including source and destinations
for each communication).

• The processor time reservations made for each task.
Each reservation consists of a start date, a duration,
and an execution condition.

• The bus time reservations made for each communica-
tion, which are characterized in the same way as those
of processors.

From this table, Lopht generates executable code compliant
with the APEX API of ARINC 653 (one C file for each
partition of each processor) and a full configuration of the
real-time aspects of ARINC 653 (one configuration for each
processor).

A variant of the Lopht tool exists, named Lopht-manycore
for mapping onto many-core platforms using a network-on-
chip interconnect [8], [9]. While this variant does not take
into account all the non-functional properties described above
(no release dates, deadlines, partitioning, or interruptibility),
we mention it here because it allows the manipulation of
complex network architectures that are very similar to TTE.
Indeed, even if TTethernet is often compared (due to its

2Obtained through discretization of the continuous-time control specifica-
tion.

application field) to buses such as CAN [10] or TTA [11], it is
technically not a bus, but an interconnection network formed
of unidirectional point-to-point links and switches (routers),
and where arbitration/scheduling must be separately defined
for each link, just as we do in Lopht-manycore.

III. THE TIME-TRIGGERED ETHERNET NETWORK

Time-Triggered Ethernet3 is a communication network
standard and product coming from TTTech [12]. On top
of a switched Ethernet basis, TTE adds support for real-
time and fault tolerant communications. It allows multiple
communications of mixed criticalities to share a single physical
medium. This is ensured by means of dedicated hardware
using a set of configuration files describing the system archi-
tecture and behavior. These configurations are synthesized by
the proprietary TTEplan tool starting from a global network
description file. In this paper, our objective is to synthesize
this network description based on the output of Lopht.

1) Types of Traffic: TTEthernet networks allow three types
of traffic to co-exist on the same physical links:

• Time-triggered (TT) traffic, where data packets are
transmitted following a periodic predefined schedule
on each network link, thus ensuring strong functional
and temporal determinism properties.

• Rate-controlled (RC) traffic that follows an asyn-
chronous AFDX-like traffic control paradigm using
bandwidth allocation gaps (BAGs) to offer latency and
throughput guarantees.

• Best-effort (BE) traffic that uses classical Ethernet
arbitration over the network space not used by TT
and RC traffic.

System-wide time synchronization is ensured through the
transmission of a specific type of RC traffic, called protocol
control frames (PCF), which are generated and consumed
by the network infrastructure itself (not by the computers
connected to the network).

The work presented in this paper only uses TT traffic. The
objective is therefore to use Lopht in order to jointly compute
the schedule of both computations on processors and packet
transmissions on all the links of the TTE network.

2) Virtual Links and Packets: All TTE traffic is organized
into virtual links (VLs). Each VL has a set of characteristics
such as sender, receiver(s), etc. The real-time characteristics
of a VL depend on the type of the VL (TT, RC, or BE). For
instance, TT VLs have a period, a time window for initiating
the transmission, and a maximum packet size. During each
period of a TT VL only one TT packet is sent, subject to the
size limits defined below.

Like in Ethernet, all data transmissions are packetized.
Packets must have less than 1499 bytes. PCF traffic requires
smaller packets of only 64 bytes. When TT traffic is used, a
TTE network must operate at one of two speeds: 100Mbps or
1000Mbps.

3The description of this section is based on the TTE documentation that
was available when the paper was written. As TTE is actively being developed
by TTTech, some of the aspects of this technology might change over time.

3



3) Time Bases: Like other time-triggered standards, TTE
uses a a discretized time base, and various time scales can
be used for synchronization at different levels. Our code
generation work will need to consider three time scales of
TTE:

• The raster tick is the finest timing resolution. It is used
for fine-grained scheduling of TT packets.

• The integration cycle is a multiple of the raster tick. It
is the period with which PCF packets are sent on the
network to perform clock resynchronization. Shorter
integration cycles result in better clock synchroniza-
tion precision.

• The cluster cycle is a multiple of the integration cycle
(it can be equal to it). It must also be a multiple of the
period of all TT VLs (and thus of their least common
multiple). The cluster cycle defines the length of the
scheduling table which is periodically repeated during
execution. It is the time scale where synchronization
with the operating system of the processors (end
systems) is performed.

In addition to these three time scales, TTE defines a fourth
time-related parameter, called the raster granularity slot. If its
value is n, then the TTEplan scheduler can schedule at most
one TT frame every n raster ticks. As only one TT packet can
be sent on a TT VL during one raster tick it is important to note
that this constraint limits the amount of bandwidth available
for TT traffic, due to the fact that the maximal TT packet is
substantially shorter than the raster tick.

IV. INTERFACING LOPHT AND TTETHERNET

Building the integrated design flow pictured in Fig. 1
requires a careful integration of the Lopht and TTEplan tools.
This integration requires modifications at several levels in
Lopht. The most important of these modifications is that of
the formal platform model taken as input by Lopht to allow
the representation of TTE networks. Choosing a good platform
model is key in ensuring that resources are efficiently allocated
by Lopht and that scheduling tables generated by Lopht are
implementable using the TTEplan toolset.

Previous work on modeling networks-on-chips (NoCs) in
Lopht-manycore [8] provides us with a good starting point,
which has the advantage of being readily compatible with
the internal scheduling infrastructure of Lopht. However, this
model needs to be modified to take into account TTE-specific
information, such as the periodicity of TT VLs and the
existence of multiple time bases.

One particular issue here is the limited, but still existing
scheduling freedom of the TTE arbiters. To facilitate platform
description (and also the scheduling algorithms), we make
supplementary hypotheses on the way TTE is used, detailed in
Section IV-A, which allow us to consider that the TTE network
is strictly time-triggered without taking large timing margins.

The second level where modifications are needed is that of
the scheduling algorithms, which need to be modified to take
into account four important TTE-specific properties: the fact
that TTE uses store-and-forward switching (as opposed to the
wormhole switching that is common in NoCs), the requirement

that message transmission is periodic on all TT VLs, the fact
that TTE does not support conditional communication, and the
existence of multiple time bases (e.g. on the TTE network and
on the processors). Again, existing algorithms provide a good
staring point, but some adaptations are needed.

Finally, we need to modify the code generator to allow the
synthesis of the TTEplan input (the network description file).
We shall detail this in Section IV-B.

A. Assumptions on TTE use

Our objective is to allow the precise off-line scheduling of
TT packets in the time base provided by the raster ticks. To
do this, we complete the previous description of TTEthernet
with three assumptions facilitating our scheduling work:

• The sending of TT packets on each network link
(between one end station and one switch, or between
two switches) is scheduled on raster tick start points.

• All TT packets are assumed to have the maximal
size fixed by Ethernet (no optimization is attempted
dependent on the size of various packets).

• PCF traffic and the synchronization precision can be
neglected during scheduling.

The first assumption aligns the sending of all packets, at the
level of all TTE devices (end stations and switches) on raster
tick starts. Of course, on a route involving several devices this
results in a loss of efficiency when a packet is buffered after
reception until at least the next raster tick.

The raster tick where a TT packet is scheduled should allow
it to be scheduled fully under the worst-case influence coming
from PCF packets. For instance, in the chosen configuration
(100Mbps network speed), the recommended raster tick is
200µs. By comparison, the transmission of the maximal TT
data packet takes 120µs, and a PCF packet takes 5µs to
be transmitted. Under the assumption that the TT frame is
scheduled at the beginning of the raster tick, we assume that
the remainder of raster tick is sufficient to accommodate the
worst-case load coming from PCF packets regardless of the
TTE network topology and other network setting. Furthermore,
we assume that the remainder of the raster tick can also
accommodate the worst-case of the clock difference between
the sender and receiver.

The last two assumptions imply that in the time base
provided by the raster tick we can reason about scheduling as if
PCF traffic did not exist. Furthermore, we can also assume that
the transmission of a TT packet will always start and complete
inside the raster tick where it has been scheduled. Under
these hypotheses, we can perform scheduling in the discrete
time base of the raster tick, and all scheduling constraints for
communications (release dates, deadlines) can be formulated
in this time base.

B. Synthesis of TTEplan input

The configuration of a TTE network is realized using the
proprietary TTEplan tool [13]. This tool takes as input a single
network description file which specifies the architecture of
the communication system, the VLs of the system, and their

4



attributes. In our case, this input file will only contain TT VL
definitions which must be (partly) synthesized from the output
of Lopht. The following informations need to be provided for
each VL:

1) the communication name and the VL id - Identifier
of the virtual link.

2) the maximum payload - The maximum payload car-
ried by a frame of this VL.

3) the type of the link - The type of traffic (TT).
4) the period of the communication - The transmission

periodicity of this VL.
5) the source system - The device initiating this com-

munication.
6) the set of destination systems - The intended receivers

of the transmitted data.
7) datalink - Interface with the data link layer.

In addition to the VL definition, network configuration files
can also include real-time constraints on the VLs. TTE-Plan
accepts three types of constraints:

• send time - Defines the earliest point in time where
the transmission can be initiated.

• receive time - Defines a deadline for the end of a
transmission reception.

• transmission duration - Declares a maximum al-
lowed communication time.

It is important to note that, to our knowledge, the network
description file does not allow the specification of communi-
cation paths or the exact time-triggered scheduling of packet
sends at specific at specific points in the network.

This poses us a significant problem, as the basic prin-
ciple of LoPhT is to perform a global scheduling of both
computations and communications. The output of LoPhT is
a scheduling table specifying the time-triggered scheduling
of each resource (link) of the TTE network. More precisely,
the output of LoPhT comes under the form of a set of
time reservations over the resources of the platform, each
reservation defining two temporal attributes: the start time and
the duration of the time reservation.

Translating such scheduling tables into TTEplan input
can only be done by losing information. The simplest code
generation, which we will implement first, synthesizes one VL
for each data-flow arc of the functional specification, after the
hyper-period expansion detailed in [4]. Hyper-period expan-
sion has the disadvantage of increasing the number of VLs, and
the advantage of improving schedulability.4 Under this code
generation approach, each VL has a period equal to the hyper-
period, and we associate to it one send time constraint and
one receive time constraint using the dates prescribed by the
scheduling table. These constraints are provided in the raster
granularity time base.

The resulting network configuration file is provided to
TTEplan, and two outcomes are possible:

• TTEplan finds a solution. This solution will not be
necessarily the same one that LoPhT found, but the

4Ongoing work aims at dealing with multi-periodic specifications without
performing a hype-period expansion.

way it was constructed means that it can be used
instead to build the running implementation.

• TTEplan does not find a solution even though one
exists, as determined by LoPhT. To handle such cases,
three solutions can be envisioned:

� Modifying the output of LoPhT to provide the
maximum freedom of scheduling to TTEplan,
but without compromising the global schedu-
lability determined by LoPhT.

� Enriching the constraint language of TTEplan
to allow the specification of routing and
scheduling at link level.

� Directly building the TTE configuration files,
thus bypassing TTEplan.

We do not expect this last point to be blocking given the
network loads of our case studies.

REFERENCES

[1] Embedded.com, “2009 embedded market study,” Online, Jan 2009, http:
//www.embedded.com/electronics-blogs/embedded-market-surveys/
4405221/2009-Embedded-Market-Survey.

[2] T. Grandpierre and Y. Sorel, “From algorithm and architecture speci-
fication to automatic generation of distributed real-time executives,” in
Proceedings MEMOCODE, Mont St Michel, France, 2003.

[3] S. S. Craciunas and R. S. Oliver, “Smt-based task- and network-level
static schedule generation for time-triggered networked systems,” in
Proceedings RTNS, Versailles, France, October 2014.

[4] T. Carle, D. Potop-Butucaru, Y. Sorel, and D. Lesens, “From dataflow
specification to multiprocessor partitioned time-triggered real-time im-
plementation,” http://hal.inria.fr/hal-00742908/PDF/RR-8109.pdf, IN-
RIA, Research Report RR-8109, Oct. 2012.

[5] T. Carle and D. Potop-Butucaru, “Predicate-aware, makespan-
preserving software pipelining of scheduling tables,” ACM Transactions
on Architecture and Code Optimization, vol. 11, no. 1, 2014.

[6] A. Cohen, V. Perrelle, D. Potop-Butucaru, E. Soubiran, and Z. Zhan,
“Mixed-criticality in railway systems: A case study on signalling appli-
cation,” in WMCIS Proceedings of the Workshop on Mixed Criticality
for Industrial Systems, 2014.

[7] D. Monchaux, P. Gast, and J. Sangare, “Avionic-x: A demonstrator for
the next generation launcher avionics,” in Proceedings ERTS², Toulouse,
France, February 2012.

[8] T. Carle, M. Djemal, D. Potop-Butucaru, R. D. Simone, and Z. Zhang,
“Static mapping of real-time applications onto massively parallel pro-
cessor arrays,” in Proceedings ACSD, Tunis, Tunisia, June 2014.

[9] T. Carle, M. Djemal, D. Genius, F. Pêcheux, D. Potop-Butucaru,
R. de Simone, F. Wajsbürt, and Z. Zhang, “Reconciling performance and
predictability on a many-core through off-line mapping,” in Proceedings
RTNS, Montpellier, France, May 2014.

[10] “CAN (iso 11898): Controller area network,” http://www.iso.org/iso/
home/store/catalogue tc/catalogue detail.htm?csnumber=33422.

[11] H. Kopetz and G. Bauer, “The time-triggered architecture,” Proceedings
of the IEEE, vol. 91, no. 1, pp. 138–144, January 2003.

[12] “SAE AS 6802: Time-Triggered Ethernet,” http://standards.sae.org/
as6802/, 2011.

[13] TTE-Plan: The TTEthernet Scheduler, 4.1 ed. TTTech, 2013.

5


